

General Astrodynamics Library

Reference Manual

 Version 0.4

i

General Astrodynamics Library

Reference Manual
Version 0.4

October 25, 2008

Email: vp9mu@amsat.org

Copyright © 2008 The GAL Team

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled ―GNU Free Documentation License‖.

Cover photograph courtesy of NASA: Mercury from the Messenger spacecraft

i

Preface .. 1

Chapter 1 - Introduction .. 3

Routines available in GAL ... 4

Standards for Fundamental Astronomy Library (SOFA) .. 4

GAL is Free Software .. 4

Obtaining GAL ... 5

No Warranty .. 5

Reporting Bugs .. 5

Compatibility with C++ .. 6

Deprecated Functions ... 6

ANSI C Compliance .. 6

Free Software Needs Free Documentation .. 6

SOFA Julian Date Format ... 8

Position & Velocity Vectors ... 8

Chapter 2 - Vector & Matrix Routines .. 9

Chapter 3 - Math Routines .. 29

Chapter 4 - String Handling ... 33

Chapter 5 - Test Framework .. 41

Chapter 6 - Date & Time ... 45

Chapter 7 - Earth Orientation ... 55

Chapter 8 - Star Routines ... 121

Chapter 9 - Ellipsoids .. 133

Chapter 10 - Gravity Models ... 139

Chapter 11 - Reference Frames ... 157

Chapter 12 - SGP4 .. 175

Chapter 13 - ODE Integrators ... 183

Chapter 14 – Keplerian Propagation ... 191

Chapter 15 - Ephemerides .. 195

Appendix A – GNU Free Documentation License .. 209

Index .. 217

ii

Preface

1

Preface

This manual documents the use of the General Astrodynamics Library, a numerical library
for C and C++ programmers. The GAL Project is an attempt to gather a comprehensive
set of astrodynamics routines in a single library and in a consistent form.

The project started life as an extension to the GNU Scientific Library, however once the
authors discovered the IAU‘s SOFA Library it was decided to drop GSL and adopt SOFA.
Much of the core functionality of SOFA is directly applicable to Astrodynamics
applications. The main reason for dropping GSL compatibility was the GSL approach to
matrix and vector storage – an overly complicated scheme.

The test framework is central to GAL‘s design, nearly all routines have a corresponding
test routine. The test framework allows routines to be upgraded as new techniques are
published, whilst ensuring that nothing gets broken in the process. Users of the library
may also use the test routines as examples of how to use the main routines.

The General Astrodynamics Library is free software. The term ―free software‖ is
sometimes misunderstood – it has nothing to do with price. It is about freedom. It refers to
your freedom to run, copy, distribute, study, change and improve the software. With the
General Astrodynamics Library you have all those freedoms.

Paul Willmott
Somerset, Bermuda
October 2008

2

3

Chapter 1 - Introduction

General Astrodynamics library – Reference Manual

4

The General Astrodynamics Library (GAL) is a collection of routines for numerical
computing. The routines have been written in C, and present a modern Applications
Programming Interface (API) for C and C++ programmers, allowing wrappers to be
written for very high level languages. The source code is distributed under the GNU
General Public License.

 Routines available in GAL

The library covers a wide range of topics in astrodynamics computing. Routines are
available for the following areas:

 Vector and Matrix Manipulation

 Dates and Times

 Ellipsoids

 Earth Orientation

 Reference Frames
 Ephemerides

 SGP4 Propagation

 ODE Integrators

 Force Models

 Gravity Models

 Classical Keplerian Propagators

The use of these routines is described in this manual. Each chapter provides detailed
definitions of the functions, including references to the articles upon which the algorithms
are based.

 Standards for Fundamental Astronomy Library (SOFA)

GAL is built upon an independent translation of the IAU‘s SOFA Fortran Library. The
majority of the routines included in release 0.1 of GAL are translations of SOFA routines.
These routines have not been verified by the IAU and are not supported by the IAU or the
SOFA Review Board. Any errors introduced by the translation process are the
responsibility of the GAL Team solely. That said, the GAL Team would like to thank
Patrick Wallace, Chair of the SOFA Review Board, for making the SOFA test suite
available to the GAL Team, and for answering many questions and providing insight into
the thinking behind the Fortran SOFA implementations. At the time of writing version 0.1
of GAL a real IAU SOFA C implementation was not available, since the release of version
0.1 of GAL an authorized IAU SOFA C library has been written and is currently in beta
testing. The results of GAL and the IAU C beta version have been compared, and shown
that identical results are computed. The form of the GAL function calls mirror the IAU C
beta version, albeit with a different routine naming convention. The entries in this
document for the SOFA derived routines are based upon the comments in the original
SOFA Fortran code.

 GAL is Free Software

The subroutines in the General Astrodynamics Library are ―free software‖; this means that
everyone is free to use them, and to redistribute them in other free programs. The library

Chapter 1 - Introduction

5

is not in the public domain; it is copyrighted and there are conditions on its distribution.
These conditions are designed to permit everything that a good cooperating citizen would
want to do. What is not allowed is to try to prevent others from further sharing any version
of the software that they might get from you.

Specifically, we want to make sure that you have the right to share copies of programs
that you are given which use the General Astrodynamics Library, that you receive their
source code or else can get it if you want it, that you can change these programs or use
pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of any code which uses the General
Astrodynamics Library, you must give the recipients all the rights that you have received.
You must make sure that they, too, receive or can get the source code, both to the library
and the code which uses it. And you must tell them their rights. This means that the library
should not be redistributed in proprietary programs.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the General Astrodynamics Library. If these programs are modified by
someone else and passed on, we want their recipients to know that what they have is not
what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions for the distribution of software related to the General
Astrodynamics Library are found in the GNU General Public License.

Further information about this license is available from the GNU Project webpage
Frequently Asked Questions about the GNU GPL,

http://www.gnu.org/copyleft/gpl-faq.html

 Obtaining GAL

The source code for the library can be obtained in different ways, by copying it from a
friend, or downloading it from the internet.

http://www.homepage.mac.com/pclwillmott/GAL/index.html

 No Warranty

The software described in this manual has no warranty, it is provided ―as is‖. It is your
responsibility to validate the behavior of the routines and their accuracy using the source
code provided, or to purchase support and warranties from commercial redistributors.
Consult the GNU General Public license for further details (see GNU General Public
License).

 Reporting Bugs

A list of known bugs can be found in the BUGS file included in the GAL distribution.
Details of compilation problems can be found in the INSTALL file. If you find a bug which
is not listed in these files, please report it to vp9mu@amsat.org. All bug reports should
include:

http://www.homepage.mac.com/pclwillmott/GAL/index.html

General Astrodynamics library – Reference Manual

6

 The version number of GAL

 The hardware and operating system

 The compiler used, including version number and compilation options

 A description of the bug behavior

 A short program which exercises the bug, showing actual and expected results

It is useful if you can check whether the same problem occurs when the library is compiled
without optimization. Thank you. Any errors or omissions in this manual can also be
reported to the same address.

 Compatibility with C++

The library header files automatically define functions to have extern ―C‖ linkage when
included in C++ programs. This allows the functions to be called directly from C++. To use
C++ exception handling within user-defined functions passed to the library as
parameters, the library must be built with the additional CFLAGS compilation option
–fexceptions.

 Deprecated Functions

From time to time, it may be necessary for the definitions of some functions to be altered
or removed from the library. In these circumstances the functions will first be declared
deprecated and then removed from subsequent versions of the library. Functions that are
deprecated can be disabled in the current release by setting the preprocessor definition
GAL_DISABLE_DEPRECATED. This allows existing code to be tested for forwards
compatibility.

 ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard (C89).
It should be portable to any system with a working ANSI C compiler. The library does not
rely on any non-ANSI extensions in the interface it exports to the user. Programs you
write using GAL can be ANSI compliant. To avoid namespace conflicts all exported
function names and variables have the prefix gal_, while exported macros have the prefix
GAL_.

 Free Software Needs Free Documentation

The following article was written by Richard Stallman, founder of the GNU Project. The
biggest deficiency in the free software community today is not in the software - it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important
free software package does not come with a free manual and a free tutorial, that is a
major gap. We have many such gaps today. Consider Perl, for instance. The tutorial
manuals that people normally use are non-free. How did this come about? Because the
authors of those manuals published them with restrictive terms - no copying, no
modification, source files not available - which exclude them from the free software world.
That wasn‘t the first time this sort of thing happened, and it was far from the last. Many

Chapter 1 - Introduction

7

times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free. Free documentation, like free software,
is a matter of freedom, not price. The problem with the non-free manual is not that
publishers charge a price for printed copies - that in itself is fine. (The Free Software
Foundation sells printed copies of manuals, too.) The problem is the restrictions on the
use of the manual. Free manuals are available in source code form, and give you
permission to copy and modify. Non-free manuals do not allow this. The criteria of
freedom for a free manual are roughly the same as for free software. Redistribution
(including the normal kinds of commercial redistribution) must be permitted, so that the
manual can accompany every copy of the program, both on-line and on paper.
Permission for modification of the technical content is crucial too. When people modify the
software, adding or changing features, if they are conscientious they will change the
manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community. Some kinds of
limits on the way modification is handled are acceptable. For example, requirements to
preserve the original author‘s copyright notice, the distribution terms, or the list of authors,
are ok. It is also no problem to require modified versions to include notice that they were
modified. Even entire sections that may not be deleted or changed are acceptable, as
long as they deal with nontechnical topics (like this one). These kinds of restrictions are
acceptable because they don‘t obstruct the community‘s normal use of the manual.
However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it. Please spread the word about this issue. Our community continues to lose
manuals to proprietary publishing. If we spread the word that free software needs free
reference manuals and free tutorials, perhaps the next person who wants to contribute by
writing documentation will realize, before it is too late, that only free manuals contribute to
the free software community. If you are writing documentation, please insist on publishing
it under the GNU Free Documentation License or another free documentation license.
Remember that this decision requires your approval - you don‘t have to let the publisher
decide. Some commercial publishers will use a free license if you insist, but they will not
propose the option; it is up to you to raise the issue and say firmly that this is what you
want. If the publisher you are dealing with refuses, please try other publishers. If you‘re
not sure whether a proposed license is free, write to licensing@gnu.org. You can
encourage commercial publishers to sell more free, copylefted manuals and tutorials by
buying them, and particularly by buying copies from the publishers that paid for their
writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and insist
that whoever seeks your business must respect your freedom. Check the history of the
book, and try reward the publishers that have paid or pay the authors to work on it. The
Free Software Foundation maintains a list of free documentation published by other
publishers:

http://www.fsf.org/doc/other-free-books.html

http://www.fsf.org/doc/other-free-books.html

General Astrodynamics library – Reference Manual

8

 SOFA Julian Date Format

GAL uses Julian Dates stored in standard SOFA two-piece format. The Julian Date is
apportioned in any convenient way between two arguments. For example, the Julian Date
2450123.7 could be expressed in any of these ways, among others:

2450123.7 0.0 Julian Date method

2451545.0 -1421.3 J2000 method

2400000.5 50123.2 Modified Julian Date method

2450123.5 0.2 date & time method

The GAL routines are optimized assuming that the first date argument is of a greater
magnitude than the second argument. The routines will work with either ordering, but
greatest precision is obtained by using the recommended ordering.

 Position & Velocity Vectors

GAL stores position and velocity vectors in a single 2 by 3 array. This allows both vectors
to be passed to functions as a single entity. The combined position and velocity vectors‘
array is called a pv-vector.

 pv[0][0] x position
 pv[0][1] y position
 pv[0][2] z position

 pv[1][0] x velocity
 pv[1][1] y velocity
 pv[1][2] z velocity

A pv-vector may be split into individual p-vectors (1 by 3 array).

9

Chapter 2 - Vector & Matrix Routines

The routines detailed in this chapter are defined in the gal_vecmat.h header file.

General Astrodynamics library – Reference Manual

10

g a l _ a 2 a f [0.1]

Decompose angle in radians into degrees, arc-minutes, arc-seconds, and fraction.

void
gal_a2af

 (

 int ndp,

 double angle,

 char *sign,

 int idmsf[4]

) ;

On entry ndp specifies the required resolution, and is interpreted as follows:

 ndp resolution

 : ...0000 00 00

 -7 1000 00 00

 -6 100 00 00

 -5 10 00 00

 -4 1 00 00

 -3 0 10 00

 -2 0 01 00

 -1 0 00 10

 0 0 00 01

 1 0 00 00.1

 2 0 00 00.01

 3 0 00 00.001

 : 0 00 00.000...

The largest positive useful value for ndp is determined by the size of angle, the format of
double precision floating-point numbers on the target platform, and the risk of overflowing
idmsf[3]. On a typical platform, for angles up to 2π, the available floating-point precision
might correspond to ndp=12. However, the practical limit is typically ndp=9, set by the
capacity of a 32-bit idmsf[3]. angle is the angle in radians. On return sign contains '+' or '-',
and idmsf contains degrees, arc-minutes, arc-seconds, and fraction. The absolute value
of angle may exceed 2π. In cases where it does not, it is up to the caller to test for and
handle the case where angle is very nearly 2π and rounds up to 360 degrees, by testing

for ihmsf[0]=360 and setting ihmsf[0-3] to zero.

g a l _ a 2 t f [0.1]

Decompose angle in radians into hours, minutes, seconds, and fraction.

void
gal_a2tf

 (

Chapter 2 – Vector & Matrix Routines

11

 int ndp,

 double angle,

 char *sign,

 int ihmsf[4]

) ;

On entry ndp specifies required resolution, and is interpreted as follows:

 ndp resolution

 : ...0000 00 00

 -7 1000 00 00

 -6 100 00 00

 -5 10 00 00

 -4 1 00 00

 -3 0 10 00

 -2 0 01 00

 -1 0 00 10

 0 0 00 01

 1 0 00 00.1

 2 0 00 00.01

 3 0 00 00.001

 : 0 00 00.000...

angle is the angle in radians. On return sign contains '+' or '-', and ihmsf contains hours,
minutes, seconds, and fraction. The largest useful value for ndp is determined by the size
of angle, the format of double floating-point numbers on the target platform, and the risk of
overflowing ihmsf[3]. On a typical platform, for angle up to 2π, the available floating-point
precision might correspond to ndp=12. However, the practical limit is typically ndp=9, set
by the capacity of a 32-bit ihmsf[3]. The absolute value of angle may exceed 2π. In cases
where it does not, it is up to the caller to test for and handle the case where angle is very
nearly 2π and rounds up to 24 hours, by testing for ihmsf[0]=24 and setting ihmsf[0-3] to
zero.

g a l _ a n p [0.1]

Normalize angle into the range 0 <= a < 2π.

double
gal_anp

 (

 double a

) ;

On entry a is the angle in radians. The routine returns the normalized angle.

g a l _ a n p m [0.1]

General Astrodynamics library – Reference Manual

12

Normalize angle into the range -π <= a < +π.

double
gal_anpm

 (

 double a

) ;

a is the angle in radians.

 g a l _ c 2 s [0.1]

p-vector to spherical coordinates.

void
gal_c2s

 (

 double p[3],

 double *theta,

 double *phi

) ;

On return theta and phi contain the longitude and latitude angle in radians respectively. p
can have any magnitude; only its direction is used. If p is null, zero theta and phi are
returned. At either pole, zero theta is returned.

 g a l _ c p [0.1]

Copy a p-vector.

void
gal_cp

 (

 double p[3],

 double c[3]

) ;

On return c contains a duplicate of p.

 g a l _ c p v [0.1]

Copy a position/velocity vector

void
gal_cpv

 (

 double pv[2][3],

 double c[2][3]

Chapter 2 – Vector & Matrix Routines

13

) ;

On return c contains a duplicate of pv.

 g a l _ c r [0.1]

Copy an r-matrix.

void
gal_cr

 (

 double r[3][3],

 double c[3][3]

) ;

On return c contains a duplicate of r.

 g a l _ d 2 t f [0.1]

Decompose days to hours, minutes, seconds, and fraction.

void
gal_d2tf

 (

 int ndp,

 double days,

 char *sign,

 int ihmsf[4]

) ;

On entry ndp contains the resolution, and days contain the interval in days. On return sign
contains ‗+‘ or ‗-‗, and ihmsf contain the hours, minutes, seconds, fraction. ndp is
interpreted as follows:

 ndp resolution

 : ...0000 00 00

 -7 1000 00 00

 -6 100 00 00

 -5 10 00 00

 -4 1 00 00

 -3 0 10 00

 -2 0 01 00

 -1 0 00 10

 0 0 00 01

 1 0 00 00.1

 2 0 00 00.01

 3 0 00 00.001

 : 0 00 00.000...

General Astrodynamics library – Reference Manual

14

The largest positive useful value for ndp is determined by the size of days, the format of
double floating-point numbers on the target platform, and the risk of overflowing ihmsf[3].
On a typical platform, for days up to 1.0, the available floating-point precision might
correspond to ndp=12. However, the practical limit is typically ndp=9, set by the capacity
of a 32-bit ihmsf[3]. The absolute value of days may exceed 1.0. In cases where it does
not, it is up to the caller to test for and handle the case where days is very nearly 1.0 and
rounds up to 24 hours, by testing for ihmsf[0]=24 and setting ihmsf[0-3] to zero.

 g a l _ i r [0.1]

Initialize an r-matrix to the identity matrix.

void
gal_ir

 (

 double r[3][3]

) ;

On return r contains an identity matrix.

 g a l _ p 2 p v [0.1]

Extend a p-vector to a pv-vector by appending a zero velocity.

void
gal_p2pv

 (

 double p[3],

 double pv[2][3]

) ;

On return pv[0][0-2] contains p[0-2], and pv[1][0-2] contain zero.

 g a l _ p 2 s [0.1]

p-vector to spherical polar coordinates.

void
gal_p2s

 (

 double p[3],

 double *theta,

 double *phi,

 double *r

) ;

On return theta and phi contain the longitude and latitude angles in radians respectively,
and r contains the radial distance. If p is null, zero theta, phi and r are returned. At either
pole, zero theta is returned.

Chapter 2 – Vector & Matrix Routines

15

 g a l _ p a p [0.1]

Position-angle from two p-vectors.

double
gal_pap

 (

 double a[3],

 double b[3]

) ;

Given a the direction of the reference point, and b the direction of the point whose position
angle is required, the function returns the position angle of b with respect to b in radians.
The result is the position angle, in radians, of direction b with respect to direction a. It is in
the range -π to +π. The sense is such that if b is a small distance "north" of a the position
angle is approximately zero, and if b is a small distance "east" of a the position angle is
approximately + π/2. a and b need not be unit vectors. Zero is returned if the two
directions are the same or if either vector is null. If a is at a pole, the result is ill-defined.

 g a l _ p a s [0.1]

Position-angle from spherical coordinates.

double
gal_pas

 (

 double al,

 double ap,

 double bl,

 double bp

) ;

Given al the longitude of point A (e.g. RA), ap the latitude of point A (e.g. Dec), bl the
longitude of point B, and bp the latitude of point B. All angles in radians. The result is the
bearing (position angle), in radians, of point B with respect to point A. It is in the range -π

to +π. The sense is such that if B is a small distance "east" of point A, the bearing is
approximately + π/2. Zero is returned if the two points are coincident.

 g a l _ p d p [0.1]

p-vector dot product.

double
gal_pdp

 (

 double a[3],

 double b[3]

General Astrodynamics library – Reference Manual

16

) ;

Returns the dot product of vectors a and b.

 g a l _ p m [0.1]

Modulus of p-vector.

double
gal_pm

 (

 double p[3]

) ;

Returns the modulus of the p-vector p.

 g a l _ p m p [0.1]

p-vector subtraction.

void
gal_pmp

 (

 double a[3],

 double b[3],

 double amb[3]

) ;

On return p-vector amb contains p-vector a minus p-vector b.

 g a l _ p n [0.1]

Convert a p-vector into modulus and unit vector.

void
gal_pn

 (

 double p[3],

 double *r,

 double u[3]

) ;

On return the p-vector u contains the unit vector of p-vector p, and r contains the modulus
of p-vector p. If p is null, the result is null. Otherwise the result is a unit vector.

 g a l _ p p p [0.1]

p-vector addition.

Chapter 2 – Vector & Matrix Routines

17

void
gal_ppp

 (

 double a[3],

 double b[3],

 double apb[3]

) ;

On return p-vector apb contains the sum of p-vectors a and b.

 g a l _ p p s p [0.1]

p-vector plus scaled p-vector.

void
gal_ppsp

 (

 double a[3],

 double s,

 double b[3],

 double apsb[3]

) ;

On return p-vector apsb contains the sum of p-vector a and the product of scalar s and
p-vector b.

 g a l _ p v 2 p [0.1]

Discard velocity component of a pv-vector.

void
gal_pv2p

 (

 double pv[2][3],

 double p[3]

) ;

On return the p-vector p contains a copy of the position vector portion of pv-vector pv.

 g a l _ p v 2 s [0.1]

Convert position/velocity from Cartesian to spherical coordinates.

void
gal_pv2s

 (

 double pv[2][3],

 double *theta,

 double *phi,

General Astrodynamics library – Reference Manual

18

 double *r,

 double *td,

 double *pd,

 double *rd

) ;

On return theta contains the longitude angle, phi contains the latitude angle, r contains
the radial distance, td contains the rate of change of theta, pd contains the rate of change
of phi, and rd contains the rate of change of r. All angles are in radians. If the position part
of pv is null, theta, phi, td and pd are indeterminate. This is handled by extrapolating the
position through unit time by using the velocity part of pv. This moves the origin without
changing the direction of the velocity component. If the position and velocity components
of pv are both null, zeroes are returned for all six results. If the position is a pole, theta, td
and pd are indeterminate. In such cases zeroes are returned for theta, td and pd.

 g a l _ p v d p v [0.1]

Dot product of two pv-vectors.

void
gal_pvdpv

 (

 double a[2][3],

 double b[2][3],

 double adb[2]

) ;

On return pv-vector adb contains the dot product of pv-vectors a and b. If the position and
velocity components of the two pv-vectors are (ap, av) and (bp, bv), the result, a . b, is
the pair of numbers (ap . bp , ap . bv + av . bp). The two numbers are the dot-product of
the two p-vectors and its derivative.

 g a l _ p v m [0.1]

Modulus of pv-vector.

void
gal_pvm

 (

 double pv[2][3],

 double *r,

 double *s

) ;

On return r and s contain the modulus of the position and velocity components of the
pv-vector pv respectively.

 g a l _ p v m p v [0.1]

Chapter 2 – Vector & Matrix Routines

19

Subtract one pv-vector from another.

void
gal_pvmpv

 (

 double a[2][3],

 double b[2][3],

 double amb[2][3]

) ;

On return the pv-vector amb contains pv-vector a minus pv-vector b.

 g a l _ p v p p v [0.1]

Add one pv-vector to another.

void
gal_pvppv

 (

 double a[2][3],

 double b[2][3],

 double apb[2][3]

) ;

On return the pv-vector apb contains the sum of pv-vectors a and b.

 g a l _ p v u [0.1]

Update a pv-vector.

void
gal_pvu

 (

 double dt,

 double pv[2][3],

 double upv[2][3]

) ;

"Update" means "refer the position component of the vector to a new epoch dt time units
from the existing epoch. The time units of dt must match those of the velocity. The velocity
component is unchanged.

 g a l _ p v u p [0.1]

Update a pv-vector, discarding the velocity component.

void
gal_pvup

General Astrodynamics library – Reference Manual

20

 (

 double dt,

 double pv[2][3],

 double p[3]

) ;

"Update" means refer the position component of the vector to a new epoch dt time units
from the existing epoch". The time units of dt must match those of the velocity.

 g a l _ p v x p v [0.1]

Cross product of two pv-vectors.

void
gal_pvxpv

 (

 double a[2][3],

 double b[2][3],

 double axb[2][3]

) ;

On return the pv-vector axb contains the cross product of pv-vectors a and b. If the
position and velocity components of the two pv-vectors are (ap, av) and (bp, bv), the
result, a x b, is the pair of vectors (ap x bp, ap x bv + av x bp). The two vectors are the
cross-product of the two p-vectors and its derivative.

 g a l _ p x p [0.1]

p-vector cross product.

void
gal_pxp

 (

 double a[3],

 double b[3],

 double axb[3]

) ;

On return the p-vector axb contains the cross product of p-vectors a and b.

 g a l _ r m 2 v [0.1]

Express an r-matrix as an r-vector.

void

gal_rm2v

 (

 double r[3][3],

 double w[3]

Chapter 2 – Vector & Matrix Routines

21

) ;

On return w contains the rotation vector. A rotation matrix describes a rotation through
some angle about some arbitrary axis called the Euler axis. The "rotation vector" returned
by this routine has the same direction as the Euler axis, and its magnitude is the angle in
radians. The magnitude and direction can be separated by means of the routine gal_pn. If
r is null, so is the result. If r is not a rotation matrix the result is undefined. r must be proper
(i.e. have a positive determinant) and real orthogonal (inverse = transpose). The
reference frame rotates clockwise as seen looking along the rotation vector from the
origin.

 g a l _ r v 2 m [0.1]

Form the r-matrix corresponding to a given r-vector.

void
gal_rv2m

 (

 double w[3],

 double r[3][3]

) ;

On return the r-matrix r contains the rotation matrix. A rotation matrix describes a rotation
through some angle about some arbitrary axis called the Euler axis. The rotation vector
supplied to this routine has the same direction as the Euler axis, and its magnitude is the
angle in radians. If w is null, the unit matrix is returned. The reference frame rotates
clockwise as seen looking along the rotation vector from the origin.

 g a l _ r x [0.1]

Rotate an r-matrix about the x-axis.

void

gal_rx

 (

 double phi,

 double r[3][3]

) ;

On return the r-matrix r has been rotated by the angle phi about the x axis. The angle phi
is in radians. Sign convention: The matrix can be used to rotate the reference frame of a
vector. Calling this routine with positive phi incorporates in the matrix an additional
rotation, about the x-axis, anticlockwise as seen looking towards the origin from positive
x.

 g a l _ r x p [0.1]

General Astrodynamics library – Reference Manual

22

Multiply a p-vector by an r-matrix.

void
gal_rxp

 (

 double r[3][3],

 double p[3],

 double rp[3]

) ;

On return the p-vector rp contains the product of the r-matrix r and the p-vector p.

 g a l _ r x p v [0.1]

Multiply a pv-vector by an r-matrix.

void
gal_rxpv

 (

 double r[3][3],

 double pv[2][3],

 double rpv[2][3]

) ;

On return the pv-vector rpv contains the product of the r-matrix r and the pv-vector pv.

 g a l _ r x r [0.1]

Multiply two r-matrices.

void
gal_rxr

 (

 double a[3][3],

 double b[3][3],

 double atb[3][3]

) ;

On return the r-matrix atb contains the product of the r-matrix a and the r-matrix b.

 g a l _ r y [0.1]

Rotate an r-matrix about the y-axis.

void
gal_ry

 (

 double theta,

 double r[3][3]

Chapter 2 – Vector & Matrix Routines

23

) ;

On return the r-matrix r has been rotated by the angle theta about the y-axis. The angle
theta is in radians. Sign convention: The matrix can be used to rotate the reference frame
of a vector. Calling this routine with positive theta incorporates in the matrix an additional
rotation, about the y-axis, anticlockwise as seen looking towards the origin from positive
y.

 g a l _ r z [0.1]

Rotate an r-matrix about the z-axis.

void
gal_rz

 (

 double psi,

 double r[3][3]

) ;

On return the r-matrix r has been rotated by the angle psi about the z-axis. The angle psi
is in radians. Sign convention: The matrix can be used to rotate the reference frame of a
vector. Calling this routine with positive psi incorporates in the matrix an additional
rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive
z.

 g a l _ s 2 c [0.1]

Convert spherical coordinates to Cartesian.

void
gal_s2c

 (

 double theta,

 double phi,

 double c[3]

) ;

On return the p-vector c contains the direction cosines, given theta the longitude angle,
and phi the latitude angle. All angles in radians.

g a l _ s 2 p [0.1]

Convert spherical polar coordinates to p-vector.

void
gal_s2p

 (

 double theta,

General Astrodynamics library – Reference Manual

24

 double phi,

 double r,

 double p[3]

) ;

On return the p-vector p contains the polar coordinates given theta the longitude angle,
phi the latitude angle, and r the radial distance. The angles are both in radians.

g a l _ s 2 p v [0.1]

Convert position/velocity from spherical to Cartesian coordinates.

void
gal_s2pv

 (

 double theta,

 double phi,

 double r,

 double td,

 double pd,

 double rd,

 double pv[2][3]

) ;

On return the pv-vector pv contains the position and velocity in Cartesian coordinates
given theta the longitude angle, phi the latitude angle, r the radial distance, td the rate of
change of theta, pd the rate of change of phi, and rd the rate of change of r.

g a l _ s 2 x p v [0.1]

Multiply a pv-vector by two scalars.

void
gal_s2xpv

 (

 double s1,

 double s2,

 double pv[2][3],

 double spv[2][3]

) ;

On return the position component of pv-vector spv contains the product of the scalar s1
and the position component of pv-vector pv, and the velocity component of pv-vector spv
contains the product of scalar s2 and the velocity component of pv-vector pv.

g a l _ s e p p [0.1]

Angular separation between two p-vectors.

Chapter 2 – Vector & Matrix Routines

25

double
gal_sepp

 (

 double a[3],

 double b[3]

) ;

The routine returns the angular separation between the p-vectors a and b in radians
(always positive). If either vector is null, a zero result is returned. The angular separation
is most simply formulated in terms of scalar product. However, this gives poor accuracy
for angles near zero and π. The algorithm uses both cross product and dot product, to
deliver full accuracy whatever the size of the angle.

g a l _ s e p s [0.1]

Angular separation between two sets of spherical coordinates.

double
gal_seps

 (

 double al,

 double ap,

 double bl,

 double bp

) ;

Returns the angular separation between first longitude and latitude (al, ap) and the
second longitude and latitude (bl, bp). All angles in radians.

g a l _ s x p [0.1]

Multiply a p-vector by a scalar.

void
gal_sxp

 (

 double s,

 double p[3],

 double sp[3]

) ;

On return the p-vector sp contains the product of the scalar s and the p-vector p.

g a l _ s x p v [0.1]

Multiply a pv-vector by a scalar.

void
gal_sxpv

General Astrodynamics library – Reference Manual

26

 (

 double s,

 double pv[2][3],

 double spv[2][3]

) ;

On return the pv-vector spv contains the product of the scalar s and the pv-vector pv.

g a l _ t r [0.1]

Transpose an r-matrix.

void
gal_tr

 (

 double r[3][3],

 double rt[3][3]

) ;

On return the r-matrix rt contains the transpose of the r-matrix r.

g a l _ t r x p [0.1]

Multiply a p-vector by the transpose of an r-matrix.

void
gal_trxp

 (

 double r[3][3],

 double p[3],

 double trp[3]

) ;

On return the p-vector trp contains the product of the transpose of the r-matrix r and the
p-vector p.

g a l _ t r x p v [0.1]

Multiply a pv-vector by the transpose of an r-matrix.

void
gal_trxpv

 (

 double r[3][3],

 double pv[2][3],

 double trpv[2][3]

) ;

On return the pv-vector trpv contains the product of the transpose of the r-matrix r and the

Chapter 2 – Vector & Matrix Routines

27

pv-vector pv.

 g a l _ z p [0.1]

Zero a p-vector.

void
gal_zp

 (

 double p[3]

) ;

On return the all elements of the p-vector p have been set to zero.

 g a l _ z p v [0.1]

Zero a pv-vector.

void
gal_zpv

 (

 double pv[2][3]

) ;

On return all the elements of the pv-vector pv are set to zero.

 g a l _ z r [0.1]

Initialize an r-matrix to the null matrix.

void
gal_zr

 (

 double r[3][3]

) ;

On return all elements of the r-matrix r are set to zero.

General Astrodynamics Library – Reference Manual

28

29

Chapter 3 - Math Routines

The routines detailed in this chapter are defined in the gal_math.h header file.

General Astrodynamics Library – Reference Manual

30

 g a l _ c o n s t . h [0.1]

This header file defines the standard numerical constants and support macros.

/*
 * -------------------

 * Numerical Constants

 * -------------------

 */

#define GAL_PI 3.141592653589793238462643 /* Pi */

#define GAL_2PI 6.283185307179586476925287 /* 2 * Pi */

#define GAL_R2H 3.819718634205488058453210 /* Radians to hours */

#define GAL_R2D 57.29577951308232087679815 /* Radians to degrees */

#define GAL_R2S 13750.98708313975701043156 /* Radians to seconds */

#define GAL_R2AS 206264.8062470963551564734 /* Radians to arc seconds */

#define GAL_H2R 0.2617993877991494365385536 /* Hours to radians */

#define GAL_D2R 1.745329251994329576923691e-2 /* Degrees to radians */

#define GAL_S2R 7.272205216643039903848712e-5 /* Seconds to radians */

#define GAL_AS2R 4.848136811095359935899141e-6 /* Arc seconds to radians */

#define GAL_TURNAS 1296000.0 /* Arc seconds in a full circle */

#define GAL_U2R (GAL_AS2R / 1e7) /* Units of 0.1 microarcsecond to radians */

#define GAL_MAS2R (GAL_AS2R / 1e3) /* Milliarcseconds to radians */

#define GAL_DJM 365250.0 /* Days per Julian millennium */

#define GAL_DJC 36525.0 /* Days per Julian century */

#define GAL_DJY 365.25 /* Days per Julian year */

#define GAL_D2S 86400.0 /* Days to Seconds */

#define GAL_D2M 1440.0 /* Days to Minutes */

#define GAL_D2H 24.0 /* Days to Hours */

#define GAL_J2000 2451545.0 /* Reference epoch (J2000), JD */

#define GAL_MJD0 2400000.5 /* Modified Julian Date Day 0 */

#define GAL_MJ2000 51544.5 /* Reference epoch (J2000), MJD */

#define GAL_KM2M 1000.0 /* Kilometers to meters */

#define GAL_AU03 149597870691.0 /* Astronomical Unit IERS 2003 meters */

/*

 * -------------------------------------

 * Constants for the Solar System bodies

 * -------------------------------------

 */

enum {

 GAL_SSB_SU = 0, /* The Sun */

 GAL_SSB_ME = 1, /* Mercury */

 GAL_SSB_VE = 2, /* Venus */

 GAL_SSB_EA = 3, /* Earth */

 GAL_SSB_MA = 4, /* Mars */

 GAL_SSB_JU = 5, /* Jupiter */

 GAL_SSB_SA = 6, /* Saturn */

 GAL_SSB_UR = 7, /* Uranus */

 GAL_SSB_NE = 8, /* Neptune */

 GAL_SSB_EB = 9, /* Earth-Moon Barycenter */

 GAL_SSB_PL = 10, /* Pluto */

 GAL_SSB_MO = 11, /* The Moon */

} ;

/*

 * Macro to simulate the FORTRAN SIGN function

 */

#define GAL_SIGN(a, b) fabs (a) * (((b) >= 0.0) ? 1.0 : -1.0)

/*

 * Macro for Maximum value

 */

#define GAL_MAX(a, b) (a) >= (b) ? (a) : (b)

/*

 * Macro for Minimum value

Chapter 3 – Math Routines

31

 */

#define GAL_MIN(a, b) (a) <= (b) ? (a) : (b)

/*

 * --

 * Constants for routine return status values

 * --

 */

enum {

 GAL_SUCCESS = 0,

 GAL_FAILURE = 1,

} ;

/*

 * Constant for undefined results

 */

#define GAL_UNDEFINED DBL_MAX

g a l _ f a c e x p _ a l l o c [0.3]

This routine computes a factorial exponent lookup table required by the gal_factorial2
routine.

gal_facexp_t *
gal_facexp_alloc

 (

 int max_factorial

) ;

Returns a pointer to the factorial exponents lookup table if successful, returns NULL
otherwise. max_factorial determines the maximum factorial for which exponents are
determined.

 g a l _ f a c e x p _ f r e e [0.3]

Free factorial exponent lookup table.

void
gal_facexp_free

 (

 gal_facexp_t *facexp

) ;

This routine frees a factorial exponent lookup table previously allocated by the
gal_facexp_alloc routine. On entry the pointer facexp contains a pointer to a table
previously allocated by gal_facexp_alloc.

 g a l _ f a c t o r i a l [0.2]

Compute the factorial n!

long double

General Astrodynamics Library – Reference Manual

32

gal_factorial

 (

 int n

) ;

Returns the factorial of integer n. On compilers that define long double to be the same
precision as double the maximum factorial is 170!, otherwise it is 1754!

 g a l _ f a c t o r i a l 2 [0.3]

Computes the factorial n!, or the value of n! / m!, or n! * m!.

int
gal_factorial2

 (

 gal_facexp_t *facexp,

 int n,

 int m,

 int s,

 long double *f

) ;

The routine returns 0 if successful, +1 if the requested factorial is beyond the range of the
lookup table, and +2 if the requested factorial is greater than 1754! . The pointer facexp
points to a lookup table allocated by gal_facexp_alloc(). Parameters n and m must be
greater than or equal to zero. On return when s equals 0, f contains n!, when s equals -1,
f contains n! / m!, and when f equals +1, f contains is n! * m!. On compilers that define long
double to be the same precision as double the maximum factorial or result that can be
returned is 170!, otherwise it is 1754!.

References:

Calculation of Factorials, M. L. Charnow and Jesse L. Maury, Jr., NASA TM X-55733
GSFC X-542-66-460, September 1966

33

Chapter 4 - String Handling

The routines detailed in this chapter are defined in the gal_pstrings.h header file.

General Astrodynamics Library – Reference Manual

34

 g a l _ c e n t e r [0.1]

Center string in field.

char *
gal_center

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies the source string s2 to s1, then centers the trimmed string in a field of
length l. Returns a pointer to the start of the target string. The target string s1 must be at
least the same length as the source string s2.

 g a l _ d e l e t e [0.1]

Delete characters from string.

char *
gal_delete

 (

 char *s,

 int n,

 int l

) ;

This routine deletes a sequence of characters of length l. A pointer to the start of the
target string s is returned.

 g a l _ i n s e r t [0.1]

Insert sub-string into string.

char *
gal_insert

 (

 char *s1,

 char *s2,

 int n

) ;

This routine inserts the sub-string s2 into string s1 at the specified character position n.
Returns a pointer to the start of the target string.

 g a l _ i n s t r [0.1]

Chapter 4 – String Handling

35

Find sub-string in string.

int
gal_instr

 (

 char *s1,

 char *s2

) ;

This routine finds the first occurrence of the sub-string s2 in the string s1. It returns the
position of the first character of the sub-string in s1. If the sub-string cannot be found then
-1 is returned.

 g a l _ j u s t l [0.1]

Left justify string.

char *
gal_justl

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies the source string s2 to s1, then trims white-space from the beginning
and end of the string. If the resultant string length is less than l then spaces are added on
the right hand side to bring the string to length l. If the resultant string length is greater
than l then the left-most l characters of the resultant string are returned in s1.

 g a l _ j u s t r [0.1]

Right justify string.

char *
gal_justr

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies the source string s2 to s1, then trims white-space from the beginning
and end of the string. If the resultant string length is less than l then spaces are added on
the left hand side to bring the string to length l. If the resultant string length is greater than
l then the right-most l characters of the resultant string are returned in s1. The target string
s1 must be at least the same length as the source.

 g a l _ l e f t s t r [0.1]

General Astrodynamics Library – Reference Manual

36

Copy sub-string from left of string.

char *
gal_leftstr

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies the left-most l characters from s2 to s1. If the length of s2 is less than
or equal to l then s2 is copied to s1 unchanged. The target string s1 must be at least the
same length as the source string s2.

 g a l _ m i d s t r [0.1]

Copy sub-string from middle of string.

char *
gal_midstr

 (

 char *s1,

 char *s2,

 int n,

 int l

) ;

This routine copies the l characters from s2 to s1 starting at character position n in s2. If
there are less than l characters remaining in the string s2 from position n onwards then all
the available characters are returned.

 g a l _ p a d l [0.1]

Pad string with spaces on left.

char *
gal_padl

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies a maximum of l characters from the right side of s2 to s1. If the length
of s2 is less than l then the left hand side is padded with spaces up to the required length.
The target string s1 must be at least the same length as the source string s2.

 g a l _ p a d r [0.1]

Chapter 4 – String Handling

37

Pad string with spaces on right.

char *
gal_padr

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies a maximum of l characters from the left side of s2 to s1. If the length of
s2 is less than l then the right hand side is padded with spaces up to the required length l.
The target string s1 must be at least the same length as the source string s2.

 g a l _ r e p l a c e [0.1]

Find and replace sub-string in string.

char *
gal_replace

 (

 char *s1,

 char *s2,

 char *s3,

 char *s4

) ;

This routine copies the source string s2 to the target string s1. Then replaces all
occurrences of the sub-string s3 in s1 with sub-string s4.

 g a l _ r i g h t s t r [0.1]

Copy right sub-string from string.

char *
gal_rightstr

 (

 char *s1,

 char *s2,

 int l

) ;

This routine copies the right-most l characters from s2 to s1. If the length of s2 is less than
or equal to l then s2 is copied to s1 unchanged. The target string s1 must be at least the
same length as the source string s2.

 g a l _ s t r n [0.1]

General Astrodynamics Library – Reference Manual

38

Fill string with character.

char *
gal_strn

 (

 char *s,

 char c,

 int l

) ;

This routine fills the target string with l characters of value c

 g a l _ t r i m [0.1]

Trim white-space from left and right of string.

char *
gal_trim

 (

 char *s1,

 char *s2

) ;

This routine copies s2 to s1, then deletes any leading or trailing white-space characters at
the beginning or end of s1. The target string s1 must be at least the same length as the
source string s2.

 g a l _ t r i m l [0.1]

Trim white-space from left side of string.

char *
gal_triml

 (

 char *s1,

 char *s2

) ;

This routine copies s2 to s1, then deletes any leading white-space characters at the
beginning of s1. The target string s1 must be at least the same length as the source string
s2.

 g a l _ t r i m r [0.1]

Trim white-space from right of string.

char *
gal_trimr

 (

Chapter 4 – String Handling

39

 char *s1,

 char *s2

) ;

This routine copies s2 to s1, then deletes any trailing white-space characters at the end of
s1. The target string s1 must be at least the same length as the source string s2.

 g a l _ u c a s e [0.1]

Force string to upper-case.

char *
gal_ucase

 (

 char *s1,

 char *s2

) ;

This routine copies s2 to s1, then forces all lower case characters in s1 to upper case.
The target string s1 must be at least the same length as the source string s2.

General Astrodynamics Library – Reference Manual

40

41

Chapter 5 - Test Framework

The routines detailed in this chapter are defined in the gal_test.h header file.

General Astrodynamics Library – Reference Manual

42

g a l _ t e s t _ s t a r t [0.1]

Start test run.

void
gal_test_start

 (

 char *libname,

 int verbose

) ;

This starts a test run and resets the various statistics. On entry libname contains the
name of the sub-library under test. If verbose is set to 1 then both success and failure
messages are output by the test routines, and when set to 0 then only failure messages
are output. On return the external variables gal_tpass, gal_tfail, and gal_tfunc are set to
zero. The external variable gal_tverb is set to the value of the parameter verbose.
The library name is copied to the external variable gal_tlibn to be used later by
gal_test_stop.

 g a l _ t e s t _ s t o p [0.1]

Stop test run and print statistics.

int
gal_test_stop

 (

) ;

This stops a test run and prints the statistics. If no tests failed during the run then 0 is
returned, otherwise 1 is returned.

 g a l _ v c v [0.1]

Validate character result.

void
gal_vcv

 (

 char cval,

 char cvalok,

 char *func,

 char *test

) ;

This routine validates a character result. On entry cval contains the value computed by
the routine under test, cvalok contains the correct value, routine contains the name of the
routine under test, and test contains the name of the individual test. The external
variables gal_test_success and gal_test_failure are incremented depending upon the
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test

Chapter 5 – Test Framework

43

success and test failure messages are sent to the standard output. If set to 0 then only
test failure messages are sent to the standard output.

 g a l _ v d v [0.1]

Validate a double precision result.

void
gal_vdv

 (

 double dval,

 double dvalok,

 double dtol,

 char *func,

 char *test

) ;

This routine validates a double precision result. On entry dval contains the value
computed by the routine under test, dvalok contains the correct value, dtol the tolerance,
routine contains the name of the routine under test, and test contains the name of the
individual test. The external variables gal_test_success and gal_test_failure are
incremented depending upon the outcome of the test. If the external variable
gal_test_verbose is set to 1 then both test success and test failure messages are sent to
the standard output. If set to 0 then only test failure messages are sent to the standard
output.

 g a l _ v i v [0.1]

Validate an integer result.

void

gal_viv

 (

 int ival,

 int ivalok,

 char *func,

 char *test

) ;

This routine validates an integer result. On entry ival contains the value computed by the
routine under test, ivalok contains the correct value, routine contains the name of the
routine under test, and test contains the name of the individual test. The external
variables gal_test_success and gal_test_failure are incremented depending upon the
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test
success and test failure messages are sent to the standard output. If set to 0 then only
test failure messages are sent to the standard output.

General Astrodynamics Library – Reference Manual

44

 g a l _ v l d v [0.1]

Validate long double precision result.

void

gal_vldv

 (

 long double dval,

 long double dvalok,

 double dtol,

 char *func,

 char *test

) ;

This routine validates a long double precision result. On entry dval contains the value
computed by the routine under test, dvalok contains the correct value, dtol contains the
tolerance, routine contains the name of the routine under test, and test contains the name
of the individual test. The external variables gal_test_success and gal_test_failure are
incremented depending upon the outcome of the test. If the external variable
gal_test_verbose is set to 1 then both test success and test failure messages are sent to
the standard output. If set to 0 then only test failure messages are sent to the standard
output.

 g a l _ v s v [0.1]

Validate string result.

void

gal_vsv

 (

 char *sval,

 char *svalok,

 char *func,

 char *test

) ;

This routine validates a string result. On entry sval points to the value computed by the
routine under test, svalok contains the correct value, routine contains the name of the
routine under test, and test contains the name of the individual test. The external
variables gal_test_success and gal_test_failure are incremented depending upon the
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test
success and test failure messages are sent to the standard output. If set to 0 then only
test failure messages are sent to the standard output.

45

Chapter 6 - Date & Time

The routines detailed in this chapter are defined in the gal_datetime.h header file.

General Astrodynamics Library – Reference Manual

46

 g a l _ c a l 2 j d [0.1]

Gregorian Calendar to Julian Date.

int

gal_cal2jd

 (

 int iy,

 int im,

 int id,

 double *djm0,

 double *djm

) ;

On entry iy contains the year, im the month, and id the day in the Gregorian calendar. On
return djm0 contains the Modified Julian Date zero-point of 2400000.5, and djm contains
the Modified Julian Date for 0 hours. The routine returns one of the following status codes:

 0 success
 -1 bad year (date not computed)
 -2 bad month (date not computed)
 -3 bad day (date computed)

The algorithm used is valid from -4800 March 1, but this implementation rejects dates
before -4799 January 1. The Julian Date is returned in the standard SOFA two-piece
format, which is designed to preserve time resolution. The Julian Date is available as a
single number by adding djm0 and djm. In early eras the conversion is from the "Proleptic
Gregorian Calendar"; no account is taken of the date(s) of adoption of the Gregorian
Calendar, nor is the CE/BCE numbering convention observed.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ d a t [0.1]

Calculate TAI – UTC

int

gal_dat

 (

 int iy,

 int im,

 int id,

 double fd,

 double *deltat

Chapter 6 – Date & Time

47

) ;

This routine for a given UTC date, calculates delta(AT) = TAI-UTC. On entry iy, im, id, and
fd contain the UTC year, month, day, and fractional part of day. On return deltat contains
TAI minus UTC in seconds. The routine returns the following status values:

 1 dubious year
 0 success
 -1 bad year
 -2 bad month
 -3 bad day
 -4 bad fraction

UTC began at 1960 January 1.0 (JD 2436934.5) and it is improper to call the routine with
an earlier epoch. If this is attempted, zero is returned together with a warning status.
Because leap seconds cannot, in principle, be predicted in advance, a reliable check for
dates beyond the valid range is impossible. To guard against gross errors, a year five or
more after the release year of this routine (see parameter iyv) is considered dubious. In
this case a warning status is returned but the result is computed in the normal way. For
both too-early and too-late years, the warning status is +1. This is distinct from the error
status -1, which signifies a year so early that JD could not be computed. If the specified
date is for a day which ends with a leap second, the UTC-TAI value returned is for the
period leading up to the leap second. If the date is for a day which begins as a leap
second ends, the UTC-TAI returned is for the period following the leap second. The day
number must be in the normal calendar range, for example 1 through 30 for April. The
"almanac" convention of allowing such dates as January 0 and December 32 is not
supported in this routine, in order to avoid confusion near leap seconds. The fraction of
day is used only for dates before the introduction of leap seconds, the first of which
occurred at the end of 1971. It is tested for validity (zero to less than 1 is the valid range)
even if not used; if invalid, zero is used and status -4 is returned. For many applications,
setting FD to zero is acceptable; the resulting error is always less than 3 ms (and occurs
only pre-1972). The status value returned in the case where there are multiple errors
refers to the first error detected. For example, if the month and day are 13 and 32
respectively, -2 (bad month) will be returned. In cases where a valid result is not available,
zero is returned.

References:

For epochs from 1961 January 1 onwards, the expressions from the file
ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.

The 5ms time step at 1961 January 1 is taken from the Explanatory Supplement to the
Astronomical Almanac, P. Kenneth Seidelmann (ed.), University Science Books (1992),
Section 2.58.1 (p87).

 g a l _ d a y s 2 c a l [0.1]

General Astrodynamics Library – Reference Manual

48

Convert the day of the year, days, to Gregorian year, month, day, and fraction of a day.

void

gal_days2cal

 (

 int year,

 double days,

 int *iy,

 int *im,

 int *id,

 double *fd

) ;

On entry year contains the year number between 1900 and 2100, and days contains the
day count including fraction of day. On return iy, im, id, and fd contain the Gregorian year,
month, day, and fractional part of day respectively. In early eras the conversion is from the
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the
Gregorian Calendar, nor is the CE/BCE numbering convention observed.

 g a l _ d t d b [0.1]

An approximation to TDB-TT, the difference between Barycentric Dynamical Time and
Terrestrial Time, for an observer on the Earth.

double

gal_dtdb

 (

 double date1,

 double date2,

 double ut,

 double elong,

 double u,

 double v

) ;

On entry date1+date2 contain TDB, ut contains universal time UT1 in fraction of one day,
elong contains longitude (east positive in radians), u contains the distance from Earth
spin (kilometers), and v contains distance north of equatorial plane (kilometers). The
function returns TDB-TT in seconds. Although the epoch is, formally, Barycentric
Dynamical Time (TDB), the Terrestrial Time (TT) can be used with no practical effect on
the accuracy of the prediction.

References:

Fairhead, L., & Bretagnon, P., Astronomy & Astrophysics, 229, 240-247 (1990).

IAU 2006 Resolution 3. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

Chapter 6 – Date & Time

49

Moyer, T.D., Celestial Mechanics, 23, 33 (1981).

Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).

Seidelmann, P.K. et al., Explanatory Supplement to the Astronomical Almanac, Chapter
2, University Science Books (1992).

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J.,
Astronomy & Astrophysics, 282, 663-683 (1994).

 g a l _ e p b [0.1]

Julian Date to Besselian Epoch.

double

gal_epb

 (

 double dj1,

 double dj2

) ;

On entry dj1 and dj2 contain the Julian Date, the Besselian Epoch is returned. The Julian
Date is supplied in standard SOFA two-piece format, which is designed to preserve time
resolution. The Julian Date is available as a single number by adding dj1 and dj2. The
maximum resolution is achieved if dj1 is 2451545.0 (J2000).

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p b 2 j d [0.1]

Besselian Epoch to Julian Date.

void
gal_epb2jd

 (

 double epb,

 double *djm0,

 double *djm

) ;

On entry epb contains the date in the Besselian Epoch (e.g. 1957.3), on return djm0
contains the Modified Julian Date zero-point of 2400000.5, and djm contains the date as a
Modified Julian Date in standard SOFA two-piece format.

References:

General Astrodynamics Library – Reference Manual

50

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p j [0.1]

Julian Date to Julian Epoch.

double
gal_epj

 (

 double dj1,

 double dj2

) ;

This routine returns the Julian epoch for the given Julian Date. On entry dj1 and dj2
contain the Julian Date in standard SOFA two-piece format.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p j 2 j d [0.1]

Julian Epoch to Julian Date.

void

gal_epj2jd

 (

 double epj,

 double *djm0,

 double *djm

) ;

On entry epj contains the Julian Epoch (e.g. 1996.8). On return djm0 contains the
Modified Julian Date zero-point of 2400000.5, and djm contains the Modified Julian Date.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ j d 2 c a l [0.1]

Julian Date to Gregorian year, month, day, and fraction of a day.

int
gal_jd2cal

 (

 double dj1,

Chapter 6 – Date & Time

51

 double dj2,

 int *iy,

 int *im,

 int *id,

 double *fd

) ;

On entry dj1 and dj2 contain the Julian Date in standard SOFA two-piece format. On
return iy contains the year, im the month, id the day, and fd the fractional part of day. The
routine returns the following status values: 0 = success and -1 = unacceptable date. The
earliest valid date is -68569.5 (-4900 March 1). The largest value accepted is 109. In early
eras the conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the
date(s) of adoption of the Gregorian Calendar, nor is the CE/BCE numbering convention
observed.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ j d c a l f [0.1]

Julian Date to Gregorian Calendar, expressed in a form convenient for formatting
messages: rounded to a specified precision, and with the fields stored in a single array.

int
gal_jdcalf

 (

 int ndp,

 double dj1,

 double dj2,

 int iymdf[4]

) ;

On entry dj1 and dj2 contain the date to be converted in standard SOFA two-piece format,
ndp contains the required number of decimal places of days in fraction. On return iymdf
contain the year, month, day, and fraction in Gregorian calendar. The routine returns the
following status values:

 -1 date out of range
 0 success
 +1 ndp not is the range 0-9 (interpreted as 0)

In early eras the conversion is from the "Proleptic Gregorian Calendar"; no account is
taken of the date(s) of adoption of the Gregorian Calendar, nor is the CE/BCE numbering
convention observed. Refer to the routine gal_jd2cal. ndp should be 4 or less if internal
overflows are to be avoided on machines which use 16-bit integers.

General Astrodynamics Library – Reference Manual

52

References:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ t a i 2 t t [0.2]

This routine converts a TAI Julian Date to a Terrestrial Time (TT) Julian Date.

void

gal_tai2tt

 (

 double tai1,

 double tai2,

 double *tt1,

 double *tt2

) ;

On entry tai1 and tai2 contain a TAI Julian Date. On return tt1 and tt2 contain the
Terrestrial Time (TT) Julian Date. All dates are in standard SOFA two-piece format.

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 47-48

 g a l _ u t c 2 t a i [0.2]

This routine converts a UTC Julian Date to a TAI Julian Date.

int
gal_utc2tai

 (

 double utc1,

 double utc2,

 double *tai1,

 double *tai2

) ;

On entry utc1 and utc2 contain the UTC Julian Date. On return tai1 and tai2 contain the
TAI Julian Date. All dates are in standard SOFA two-piece format. TAI began at 1960
January 1.0 (JD 2436934.5) and it is improper to call the routine with an earlier epoch. If
this is attempted, zero is returned together with a warning status. Because leap seconds
cannot, in principle, be predicted in advance, a reliable check for dates beyond the valid
range is impossible. To guard against gross errors, a year five or more after the release
year of this routine is considered dubious. In this case a warning status is returned but the
result is computed in the normal way.

Chapter 6 – Date & Time

53

 g a l _ u t c 2 t t [0.2]

This routine converts a UTC Julian Date to a TT Julian Date.

int
gal_utc2tt

 (

 double utc1,

 double utc2,

 double *tt1,

 double *tt2

) ;

On entry utc1 and utc2 contain the UTC Julian Date. On return tt1 and tt2 contain the
Terrestrial Time (TT) Julian Date. All dates are in standard SOFA two-piece format. The
routine returns the following status codes: 1 = dubious year, 0 = success. TAI began at
1960 January 1.0 (JD 2436934.5) and it is improper to call the routine with an earlier
epoch. If this is attempted, zero is returned together with a warning status. Because leap
seconds cannot, in principle, be predicted in advance, a reliable check for dates beyond
the valid range is impossible. To guard against gross errors, a year five or more after the
release year of this routine is considered dubious. In this case a warning status is
returned but the result is computed in the normal way.

 g a l _ u t c 2 u t 1 [0.2]

This routine converts a UTC Julian Date to a UT1 Julian Date.

void

gal_utc2ut1

 (

 double utc1,

 double utc2,

 double dut1,

 double *ut1a,

 double *ut1b

) ;

On entry utc1 and utc2 contain the UTC Julian Date in standard SOFA two-piece format,
dut1 contains the UT1-UTC offset in seconds. On return ut1a and ut1b contain the UT1
Julian Date in standard SOFA two-piece format.

General Astrodynamics Library – Reference Manual

54

55

Chapter 7 - Earth Orientation

The routines detailed in this chapter are defined in the gal_earthrot.h, and gal_precnut.h
header files.

General Astrodynamics Library – Reference Manual

56

 g a l _ b i 0 0 [0.1]

Frame bias components of IAU 2000 precession-nutation models (part of MHB2000 with
additions).

void

gal_bi00

 (

 double *dpsibi,

 double *depsbi,

 double *dra

) ;

On return dpsibi and depsbi contain the longitude and obliquity corrections and dra the
ICRS right ascension of the J2000 mean equinox. The frame bias corrections in longitude
and obliquity (radians) are required in order to correct for the offset between the GCRS
pole and the mean J2000 pole. They define, with respect to the GCRS frame, a J2000
mean pole that is consistent with the rest of the IAU 2000A precession-nutation model. In
addition to the displacement of the pole, the complete description of the frame bias
requires also an offset in right ascension. This is not part of the IAU 2000A model, and is
from Chapront et al. (2002). It is returned in radians. This is a supplemented
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).

References:

Chapront, J., Chapront-Touze, M. & Francou, G., Astronomy & Astrophysics, 387, 700,
2002.

Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New
nutation series for non-rigid Earth and insights into the Earth's interior", Journal
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

 g a l _ b p 0 0 [0.1]

Frame bias and precession, IAU 2000.

void

gal_bp00

 (

 double date1,

 double date2,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3]

) ;

Chapter 7 – Earth Orientation

57

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rb contains the frame bias matrix, rp the precession matrix,
and rbp the bias-precession matrix. The matrix rb transforms vectors from GCRS to mean
J2000 by applying frame bias. The matrix rp transforms vectors from J2000 mean
equator and equinox to mean equator and equinox of date by applying precession. The
matrix rbp transforms vectors from GCRS to mean equator and equinox of date by
applying frame bias then precession. It is the product rp x rb.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin"
(CIO) by IAU 2006 Resolution 2.

 g a l _ b p 0 6 [0.1]

Frame bias and precession, IAU 2006.

void

gal_bp06

 (

 double date1,

 double date2,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rb contains the frame bias matrix, rp the precession matrix,
and rbp the bias-precession matrix. The matrix rb transforms vectors from GCRS to mean
J2000 by applying frame bias. The matrix rp transforms vectors from mean J2000 to
mean of date by applying precession. The matrix rbp transforms vectors from GCRS to
mean of date by applying frame bias then precession. It is the product rp x rb.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ b p n 2 x y [0.1]

Extract from the bias-precession-nutation matrix the X,Y coordinates of the Celestial

General Astrodynamics Library – Reference Manual

58

Intermediate Pole.

void
gal_bpn2xy

 (

 double rbpn[3][3],

 double *x,

 double *y

) ;

On entry rbpn contains the celestial-to-true matrix. On return x and y contain the Celestial
Intermediate Pole. The matrix rbpn transforms vectors from GCRS to true equator (and
CIO or equinox) of date, and therefore the Celestial Intermediate Pole unit vector is the
bottom row of the matrix. x, y are components of the Celestial Intermediate Pole unit
vector in the Geocentric Celestial Reference System.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin"
(CIO) by IAU 2006 Resolution 2.

 g a l _ c 2 i 0 0 a [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2000A
precession-nutation model.

void

gal_c2i00a

 (

 double date1,

 double date2,

 double rc2i[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in Standard SOFA
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),

Chapter 7 – Earth Orientation

59

era is the Earth Rotation Angle and rpom is the polar motion matrix. A faster, but slightly
less accurate result (about 1 mas), can be obtained by using instead the gal_c2i00b
routine.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin"
(CIO) by IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 i 0 0 b [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2000B
precession-nutation model.

void

gal_c2i00b

 (

 double date1,

 double date2,

 double rc2i[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
era is the Earth Rotation Angle and rpom is the polar motion matrix. This routine is faster,
but slightly less accurate (about 1 mas), than the gal_c2i00a routine.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).

General Astrodynamics Library – Reference Manual

60

n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin"
(CIO) by IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 i 0 6 a [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2006 precession
and IAU 2000A nutation models.

void

gal_c2i06a

 (

 double date1,

 double date2,

 double rc2i[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
era is the Earth Rotation Angle and rpom is the polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ c 2 i b p n [0.1]

Form the celestial-to-intermediate matrix for a given date given the bias – precession -
nutation matrix. IAU 2000.

void

gal_c2ibpn

Chapter 7 – Earth Orientation

61

 (

 double date1,

 double date2,

 double rbpn[3][3],

 double rc2i[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, and rbpn contains the celestial-to-true matrix. On return rc2i contains
the celestial-to-intermediate matrix. The matrix rbpn transforms vectors from GCRS to
true equator (and CIO or equinox) of date. Only the CIP (bottom row) is used. The matrix
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name
does not include "00", this routine is in fact specific to the IAU 2000 models.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003). n.b.
The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO)
by IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 i x y [0.1]

Form the celestial to intermediate-frame-of-date matrix for a given date when the CIP X,Y
coordinates are known. IAU 2000.

void

gal_c2ixy

 (

 double date1,

 double date2,

 double x,

 double y,

 double rc2i[3][3]

) ;

General Astrodynamics Library – Reference Manual

62

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, x and y contain the Celestial Intermediate Pole. On return rc2i contain
the celestial-to-intermediate matrix. The Celestial Intermediate Pole coordinates are the
x,y components of the unit vector in the Geocentric Celestial Reference System. The
matrix rc2i is the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name
does not include "00", this routine is in fact specific to the IAU 2000 models.

References:

McCarthy D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004).

 g a l _ c 2 i x y s [0.1]

Form the celestial to intermediate-frame-of-date matrix given the CIP x,y and the CIO
locator s.

void

gal_c2ixys

 (

 double x,

 double y,

 double s,

 double rc2i[3][3]

) ;

On entry x and y contain the coordinates of the Celestial Intermediate Pole, and s
contains the CIO locator. On return rc2i contains the celestial-to-intermediate matrix. The
Celestial Intermediate Pole coordinates are the x,y components of the unit vector in the
Geocentric Celestial Reference System. The CIO locator (in radians) positions the
Celestial Intermediate Origin on the equator of the CIP. The matrix rc2i is the first stage in
the transformation from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),

Chapter 7 – Earth Orientation

63

era is the Earth Rotation Angle and rpom is the polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 t 0 0 a [0.1]

Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using
the IAU 2000A nutation model.

void

gal_c2t00a

 (

 double tta,

 double ttb,

 double uta,

 double utb,

 double xp,

 double yp,

 double rc2t[3][3]

) ;

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1
Julian Date, and xp and yp contain the coordinates of the pole (radians). All dates are in
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which
position the Celestial Intermediate Pole in the International Terrestrial Reference System
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis
points at the north geographic pole, the v-axis points towards the origin of longitudes and
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from
celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the
polar motion matrix. A faster, but slightly less accurate result (about 1 mas), can be
obtained by using instead the gal_c2t00b routine.

General Astrodynamics Library – Reference Manual

64

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 t 0 0 b [0.1]

Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using
the IAU 2000B nutation model.

void

gal_c2t00b

 (

 double tta,

 double ttb,

 double uta,

 double utb,

 double xp,

 double yp,

 double rc2t[3][3]

) ;

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1
Julian Date, and xp and yp contain the coordinates of the pole (radians). All dates are in
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which
position the Celestial Intermediate Pole in the International Terrestrial Reference System
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis
points at the north geographic pole, the v-axis points towards the origin of longitudes and
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from
celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the
polar motion matrix. This routine is faster, but slightly less accurate (about 1 mas), than
the gal_c2t00a routine.

References:

Chapter 7 – Earth Orientation

65

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 t 0 6 a [0.1]

Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using
the IAU 2006 precession and IAU 2000A nutation models.

void

gal_c2t06a

 (

 double tta,

 double ttb,

 double uta,

 double utb,

 double xp,

 double yp,

 double rc2t[3][3]

) ;

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1
Julian Date, and xp and yp contain the coordinates of the pole (radians). All dates are in
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which
position the Celestial Intermediate Pole in the International Terrestrial Reference System
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis
points at the north geographic pole, the v-axis points towards the origin of longitudes and
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from
celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the
polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

General Astrodynamics Library – Reference Manual

66

 g a l _ c 2 t c e o [0.1]

Assemble the celestial to terrestrial matrix from CIO-based components (the
celestial-to-intermediate matrix, the Earth Rotation Angle and the polar motion matrix).

#define gal_c2tceo(rc2i, era, rpom, rc2t) gal_c2tcio(rc2i, (era

), rpom, rc2t)

On entry rc2i contains the celestial-to-intermediate matrix, era the Earth rotation angle,
and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial
matrix. The name of this routine, gal_c2tceo, reflects the original name of the celestial
intermediate origin (CIO), which before the adoption of IAU 2006 Resolution 2 was called
the "celestial ephemeris origin" (CEO). When the name change from CEO to CIO
occurred, a new routine called gal_c2tcio was introduced as the successor to the existing
gal_c2tceo. This routine is merely a front end to the new one. The routine is included in
the collection only to support existing applications. It should not be used in new
applications. The routine is a candidate for deprecation.

 g a l _ c 2 t c i o [0.1]

Assemble the celestial to terrestrial matrix from CIO-based components (the
celestial-to-intermediate matrix, the Earth Rotation Angle and the polar motion matrix).

void

gal_c2tcio

 (

 double rc2i[3][3],

 double era,

 double rpom[3][3],

 double rc2t[3][3]

) ;

On entry rc2i contains the celestial-to-intermediate matrix, era the Earth rotation angle,
and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial
matrix. This routine constructs the rotation matrix that transforms vectors in the celestial
system into vectors in the terrestrial system. It does so starting from precomputed
components, namely the matrix which rotates from celestial coordinates to the
intermediate frame, the Earth rotation angle and the polar motion matrix. One use of this
routine is when generating a series of celestial-to-terrestrial matrices where only the Earth
Rotation Angle changes, avoiding the considerable overhead of recomputing the
precession-nutation more often than necessary to achieve given accuracy objectives.
The relationship between the arguments is as follows:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a

Chapter 7 – Earth Orientation

67

vector in the International Terrestrial Reference System (see IERS Conventions 2003).

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ c 2 t e q x [0.1]

Assemble the celestial to terrestrial matrix from equinox-based components (the
celestial-to-true matrix, the Greenwich Apparent Sidereal Time and the polar motion
matrix).

void

gal_c2teqx

 (

 double rbpn[3][3],

 double gst,

 double rpom[3][3],

 double rc2t[3][3]

) ;

On entry rbpn contains the celestial-to-true matrix, gst the Greenwich (apparent) Sidereal
Time, and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial
matrix. This routine constructs the rotation matrix that transforms vectors in the celestial
system into vectors in the terrestrial system. It does so starting from precomputed
components, namely the matrix which rotates from celestial coordinates to the true
equator and equinox of date, the Greenwich Apparent Sidereal Time and the polar motion
matrix. One use of the routine is when generating a series of celestial-to-terrestrial
matrices where only the Sidereal Time changes, avoiding the considerable overhead of
recomputing the precession-nutation more often than necessary to achieve given
accuracy objectives. The relationship between the arguments is as follows:

 [ITRS] = rpom * R_3(gst) * rbpn * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ c 2 t p e [0.1]

General Astrodynamics Library – Reference Manual

68

Form the celestial to terrestrial matrix given the date, the UT1, the nutation and the polar
motion. IAU 2000.

void

gal_c2tpe

 (

 double tta,

 double ttb,

 double uta,

 double utb,

 double dpsi,

 double deps,

 double xp,

 double yp,

 double rc2t[3][3]

) ;

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb contain the
UT1 Julian Date, dpsi and deps the nutation, and xp and yp the coordinates of the pole (
radians). All dates are in standard SOFA two-piece format. On return rc2t contains the
celestial-to-terrestrial matrix. In the case of uta, utb, the date & time method is best
matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least,
minimum noise) is delivered when the uta argument is for 0hrs UT1 on the day in
question and the utb argument lies in the range 0 to 1, or vice versa. The caller is
responsible for providing the nutation components; they are in longitude and obliquity, in
radians and are with respect to the equinox and ecliptic of date. For high-accuracy
applications, free core nutation should be included as well as any other relevant
corrections to the position of the CIP. xp and yp are the "coordinates of the pole", in
radians, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003). In a geocentric right-handed triad
u,v,w, where the w-axis points at the north geographic pole, the v-axis points towards
the origin of longitudes and the u axis completes the system, xp = +u and yp = -v. The
matrix RC2T transforms from celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(gst) * rbpn * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
rbpn is the bias-precession-nutation matrix, gst is the Greenwich (apparent) Sidereal
Time and rpom is the polar motion matrix. Although its name does not include "00", this
routine is in fact specific to the IAU 2000 models.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Chapter 7 – Earth Orientation

69

 g a l _ c 2 t x y [0.1]

Form the celestial to terrestrial matrix given the date, the UT1, the CIP coordinates and
the polar motion. IAU 2000.

void

gal_c2txy

 (

 double tta,

 double ttb,

 double uta,

 double utb,

 double x,

 double y,

 double xp,

 double yp,

 double rc2t[3][3]

) ;

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1
Julian Date, x and y the Celestial Intermediate Pole, and xp and yp the coordinates of the
pole (radians). All dates are in standard SOFA two-piece format. On return rc2t contains
the celestial-to-terrestrial matrix. In the case of uta,utb, the date & time method is best
matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least,
minimum noise) is delivered when the uta argument is for 0hrs UT1 on the day in question
and the utb argument lies in the range 0 to 1, or vice versa. The Celestial Intermediate
Pole coordinates are the x,y components of the unit vector in the Geocentric Celestial
Reference System. xp and yp are the "coordinates of the pole", in radians, which position
the Celestial Intermediate Pole in the International Terrestrial Reference System (see
IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis
points at the north geographic pole, the v-axis points towards the origin of longitudes and
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from
celestial to terrestrial coordinates:

 [ITRS] = rpom * R_3(era) * rc2i * [GCRS]

 = rc2t * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name
does not include "00", this routine is in fact specific to the IAU 2000 models.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,

General Astrodynamics Library – Reference Manual

70

BKG (2004)

 g a l _ e e 0 0 [0.1]

The equation of the equinoxes, compatible with IAU 2000 resolutions, given the nutation
in longitude and the mean obliquity.

double

gal_ee00

 (

 double date1,

 double date2,

 double epsa,

 double dpsi

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, epsa contains the mean obliquity, and dpsi the nutation in longitude.
The routine returns the equation of the equinoxes. The obliquity, in radians, is mean of
date. The result, which is in radians, operates in the following sense:

 Greenwich apparent ST = GMST + equation of the equinoxes

The result is compatible with the IAU 2000 resolutions. For further details, see IERS
Conventions 2003 and Capitaine et al. (2002).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ e e 0 0 a [0.1]

Equation of the equinoxes, compatible with IAU 2000 resolutions.

double

gal_ee00a

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the equation of the equinoxes. The result, which is
in radians, operates in the following sense:

Chapter 7 – Earth Orientation

71

 Greenwich apparent ST = GMST + equation of the equinoxes

The result is compatible with the IAU 2000 resolutions. For further details, see IERS
Conventions 2003 and Capitaine et al. (2002).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ e e 0 0 b [0.1]

Equation of the equinoxes, compatible with IAU 2000 resolutions but using the truncated
nutation model IAU 2000B.

double

gal_ee00b

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contains the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the equation of the equinoxes. The result,
which is in radians, operates in the following sense:

 Greenwich apparent ST = GMST + equation of the equinoxes

The result is compatible with the IAU 2000 resolutions except that accuracy has been
compromised for the sake of speed. For further details, see McCarthy & Luzum (2001),
IERS Conventions 2003 and Capitaine et al. (2003).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

General Astrodynamics Library – Reference Manual

72

 g a l _ e e 0 6 a [0.1]

Equation of the equinoxes, compatible with IAU 2000 resolutions and IAU 2006/2000A
precession-nutation.

double

gal_ee06a

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the equation of the equinoxes. The result, which is
in radians, operates in the following sense:

 Greenwich apparent ST = GMST + equation of the equinoxes

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ e e c t 0 0 [0.1]

Equation of the equinoxes complementary terms, consistent with IAU 2000 resolutions.

double

gal_eect00

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the complementary terms. The "complementary
terms" are part of the equation of the equinoxes (EE), classically the difference between
apparent and mean Sidereal Time:

 GAST = GMST + EE

 with:

 EE = dpsi * cos(eps)

where dpsi is the nutation in longitude and eps is the obliquity of date. However, if the
rotation of the Earth were constant in an inertial frame the classical formulation would lead

Chapter 7 – Earth Orientation

73

to apparent irregularities in the UT1 timescale traceable to side-effects of
precession-nutation. In order to eliminate these effects from UT1, "complementary terms"
were introduced in 1994 (IAU, 1994) and took effect from 1997 (Capitaine and Gontier,
1993):

 GAST = GMST + CT + EE

By convention, the complementary terms are included as part of the equation of the
equinoxes rather than as part of the mean Sidereal Time. This slightly compromises the
"geometrical" interpretation of mean sidereal time but is otherwise inconsequential. This
routine computes CT in the above expression, compatible with IAU 2000 resolutions
(Capitaine et al., 2002, and IERS Conventions 2003).

References:

Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

IAU Resolution C7, Recommendation 3 (1994)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ e o 0 6 a [0.1]

Equation of the origins, IAU 2006 precession and IAU 2000A nutation.

double

gal_eo06a

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the equation of the origins in radians. The equation
of the origins is the distance between the true equinox and the celestial intermediate
origin and, equivalently, the difference between Earth rotation angle and Greenwich
apparent sidereal time (ERA-GST). It comprises the precession (since J2000.0) in right
ascension plus the equation of the equinoxes (including the small correction terms).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

General Astrodynamics Library – Reference Manual

74

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ e o r s [0.1]

Equation of the origins, given the classical NPB matrix and the quantity s.

double

gal_eors

 (

 double rnpb[3][3],

 double s

) ;

On entry rnpb contains the classical nutation x precession x bias matrix, and s the
quantity s (the CIO locator). The routine returns the equation of the origins in radians. The
equation of the origins is the distance between the true equinox and the celestial
intermediate origin and, equivalently, the difference between Earth rotation angle and
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since
J2000.0) in right ascension plus the equation of the equinoxes (including the small
correction terms). The algorithm is from Wallace & Capitaine (2006).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P. & Capitaine, N., 2006, Astronomy & Astrophysics (submitted)

 g a l _ e q e q 9 4 [0.1]

Equation of the equinoxes, IAU 1994 model.

double

gal_eqeq94

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece
format. the routine returns the equation of the equinoxes. The result, which is in radians,
operates in the following sense:

 Greenwich apparent ST = GMST + equation of the equinoxes

References:

IAU Resolution C7, Recommendation 3 (1994)

Chapter 7 – Earth Orientation

75

Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)

 g a l _ e r a 0 0 [0.1]

Earth rotation angle (IAU 2000 model).

double

gal_era00

 (

 double dj1,

 double dj2

) ;

On entry dj1 and dj2 contain the UT1 Julian Date in standard SOFA two-piece format. The
routine returns the Earth rotation angle (radians), in the range 0 to 2 π. The date & time
method is best matched to the algorithm used: maximum accuracy (or, at least, minimum
noise) is delivered when the dj1 argument is for 0hrs UT1 on the day in question and the
dj2 argument lies in the range 0 to 1, or vice versa. The algorithm is adapted from
Expression 22 of Capitaine et al. 2000. The time argument has been expressed in days
directly, and, to retain precision, integer contributions have been eliminated. The same
formulation is given in IERS Conventions (2003), Chap. 5, Eq. 14.

References:

Capitaine N., Guinot B. and McCarthy D.D, 2000, Astronomy & Astrophysics, 355,
398-405.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ f a d 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean elongation of the Moon from
the Sun.

double

gal_fad03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns D in
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no
significant difference. The expression used is as adopted in IERS Conventions (2003)
and is from Simon et al. (1994).

References:

General Astrodynamics Library – Reference Manual

76

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Earth.

double

gal_fae03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Earth in radians. Though t is strictly TDB, it is usually more convenient
to use TT, which makes no significant difference. The expression used is as adopted in
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al.
(1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a f 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of the Moon minus
mean longitude of the ascending node.

double

gal_faf03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns F in
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no
significant difference. The expression used is as adopted in IERS Conventions (2003)

Chapter 7 – Earth Orientation

77

and is from Simon et al. (1994).
References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a j u 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Jupiter.

double

gal_faju03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Jupiter in radians. Though t is strictly TDB, it is usually more convenient
to use TT, which makes no significant difference. The expression used is as adopted in
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al.
(1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a l 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean anomaly of the Moon.

double

gal_fal03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns l in
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no

General Astrodynamics Library – Reference Manual

78

significant difference. The expression used is as adopted in IERS Conventions (2003)
and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a l p 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean anomaly of the Sun.

double

gal_falp03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns l‘ in
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no
significant difference. The expression used is as adopted in IERS Conventions (2003)
and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a m a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Mars.

double

gal_fama03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Mars in radians. Though t is strictly TDB, it is usually more convenient
to use TT, which makes no significant difference. The expression used is as adopted in
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al.

Chapter 7 – Earth Orientation

79

(1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a m e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Mercury.

double

gal_fame03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Mercury in radians. Though t is strictly TDB, it is usually more
convenient to use TT, which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a n e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Neptune.

double

gal_fane03

 (

General Astrodynamics Library – Reference Manual

80

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Neptune in radians. Though t is strictly TDB, it is usually more
convenient to use TT, which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a o m 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of the Moon's
ascending node.

double

gal_faom03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns
Omega in radians. Though t is strictly TDB, it is usually more convenient to use TT,
which makes no significant difference. The expression used is as adopted in IERS
Conventions (2003) and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a p a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): general accumulated precession in
longitude.

double

gal_fapa03

 (

Chapter 7 – Earth Orientation

81

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
general precession in longitude in radians. Though t is strictly TDB, it is usually more
convenient to use TT, which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003). It is taken from Kinoshita & Souchay (1990) and
comes originally from Lieske et al. (1977).

References:

Kinoshita, H. and Souchay J. 1990, Celestial Mechanics and Dynamical Astronomy 48,
187

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58,
1-16

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ f a s a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Saturn.

double

gal_fasa03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Saturn in radians. Though t is strictly TDB, it is usually more convenient
to use TT, which makes no significant difference. The expression used is as adopted in
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al.
(1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

General Astrodynamics Library – Reference Manual

82

 g a l _ f a u r 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Uranus.

double

gal_faur03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Uranus in radians. Though t is strictly TDB, it is usually more
convenient to use TT, which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a v e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Venus.

double

gal_fave03

 (

 double t

) ;

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the
mean longitude of Venus in radians. Though t is strictly TDB, it is usually more convenient
to use TT, which makes no significant difference. The expression used is as adopted in
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al.
(1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics

Chapter 7 – Earth Orientation

83

Supplement Series 135, 111

 g a l _ f w 2 m [0.1]

Form rotation matrix given the Fukushima-Williams angles.

void

gal_fw2m

 (

 double gamb,

 double phib,

 double psi,

 double eps,

 double r[3][3]

) ;

On entry gamb contains the F-W angle gamma_bar, phib the F-W angle phi_bar, psi the
F-W angle psi, and eps the F-W angle epsilon. All angles are in radians. On return r
contains the rotation matrix.

Naming the following points:

 e J2000 ecliptic pole,
 p GCRS pole,
 E ecliptic pole of date,
 P CIP,

the four Fukushima-Williams angles are as follows:

 gamb = gamma = epE
 phib = phi = pE
 psi = psi = pEP
 eps = epsilon = EP

The matrix representing the combined effects of frame bias, precession and nutation is:

 NxPxB = R_1(-eps).R_3(-psi).R_1(phib).R_3(gamb)

Three different matrices can be constructed, depending on the supplied angles:

To obtain the nutation x precession x frame bias matrix, generate the four precession
angles, generate the nutation components and add them to the psi_bar and epsilon_A
angles, and call this routine.

To obtain the precession x frame bias matrix, generate the four precession angles and
call this routine.

General Astrodynamics Library – Reference Manual

84

To obtain the frame bias matrix, generate the four precession angles for date J2000.0 and
call this routine.

The nutation-only and precession-only matrices can if necessary be obtained by c

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ f w 2 x y [0.1]

CIP X,Y given Fukushima-Williams bias-precession-nutation angles.

void

gal_fw2xy

 (

 double gamb,

 double phib,

 double psi,

 double eps,

 double *x,

 double *y

) ;

On entry gamb contains the F-W angle gamma_bar, phib the F-W angle phi_bar, psi the
F-W angle psi, and eps the F-W angle epsilon. All angles are in radians. On return x and
y contain the CIP x and y in radians.

Naming the following points:

 e J2000 ecliptic pole,
 p GCRS pole,
 E ecliptic pole of date,
 P CIP,

the four Fukushima-Williams angles are as follows:

 gamb = gamma = epE
 phib = phi = pE
 psi = psi = pEP
 eps = epsilon = EP

The matrix representing the combined effects of frame bias, precession and nutation is:

 NxPxB = R_1(-epsa).R_3(-psi).R_1(phib).R_3(gamb)

 x,y are elements [0][2] and [1][2] of the matrix.

Chapter 7 – Earth Orientation

85

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ g m s t 0 0 [0.1]

Greenwich Mean Sidereal Time (model consistent with IAU 2000 resolutions).

double

gal_gmst00

 (

 double uta,

 double utb,

 double tta,

 double ttb

) ;

On entry uta and utb contain the UT1 Julian Date, and tta and ttb contain the Terrestrial
Time (TT) Julian Date. Both dates in standard SOFA two-piece format. The routine
returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. Both UT1 and
TT are required, UT1 to predict the Earth rotation and TT to predict the effects of
precession. If UT1 is used for both purposes, errors of order 100 microarcseconds
result. This GMST is compatible with the IAU 2000 resolutions and must be used only in
conjunction with other IAU 2000 compatible components such as precession-nutation
and equation of the equinoxes. The algorithm is from Capitaine et al. (2003) and IERS
Conventions 2003.

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ g m s t 0 6 [0.1]

Greenwich mean sidereal time (consistent with IAU 2006 precession).

double

gal_gmst06

 (

 double uta,

 double utb,

 double tta,

 double ttb

General Astrodynamics Library – Reference Manual

86

) ;

On entry uta and utb contain the UT1 Julian Date, and tta and ttb contain the Terrestrial
Time (TT) Julian Date. Both dates in standard SOFA two-piece format. The routine
returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. Both UT1 and
TT are required, UT1 to predict the Earth rotation and TT to predict the effects of
precession. If UT1 is used for both purposes, errors of order 100 microarcseconds result.
This GMST is compatible with the IAU 2006 precession and must not be used with other
precession models.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355

 g a l _ g m s t 8 2 [0.1]

Universal Time to Greenwich Mean Sidereal Time (IAU 1982 model).

double

gal_gmst82

 (

 double dj1,

 double dj2

) ;

On entry dj1 and dj2 contain the UT1 Julian Date in standard SOFA two-piece format. The
routine returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. The
algorithm is based on the IAU 1982 expression. This is always described as giving the
GMST at 0 hours UT1. In fact, it gives the difference between the GMST and the UT, the
steady 4-minutes-per-day drawing-ahead of ST with respect to UT. When whole days are
ignored, the expression happens to equal the GMST at 0 hours UT1 each day. In this
routine, the entire UT1 (the sum of the two arguments dj1 and dj2) is used directly as the
argument for the standard formula, the constant term of which is adjusted by 12 hours to
take account of the noon phasing of Julian Date. The UT1 is then added, but omitting
whole days to conserve accuracy.

References:

Transactions of the International Astronomical Union, XVIII B, 67 (1983).

Aoki et al., Astronomy & Astrophysics 105, 359-361 (1982).

 g a l _ g s t 0 0 a [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions).

double

gal_gst00a

Chapter 7 – Earth Orientation

87

 (

 double uta,

 double utb,

 double tta,

 double ttb

) ;

On entry uta and utb contain the UT1 Julian Date, tta and ttb the Terrestrial Time (TT)
Julian Date. The routine return the Greenwich Apparent Sidereal Time in radians, in the
range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth rotation and TT to
predict the effects of precession-nutation. If UT1 is used for both purposes, errors of order
100 microarcseconds result. This GAST is compatible with the IAU 2000 resolutions and
must be used only in conjunction with other IAU 2000 compatible components such as
precession-nutation. The algorithm is from Capitaine et al. (2003) and IERS Conventions
2003.

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ g s t 0 0 b [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions but using the
truncated nutation model IAU 2000B).

double

gal_gst00b

 (

 double uta,

 double utb

) ;

On entry uta and utb contain the UT1 Julian Date in standard SOFA two-piece format.
The routine returns the Greenwich Apparent Sidereal Time in radians, in the range 0 to
2π. The result is compatible with the IAU 2000 resolutions, except that accuracy has
been compromised for the sake of speed and convenience in two respects: (1) UT is used
instead of TDB (or TT) to compute the precession component of GMST and the equation
of the equinoxes. This results in errors of order 0.1 mas at present. (2) The IAU 2000B
abridged nutation model (McCarthy & Luzum, 2001) is used, introducing errors of up to 1
mas. This GAST is compatible with the IAU 2000 resolutions and must be used only in
conjunction with other IAU 2000 compatible components such as precession-nutation.
The algorithm is from Capitaine et al. (2003) and IERS Conventions 2003.

References:

General Astrodynamics Library – Reference Manual

88

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ g s t 0 6 [0.1]

Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.

double

gal_gst06

 (

 double uta,

 double utb,

 double tta,

 double ttb,

 double rnpb[3][3]

) ;

On entry uta and utb contain the UT1 Julian Date, tta and ttb contain the Terrestrial Time
(TT) Julian Date, rnpb contains the nutation x precession x bias matrix. The routine
returns the Greenwich apparent sidereal time in radians, in the range 0 to 2π. Both UT1
and TT are required, UT1 to predict the Earth rotation and TT to predict the effects of
precession-nutation. If UT1 is used for both purposes, errors of order 100
microarcseconds result. Although the routine uses the IAU 2006 series for s+XY/2, it is
otherwise independent of the precession-nutation model and can in practice be used with
any equinox-based NPB matrix.

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ g s t 0 6 a [0.1]

Greenwich apparent sidereal time (consistent with IAU 2000 and 2006 resolutions).

double

gal_gst06a

 (

 double uta,

 double utb,

 double tta,

Chapter 7 – Earth Orientation

89

 double ttb

) ;

On entry uta and utb contain the UT1 Julian Date, tta and ttb contain the Terrestrial Time
(TT) Julian Date. The routine returns the Greenwich apparent sidereal time in radians, in
the range 0 to 2π. All dates are in standard SOFA two-piece format. Both UT1 and TT are
required, UT1 to predict the Earth rotation and TT to predict the effects of
precession-nutation. If UT1 is used for both purposes, errors of order 100
microarcseconds result. This GAST is compatible with the IAU 2000/2006 resolutions and
must be used only in conjunction with IAU 2006 precession and IAU 2000A nutation.

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ g s t 9 4 [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 1982/94 resolutions).

double

gal_gst94

 (

 double uta,

 double utb

) ;

On entry uta and utb contain the UT1 Julian Date in standard SOFA two-piece format.
The routine returns the Greenwich Apparent Sidereal Time in radians, in the range 0 to
2π. The result is compatible with the IAU 1982 and 1994 resolutions, except that accuracy
has been compromised for the sake of convenience in that UT is used instead of TDB (or
TT) to compute the equation of the equinoxes. This GAST must be used only in
conjunction with contemporaneous IAU standards such as 1976 precession, 1980
obliquity and 1982 nutation. It is not compatible with the IAU 2000 resolutions.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992)

IAU Resolution C7, Recommendation 3 (1994)

 g a l _ n u m 0 0 a [0.1]

Form the matrix of nutation for a given date, IAU 2000A model.

void

gal_num00a

 (

General Astrodynamics Library – Reference Manual

90

 double date1,

 double date2,

 double rmatn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial
triad of date. A faster, but slightly less accurate result (about 1 mas), can be obtained by
using instead the gal_num00b routine.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

 g a l _ n u m 0 0 b [0.1]

Form the matrix of nutation for a given date, IAU 2000B model.

void

gal_num00b

 (

 double date1,

 double date2,

 double rmatn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial
triad of date. This routine is faster, but slightly less accurate (about 1 mas), than the
gal_num00a routine.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

 g a l _ n u m 0 6 a [0.1]

Form the matrix of nutation for a given date, IAU 2006/2000A model.

void

gal_num06a

 (

Chapter 7 – Earth Orientation

91

 double date1,

 double date2,

 double rmatn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial
triad of date.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ n u m a t [0.1]

Form the matrix of nutation.

void

gal_numat

 (

 double epsa,

 double dpsi,

 double deps,

 double rmatn[3][3]

) ;

On entry epsa contains the mean obliquity of date, dpsi and deps contain the nutation. On
return rmatn contains the nutation matrix. The supplied mean obliquity epsa, must be
consistent with the precession-nutation models from which dpsi and deps were obtained.
The caller is responsible for providing the nutation components; they are in longitude and
obliquity, in radians and are with respect to the equinox and ecliptic of date. The matrix
operates in the sense V(true) = rmatn * V(mean), where the p-vector V(true) is with
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to the
mean equatorial triad of date.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

 g a l _ n u t 0 0 a [0.1]

Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation with free core

General Astrodynamics Library – Reference Manual

92

nutation omitted).

void

gal_nut00a

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary).
The nutation components in longitude and obliquity are in radians and with respect to the
equinox and ecliptic of date. The obliquity at J2000 is assumed to be the Lieske et al.
(1977) value of 84381.448 arcsec. Both the luni-solar and planetary nutations are
included. The latter are due to direct planetary nutations and the perturbations of the lunar
and terrestrial orbits. The routine computes the MHB2000 nutation series with the
associated corrections for planetary nutations. It is an implementation of the nutation part
of the IAU 2000A precession-nutation model, formally adopted by the IAU General
Assembly in 2000, namely MHB2000 (Mathews et al. 2002), but with the free core
nutation (FCN) omitted. The full MHB2000 model also contains contributions to the
nutations in longitude and obliquity due to the free-excitation of the free-core-nutation
during the period 1979-2000. These FCN terms, which are time-dependent and
unpredictable, are NOT included in this routine and, if required, must be independently
computed. With the FCN corrections included, this routine delivers a pole which is at
current epochs accurate to a few hundred microarcseconds. The omission of FCN
introduces further errors of about that size. This routine provides classical nutation. The
MHB2000 algorithm, from which it is adapted, deals also with (i) the offsets between the
GCRS and mean poles and (ii) the adjustments in longitude and obliquity due to the
changed precession rates. These additional functions, namely frame bias and precession
adjustments, are supported by the routines gal_bi00 and gal_pr00. The MHB2000
algorithm also provides "total" nutations, comprising the arithmetic sum of the frame bias,
precession adjustments, luni-solar nutation and planetary nutation. These total nutations
can be used in combination with an existing IAU 1976 precession implementation, such
as gal_pmat76, to deliver GCRS-to-true predictions of sub-mas accuracy at current
epochs. However, there are three shortcomings in the MHB2000 model that must be
taken into account if more accurate or definitive results are required (see Wallace 2002):

(i) The MHB2000 total nutations are simply arithmetic sums, yet in reality the various
components are successive Euler rotations. This slight lack of rigor leads to cross terms
that exceed 1 mas after a century. The rigorous procedure is to form the GCRS-to-true
rotation matrix by applying the bias, precession and nutation in that order.

(ii) Although the precession adjustments are stated to be with respect to Lieske et al.
(1977), the MHB2000 model does not specify which set of Euler angles are to be used
and how the adjustments are to be applied. The most literal and straightforward
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add

Chapter 7 – Earth Orientation

93

dpsipr to psi_A and depspr to both omega_A and eps_A.

(iii) The MHB2000 model predates the determination by Chapront et al. (2002) of a 14.6
mas displacement between the J2000 mean equinox and the origin of the ICRS frame. It
should, however, be noted that neglecting this displacement when calculating star
coordinates does not lead to a 14.6 mas change in right ascension, only a small
second-order distortion in the pattern of the precession-nutation effect.

For these reasons, the routines do not generate the "total nutations" directly, though they
can of course easily be generated by calling gal_bi00, gal_pr00 and this routine and
adding the results.

References:

Chapront, J., Chapront-Touze, M. & Francou, G. 2002, Astronomy & Astrophysics 387,
700

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58,
1-16

Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, Journal Geophysical Research 107, B4.
The MHB_2000 code itself was obtained on 9th September 2002 from
ftp//maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS Workshop
5.1 (2002)

 g a l _ n u t 0 0 b [0.1]

Nutation, IAU 2000B model.

void

gal_nut00b

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA

General Astrodynamics Library – Reference Manual

94

two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary).
The nutation components in longitude and obliquity are in radians and with respect to the
equinox and ecliptic of date. The obliquity at J2000 is assumed to be the Lieske et al.
(1977) value of 84381.448 arcsec. (The errors that result from using this routine with the
IAU 2006 value of 84381.406 arcsec can be neglected.) The nutation model consists only
of luni-solar terms, but includes also a fixed offset which compensates for certain
long-period planetary terms. This routine is an implementation of the IAU 2000B
abridged nutation model formally adopted by the IAU General Assembly in 2000. The
routine computes the MHB_2000_SHORT luni-solar nutation series (Luzum 2001), but
without the associated corrections for the precession rate adjustments and the offset
between the GCRS and J2000 mean poles. The full IAU 2000A (MHB2000) nutation
model contains nearly 1400 terms. The IAU 2000B model (McCarthy & Luzum 2003)
contains only 77 terms, plus additional simplifications, yet still delivers results of 1 mas
accuracy at present epochs. This combination of accuracy and size makes the IAU
2000B abridged nutation model suitable for most practical applications. The routine
delivers a pole accurate to 1 mas from 1900 to 2100 (usually better than 1 mas, very
occasionally just outside 1 mas). The full IAU 2000A model, which is implemented in the
routine gal_nut00a (q.v.), delivers considerably greater accuracy at current epochs;
however, to realize this improved accuracy, corrections for the essentially unpredictable
free-core-nutation (FCN) must also be included. The routine provides classical nutation.
The MHB_2000_SHORT algorithm, from which it is adapted, deals also with (i) the offsets
between the GCRS and mean poles and (ii) the adjustments in longitude and obliquity
due to the changed precession rates. These additional functions, namely frame bias and
precession adjustments, are supported by the routines gal_bi00 and gal_pr00. The
MHB_2000_SHORT algorithm also provides "total" nutations, comprising the arithmetic
sum of the frame bias, precession adjustments, and nutation (luni-solar + planetary).
These total nutations can be used in combination with an existing IAU 1976 precession
implementation, such as gal_pmat76, to deliver GCRS-to-true predictions of mas
accuracy at current epochs. However, for symmetry with the gal_nut00a routine (q.v. for
the reasons), the routines do not generate the "total nutations" directly. Should they be
required, they could of course easily be generated by calling gal_bi00, gal_pr00 and this
routine and adding the results. The IAU 2000B model includes "planetary bias" terms that
are fixed in size but compensate for long-period nutations. The amplitudes quoted in
McCarthy & Luzum (2003), namely Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are
optimized for the "total nutations" method described above. The Luzum (2001) values
used in this implementation, namely -0.135 mas and +0.388 mas, are optimized for the
"rigorous" method, where frame bias, precession and nutation are applied separately and
in that order. During the interval 1995-2050, the implementation delivers a maximum error
of 1.001 mas (not including FCN).

References:

Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions for the precession
quantities based upon the IAU /1976/ system of astronomical constants", Astronomy &
Astrophysics 58, 1-2, 1-16. (1977)

Chapter 7 – Earth Orientation

95

Luzum, B., private communication, 2001 (Fortran code MHB_2000_SHORT)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.,
Astronomy & Astrophysics 282, 663-683 (1994)

 g a l _ n u t 0 6 a [0.1]

IAU 2000A nutation with adjustments to match the IAU 2006 precession.

void

gal_nut06a

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary).
The nutation components in longitude and obliquity are in radians and with respect to the
mean equinox and ecliptic of date, IAU 2006 precession model (Hilton et al. 2006,
Capitaine et al. 2005). The routine first computes the IAU 2000A nutation, then applies
adjustments for (i) the consequences of the change in obliquity from the IAU 1980 ecliptic
to the IAU 2006 ecliptic and (ii) the secular variation in the Earth's dynamical flattening.
This routine provides classical nutation, complementing the IAU 2000 frame bias and IAU
2006 precession. It delivers a pole which is at current epochs accurate to a few tens of
microarcseconds, apart from the free core nutation.

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ n u t 8 0 [0.1]

Nutation, IAU 1980 model.

void

gal_nut80

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps

General Astrodynamics Library – Reference Manual

96

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. on return dpsi contains the nutation in longitude (radians), and deps the
nutation in obliquity (radians). The nutation components are with respect to the ecliptic of
date.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222 (p111).

 g a l _ n u t m 8 0 [0.1]

Form the matrix of nutation for a given date, IAU 1980 model.

void

gal_nutm80

 (

 double date1,

 double date2,

 double rmatn[3][3]

) ;

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece
format. On return rmatn contains the nutation matrix. The matrix operates in the sense
V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial
triad of date.

 g a l _ o b l 0 6 [0.1]

Mean obliquity of the ecliptic, IAU 2006 precession model.

double
gal_obl06

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the obliquity of the ecliptic in radians. The result is
the angle between the ecliptic and mean equator of date date1+date2.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

Chapter 7 – Earth Orientation

97

 g a l _ o b l 8 0 [0.1]

Mean obliquity of the ecliptic, IAU 1980 model.

double

gal_obl80

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. the routine returns the obliquity of the ecliptic in radians. The result is
the angle between the ecliptic and mean equator of date date1+date2.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Expression 3.222-1 (p114).

 g a l _ p 0 6 e [0.1]

Precession angles, IAU 2006, equinox based.

void

gal_p06e

 (

 double date1,

 double date2,

 double *eps0,

 double *psia,

 double *oma,

 double *bpa,

 double *bqa,

 double *pia,

 double *bpia,

 double *epsa,

 double *chia,

 double *za,

 double *zetaa,

 double *thetaa,

 double *pa,

 double *gam,

 double *phi,

 double *psi

) ;

General Astrodynamics Library – Reference Manual

98

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. This routine returns the set of equinox based angles for the Capitaine et
al. "P03" precession theory, adopted by the IAU in 2006. The angles are set out in Table
1 of Hilton et al. (2006):

 eps0 epsilon_0 obliquity at J2000
 psia psi_A luni-solar precession
 oma omega_A inclination of equator wrt. J2000 ecliptic
 bpa P_A ecliptic pole x, J2000 ecliptic triad
 bqa Q_A ecliptic pole -y, J2000 ecliptic triad
 pia pi_A angle between moving and J2000 ecliptics
 bpia Pi_A longitude of ascending node of the ecliptic
 epsa epsilon_A obliquity of the ecliptic
 chia chi_A planetary precession
 za z_A equatorial precession: -3rd 323 Euler angle
 zetaa zeta_A equatorial precession: -1st 323 Euler angle
 theta theta_A equatorial precession: 2nd 323 Euler angle
 pa p_A general precession
 gam gamma_J2000 J2000 right ascension difference of ecliptic poles
 phi phi_J2000 J2000 codeclination of ecliptic pole
 psi psi_J2000 longitude difference of equator poles, J2000

The returned values are all radians. Hilton et al. (2006) Table 1 also contains angles that
depend on models distinct from the P03 precession theory itself, namely the IAU 2000A
frame bias and nutation. The quoted polynomials are used in other routines:

 gal_xy06 contains the polynomial parts of the X and Y series.

 gal_s06 contains the polynomial part of the s+XY/2 series.

gal_pfw06 implements the series for the Fukushima-Williams angles that are with
respect to the GCRS pole (i.e. the variants that include frame bias).

The IAU resolution stipulated that the choice of parameterization was left to the user, and
so an IAU compliant precession implementation can be constructed using various
combinations of the angles returned by this routine.

The parameterization used is the Fukushima-Williams angles referred directly to the
GCRS pole. These are the final four arguments returned by this routine, but are more
efficiently calculated by calling the routine gal_pfw06. GAL also supports the direct
computation of the CIP GCRS X,Y by series, available by calling gal_xy06. The
agreement between the different parameterizations is at the 1 microarcsecond level in the
present era. When constructing a precession formulation that refers to the GCRS pole
rather than the dynamical pole, it may (depending on the choice of angles) be necessary
to introduce the frame bias explicitly.

Chapter 7 – Earth Orientation

99

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ p b 0 6 [0.1]

This routine forms three Euler angles which implement general precession from epoch
J2000.0, using the IAU 2006 model. Frame bias (the offset between ICRS and mean
J2000.0) is included.

void

gal_pb06

 (

 double date1,

 double date2,

 double *bzeta,

 double *bz,

 double *btheta

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables bzeta, bz, and btheta are set as follows:

 bzeta 1st rotation: radians clockwise around z
 bz 3rd rotation: radians clockwise around z
 btheta 2nd rotation: radians counterclockwise around y

The traditional accumulated precession angles zeta_A, z_A, theta_A cannot be obtained
in the usual way, namely through polynomial expressions, because of the frame bias.
The latter means that two of the angles undergo rapid changes near this date. They are
instead the results of decomposing the precession-bias matrix obtained by using the
Fukushima-Williams method, which does not suffer from the problem. The decomposition
returns values which can be used in the conventional formulation and which include
frame bias. The three angles are returned in the conventional order, which is not the same
as the order of the corresponding Euler rotations. The precession-bias matrix is R_3(-z) x
R_2(+theta) x R_3(-zeta). Should zeta_A, z_A, theta_A angles be required that do not
contain frame bias, they are available by calling the routine gal_p06e.

 g a l _ p f w 0 6 [0.1]

Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).

void

gal_pfw06

 (

 double date1,

 double date2,

General Astrodynamics Library – Reference Manual

100

 double *gamb,

 double *phib,

 double *psib,

 double *epsa

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the routine sets the variables as follows:

 gamb F-W angle gamma_bar (radians)
 phib F-W angle phi_bar (radians)
 psib F-W angle psi_bar (radians)
 epsa F-W angle epsilon_A (radians)

Naming the following points:

 e J2000 ecliptic pole,
 p GCRS pole,
 E mean ecliptic pole of date,
 P mean pole of date,

the four Fukushima-Williams angles are as follows:

 gamb = gamma_bar = epE
 phib = phi_bar = pE
 psib = psi_bar = pEP
 epsa = epsilon_A = EP

The matrix representing the combined effects of frame bias and precession is:

 PxB = R_1(-epsa).R_3(-psib).R_1(phib).R_3(gamb)

The matrix representing the combined effects of frame bias, precession and nutation is
simply:

 NxPxB = R_1(-epsa-dE).R_3(-psib-dP).R_1(phib).R_3(gamb)

where dP and dE are the nutation components with respect to the ecliptic of date.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ p m a t 0 0 [0.1]

Precession matrix (including frame bias) from GCRS to a specified date, IAU 2000 model.

Chapter 7 – Earth Orientation

101

void

gal_pmat00

 (

 double date1,

 double date2,

 double rbp[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rbp contains the bias-precession matrix. The matrix operates
in the sense V(date) = rbp * V(J2000), where the p-vector V(J2000) is with respect to the
Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with
respect to the mean equatorial triad of the given date.

References:

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly,
Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p m a t 0 6 [0.1]

Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006 model.

void

gal_pmat06

 (

 double date1,

 double date2,

 double rbp[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rbp contains the bias-precession matrix. The matrix operates
in the sense V(date) = rbp * V(J2000), where the p-vector V(J2000) is with respect to the
Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with
respect to the mean equatorial triad of the given date.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ p m a t 7 6 [0.1]

Precession matrix from J2000 to a specified date, IAU 1976 model.

void

General Astrodynamics Library – Reference Manual

102

gal_pmat76

 (

 double date1,

 double date2,

 double rmatp[3][3]

) ;

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece
format. On return rmatp contains the precession matrix, J2000 -> date1+date2. The
matrix operates in the sense V(date) = rmatp * V(J2000), where the p-vector V(J2000) is
with respect to the mean equatorial triad of epoch J2000 and the p-vector V(date) is with
respect to the mean equatorial triad of the given date. Though the matrix method itself is
rigorous, the precession angles are expressed through canonical polynomials which are
valid only for a limited time span. In addition, the IAU 1976 precession rate is known to be
imperfect. The absolute accuracy of the present formulation is better than 0.1 arcsec from
1960CE to 2040CE, better than 1 arcsec from 1640CE to 2360CE, and remains below 3
arcsec for the whole of the period 500BCE to 3000CE. The errors exceed 10 arcsec
outside the range 1200BCE to 3900CE, exceed 100 arcsec outside 4200BCE to 5600CE
and exceed 1000 arcsec outside 6800BCE to 8200CE.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.

Kaplan, G.H., 1981. USNO circular no. 163, pA2.

 g a l _ p n 0 0 [0.1]

Precession-nutation, IAU 2000 model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void

gal_pn00

 (

 double date1,

 double date2,

 double dpsi,

 double deps,

 double *epsa,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3],

 double rn[3][3],

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, dpsi and deps contain the nutation. On return the variables are set as

Chapter 7 – Earth Orientation

103

follows:

 epsa mean obliquity
 rb frame bias matrix
 rp precession matrix
 rbp bias-precession matrix
 rn nutation matrix
 rbpn GCRS-to-true matrix

The caller is responsible for providing the nutation components; they are in longitude and
obliquity, in radians and are with respect to the equinox and ecliptic of date. For
high-accuracy applications, free core nutation should be included as well as any other
relevant corrections to the position of the CIP. The returned mean obliquity is consistent
with the IAU 2000 precession-nutation models. The matrix rb transforms vectors from
GCRS to J2000 mean equator and equinox by applying frame bias. The matrix rp
transforms vectors from J2000 mean equator and equinox to mean equator and equinox
of date by applying precession. The matrix rbp transforms vectors from GCRS to mean
equator and equinox of date by applying frame bias then precession. It is the product rp x
rb. The matrix rn transforms vectors from mean equator and equinox of date to true
equator and equinox of date by applying the nutation (luni-solar + planetary). The matrix
rbpn transforms vectors from GCRS to true equator and equinox of date. It is the product
rn x rbp, applying frame bias, precession and nutation in that order.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 0 a [0.1]

Precession-nutation, IAU 2000A model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void

gal_pn00a

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps,

 double *epsa,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3],

 double rn[3][3],

 double rbpn[3][3]

General Astrodynamics Library – Reference Manual

104

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables are set as follows:

 dpsi, deps nutation
 epsa mean obliquity
 rb frame bias matrix
 rp precession matrix
 rbp bias-precession matrix
 rn nutation matrix
 rbpn GCRS-to-true matrix

The nutation components (luni-solar + planetary, IAU 2000A) in longitude and obliquity
are in radians and with respect to the equinox and ecliptic of date. Free core nutation is
omitted; for the utmost accuracy, use the gal_pn00 routine, where the nutation
components are caller-specified. For faster but slightly less accurate results, use the
gal_pn00b routine. The mean obliquity is consistent with the IAU 2000 precession. The
matrix rb transforms vectors from GCRS to J2000 mean equator and equinox by applying
frame bias. The matrix rp transforms vectors from J2000 mean equator and equinox to
mean equator and equinox of date by applying precession. The matrix rbp transforms
vectors from GCRS to mean equator and equinox of date by applying frame bias then
precession. It is the product rp x rb. The matrix rn transforms vectors from mean equator
and equinox of date to true equator and equinox of date by applying the nutation
(luni-solar + planetary). The matrix rbpn transforms vectors from GCRS to true equator
and equinox of date. It is the product rn x rbp, applying frame bias, precession and
nutation in that order. The X,Y,Z coordinates of the IAU 2000A Celestial Intermediate
Pole are elements [0-2][2] of the matrix rbpn.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 0 b [0.1]

Precession-nutation, IAU 2000B model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void

gal_pn00b

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps,

Chapter 7 – Earth Orientation

105

 double *epsa,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3],

 double rn[3][3],

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. on return the variables are set as follows:

 dpsi, deps nutation
 epsa mean obliquity
 rb frame bias matrix
 rp bias-precession matrix
 rbp precession matrix
 rn nutation matrix
 rbpn GCRS-to-true matrix

The nutation components (luni-solar + planetary, IAU 2000B) in longitude and obliquity
are in radians and with respect to the equinox and ecliptic of date. For more accurate
results, but at the cost of increased computation, use the gal_pn00a routine. For the
utmost accuracy, use the gal_pn00 routine, where the nutation components are
caller-specified. The mean obliquity is consistent with the IAU 2000 precession. The
matrix rb transforms vectors from GCRS to J2000 mean equator and equinox by applying
frame bias. The matrix rp transforms vectors from J2000 mean equator and equinox to
mean equator and equinox of date by applying precession. The matrix rbp transforms
vectors from GCRS to mean equator and equinox of date by applying frame bias then
precession. It is the product rp x rb. The matrix rn transforms vectors from mean equator
and equinox of date to true equator and equinox of date by applying the nutation
(luni-solar + planetary). The matrix rbpn transforms vectors from GCRS to true equator
and equinox of date. It is the product rn x rbp, applying frame bias, precession and
nutation in that order. The X,Y,Z coordinates of the IAU 2000B Celestial Intermediate
Pole are elements [0-2][2] of the matrix rbpn.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 6 [0.1]

Precession-nutation, IAU 2006 model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void

General Astrodynamics Library – Reference Manual

106

gal_pn06

 (

 double date1,

 double date2,

 double dpsi,

 double deps,

 double *epsa,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3],

 double rn[3][3],

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, and dpsi and deps the nutation. On return the variables are set as
follows:

 epsa mean obliquity
 rb frame bias matrix
 rp precession matrix
 rbp bias-precession matrix
 rn nutation matrix
 rbpn GCRS-to-true matrix

The caller is responsible for providing the nutation components; they are in longitude and
obliquity, in radians and are with respect to the equinox and ecliptic of date. For
high-accuracy applications, free core nutation should be included as well as any other
relevant corrections to the position of the CIP. The returned mean obliquity is consistent
with the IAU 2006 precession. The matrix rb transforms vectors from GCRS to mean
J2000 by applying frame bias. The matrix rp transforms vectors from mean J2000 to
mean of date by applying precession. The matrix rbp transforms vectors from GCRS to
mean of date by applying frame bias then precession. It is the product rp x rb. The matrix
rn transforms vectors from mean of date to true of date by applying the nutation (luni-solar
+ planetary). The matrix rbpn transforms vectors from GCRS to true of date CIP/equinox).
It is the product rn x rbp, applying frame bias, precession and nutation in that order. The
X,Y,Z coordinates of the IAU 2006/2000A Celestial Intermediate Pole are elements
[0-2][2] of the matrix rbpn.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ p n 0 6 a [0.1]

Chapter 7 – Earth Orientation

107

Precession-nutation, IAU 2006/2000A models: a multi-purpose routine, supporting
classical (equinox-based) use directly and CIO-based use indirectly.

void

gal_pn06a

 (

 double date1,

 double date2,

 double *dpsi,

 double *deps,

 double *epsa,

 double rb[3][3],

 double rp[3][3],

 double rbp[3][3],

 double rn[3][3],

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables are set as follows:

 dpsi, deps nutation
 epsa mean obliquity

rb frame bias matrix
rp precession matrix

 rbp bias-precession matrix
rn nutation matrix
rbpn GCRS-to-true matrix

The nutation components (luni-solar + planetary, IAU 2000A) in longitude and obliquity
are in radians and with respect to the equinox and ecliptic of date. Free core nutation is
omitted; for the utmost accuracy, use the gal_pn06 routine, where the nutation
components are caller-specified. The mean obliquity is consistent with the IAU 2006
precession. The matrix rb transforms vectors from GCRS to mean J2000 by applying
frame bias. The matrix rp transforms vectors from mean J2000 to mean of date by
applying precession. The matrix rbp transforms vectors from GCRS to mean of date by
applying frame bias then precession. It is the product RP x RB. The matrix rn transforms
vectors from mean of date to true of date by applying the nutation (luni-solar + planetary).
The matrix rbpn transforms vectors from GCRS to true of date (CIP/equinox). It is the
product rn x rbp, applying frame bias, precession and nutation in that order. The X,Y,Z
coordinates of the IAU 2006/2000A Celestial Intermediate Pole are elements [0-2][2] of
the matrix rbpn.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

General Astrodynamics Library – Reference Manual

108

 g a l _ p n m 0 0 a [0.1]

Form the matrix of precession-nutation for a given date (including frame bias),
equinox-based, IAU 2000A model.

void

gal_pnm00a

 (

 double date1,

 double date2,

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rbpn contains the classical NPB matrix. The matrix operates
in the sense V(date) = rbpn * V(GCRS), where the p-vector V(date) is with respect to the
true equatorial triad of date date1+date2 and the p-vector V(J2000) is with respect to the
mean equatorial triad of the Geocentric Celestial Reference System (IAU, 2000). A faster,
but slightly less accurate result (about 1 mas), can be obtained by using instead the
gal_pnm00b routine.

References:

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly,
Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p n m 0 0 b [0.1]

Form the matrix of precession-nutation for a given date (including frame bias),
equinox-based, IAU 2000B model.

void

gal_pnm00b

 (

 double date1,

 double date2,

 double rbpn[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. on return rbpn the bias-precession-nutation matrix. The matrix operates
in the sense V(date) = rbpn * V(GCRS), where the p-vector V(date) is with respect to the
true equatorial triad of date date1+date2 and the p-vector V(J2000) is with respect to the
mean equatorial triad of the Geocentric Celestial Reference System (IAU, 2000). This
routine is faster, but slightly less accurate (about 1 mas), than the gal_pnm00a routine.

References:

Chapter 7 – Earth Orientation

109

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly,
Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p n m 0 6 a [0.1]

Form the matrix of precession-nutation for a given date (including frame bias), IAU 2006
precession and IAU 2000A nutation models.

void

gal_pnm06a

 (

 double date1,

 double date2,

 double rnpb[3][3]

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return rnpb contains bias-precession-nutation matrix. The matrix
operates in the sense V(date) = rnpb * V(GCRS), where the p-vector V(date) is with
respect to the true equatorial triad of date date1+date2 and the p-vector V(J2000) is with
respect to the mean equatorial triad of the Geocentric Celestial Reference System (IAU,
2000).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

 g a l _ p n m 8 0 [0.1]

Form the matrix of precession/nutation for a given date, IAU 1976 precession model, IAU
1980 nutation model.

void

gal_pnm80

 (

 double date1,

 double date2,

 double rmatpn[3][3]

) ;

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece
format. On return rmatpn contains the combined precession/nutation matrix. The matrix
operates in the sense V(date) = rmatpn * V(J2000), where the p-vector V(date) is with
respect to the true equatorial triad of date date1+date2 and the p-vector V(J2000) is with
respect to the mean equatorial triad of epoch J2000.

References:

General Astrodynamics Library – Reference Manual

110

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.3 (p145).

 g a l _ p o m 0 0 [0.1]

Form the matrix of polar motion for a given date, IAU 2000.

void

gal_pom00

 (

 double xp,

 double yp,

 double sp,

 double rpom[3][3]

) ;

On entry xp and yp contain the coordinates of the pole in radians and the TIO locator s' in
radians. xp and yp are the "coordinates of the pole", in radians, which position the
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS
Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis points at
the north geographic pole, the v-axis points towards the origin of longitudes and the u axis
completes the system, xp = +u and yp = -v. sp is the TIO locator s', in radians, which
positions the Terrestrial Intermediate Origin on the equator. It is obtained from polar
motion observations by numerical integration, and so is in essence unpredictable.
However, it is dominated by a secular drift of about 47 microarcseconds per century, and
so can be taken into account by using s' = -47*t, where t is centuries since J2000. The
routine gal_sp00 implements this approximation. The matrix operates in the sense
V(TRS) = rpom * V(CIP), meaning that it is the final rotation when computing the pointing
direction to a celestial source.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ p r 0 0 [0.1]

Precession-rate part of the IAU 2000 precession-nutation models (part of MHB2000).

void

gal_pr00

 (

 double date1,

 double date2,

 double *dpsipr,

 double *depspr

) ;

Chapter 7 – Earth Orientation

111

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return dpsipr and deps contain the precession corrections. The
precession adjustments are expressed as "nutation components", corrections in
longitude and obliquity with respect to the J2000 equinox and ecliptic. Although the
precession adjustments are stated to be with respect to Lieske et al. (1977), the
MHB2000 model does not specify which set of Euler angles are to be used and how the
adjustments are to be applied. The most literal and straightforward procedure is to adopt
the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add dpsipr to psi_A and
depspr to both omega_A and eps_A (Wallace 2002). This is an implementation of one
aspect of the IAU 2000A nutation model, formally adopted by the IAU General Assembly
in 2000, namely MHB2000 (Mathews et al. 2002).

References

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions for the precession
quantities based upon the IAU (1976) System of Astronomical Constants", Astronomy &
Astrophysics, 58, 1-16 (1977)

Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New
nutation series for non-rigid Earth and insights into the Earth's interior", Journal
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS Workshop
5.1 (2002)

 g a l _ p r e c 7 6 [0.1]

IAU 1976 precession model. This routine forms the three Euler angles which implement
general precession between two epochs, using the IAU 1976 model (as for the FK5
catalog).

void

gal_prec76

 (

 double ep01,

 double ep02,

 double ep11,

 double ep12,

 double *zeta,

 double *z,

 double *theta

) ;

On entry ep01 and ep02 contain the TDB starting epoch, and ep11 and ep12 contain the
TDB ending epoch. Both dates are Julian Dates in standard SOFA two-piece format. On
return the variables are set as follows:

General Astrodynamics Library – Reference Manual

112

 zeta 1st rotation: radians clockwise around z
 z 3rd rotation: radians clockwise around z
 theta 2nd rotation: radians counterclockwise around y

The accumulated precession angles zeta, z, theta are expressed through canonical
polynomials which are valid only for a limited time span. In addition, the IAU 1976
precession rate is known to be imperfect. The absolute accuracy of the present
formulation is better than 0.1 arcsec from 1960CE to 2040CE, better than 1 arcsec from
1640CE to 2360CE, and remains below 3 arcsec for the whole of the period 500BCE to
3000CE. The errors exceed 10 arcsec outside the range 1200BCE to 3900CE, exceed
100 arcsec outside 4200BCE to 5600CE and exceed 1000 arcsec 1000 arcsec outside
6800BCE to 8200CE. The three angles are returned in the conventional order, which is
not the same as the order of the corresponding Euler rotations. The precession matrix is
R_3(-z) x R_2(+theta) x R_3(-zeta).

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.

 g a l _ s 0 0 [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 2000A
precession-nutation.

double

gal_s00

 (

 double date1,

 double date2,

 double x,

 double y

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, x and y contain the CIP coordinates. The routine returns the CIO locator
s in radians. The CIO locator s is the difference between the right ascensions of the same
point in two systems: the two systems are the GCRS and the CIP,CIO, and the point is the
ascending node of the CIP equator. The quantity s remains below 0.1 arcsecond
throughout 1900CE-2100CE. The series used to compute s is in fact for s+xy/2, where x
and y are the x and y components of the CIP unit vector; this series is more compact than
a direct series for s would be. This routine requires x,y to be supplied by the caller, who is
responsible for providing values that are consistent with the supplied date. The model is
consistent with the IAU 2000A precession-nutation.

References:

Chapter 7 – Earth Orientation

113

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ s 0 0 a [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2000A precession-nutation model.

double

gal_s00a

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the
difference between the right ascensions of the same point in two systems. The two
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are
the x and y components of the CIP unit vector; this series is more compact than a direct
series for s would be. This routine uses the full IAU 2000A nutation model when predicting
the CIP position. Faster results, with no significant loss of accuracy, can be obtained via
the routine gal_s00b, which uses instead the IAU 2000B truncated model.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ s 0 0 b [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2000B precession-nutation model.

General Astrodynamics Library – Reference Manual

114

double

gal_s00b

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the
difference between the right ascensions of the same point in two systems. The two
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are
the x and y components of the CIP unit vector; this series is more compact than a direct
series for s would be. This routine uses the IAU 2000B truncated nutation model when
predicting the CIP position. The routine gal_s00a uses instead the full IAU 2000A model,
but with no significant increase in accuracy and at some cost in speed.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ s 0 6 [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU
2006/2000A precession-nutation.

double

gal_s06

 (

 double date1,

 double date2,

 double x,

 double y

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format, x and y contain CIP coordinates. The routine returns the CIO locator s
in radians. The CIO locator s is the difference between the right ascensions of the same
point in two systems: the two systems are the GCRS and the CIP,CIO, and the point is

Chapter 7 – Earth Orientation

115

the ascending node of the CIP equator. The quantity s remains below 0.1 arcsecond
throughout 1900CE - 2100CE. The series used to compute s is in fact for s+xy/2, where x
and y are the x and y components of the CIP unit vector; this series is more compact than
a direct series for s would be. This routine requires X,Y to be supplied by the caller, who is
responsible for providing values that are consistent with the supplied date. The model is
consistent with the "P03" precession (Capitaine et al. 2003), adopted by IAU 2006
Resolution 1, 2006, and the IAU 2000A nutation (with P03 adjustments).

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics 432, 355

McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ s 0 6 a [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2006 precession and IAU 2000A nutation
models.

double

gal_s06a

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the
difference between the right ascensions of the same point in two systems. The two
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are
the x and y components of the CIP unit vector; this series is more compact than a direct
series for s would be. This routine uses the full IAU 2000A nutation model when predicting
the CIP position.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

General Astrodynamics Library – Reference Manual

116

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ s p 0 0 [0.1]

The TIO locator s', positioning the Terrestrial Intermediate Origin on the equator of the
Celestial Intermediate Pole.

double

gal_sp00

 (

 double date1,

 double date2

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. The routine returns the TIO locator s' in radians. The TIO locator s' is
obtained from polar motion observations by numerical integration, and so is in essence
unpredictable. However, it is dominated by a secular drift of about 47 microarcseconds
per century, which is the approximation evaluated by this routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ x y 0 6 [0.1]

X,Y coordinates of celestial intermediate pole from series based on IAU 2006 precession
and IAU 2000A nutation.

void

gal_xy06

 (

 double date1,

 double date2,

 double *x,

 double *y

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return x and y contain the CIP X,Y coordinates. The x,y coordinates
are those of the unit vector towards the celestial intermediate pole. They represent the
combined effects of frame bias, precession and nutation. The fundamental arguments
used are as adopted in IERS Conventions (2003) and are from Simon et al. (1994) and
Souchay et al. (1999). This is an alternative to the angles-based method, via the routine
gal_fw2xy and as used in gal_xys06a for example. The two methods agree at the 1

Chapter 7 – Earth Orientation

117

microarcsecond level (at present), a negligible amount compared with the intrinsic
accuracy of the models. However, it would be unwise to mix the two methods
(angles-based and series-based) in a single application.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics, 412, 567

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J.,
Astronomy & Astrophysics, 1994, 282, 663

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astronomy & Astrophysics
Supplement Series 135, 111

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ x y s 0 0 a [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2000A precession-nutation model.

void

gal_xys00a

 (

 double date1,

 double date2,

 double *x,

 double *y,

 double *s

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables are set as follows:

 x, y Celestial Intermediate Pole
 s the CIO locator s

The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the
Celestial Intermediate Origin on the equator of the CIP. A faster, but slightly less accurate
result (about 1 mas for x,y), can be obtained by using instead the gal_xys00b routine.

General Astrodynamics Library – Reference Manual

118

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ x y s 0 0 b [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2000B precession-nutation model.

void

gal_xys00b

 (

 double date1,

 double date2,

 double *x,

 double *y,

 double *s

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables are set as follows:

 x, y Celestial Intermediate Pole
 s the CIO locator s

The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the
Celestial Intermediate Origin on the equator of the CIP. This routine is faster, but slightly
less accurate (about 1 mas in x,y), than the gal_xys00a routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004)

 g a l _ x y s 0 6 a [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2006 precession and IAU 2000A nutation models.

void

gal_xys06a

 (

 double date1,

 double date2,

 double *x,

Chapter 7 – Earth Orientation

119

 double *y,

 double *s

) ;

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return the variables are set as follows:

 x, y Celestial Intermediate Pole
 s the CIO locator s

The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the
Celestial Intermediate Origin on the equator of the CIP. Series-based solutions for
generating X and Y are also available: see Capitaine & Wallace (2006) and gal_xy06.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

General Astrodynamics Library – Reference Manual

120

121

Chapter 8 - Star Routines

The routines detailed in this chapter are defined in the gal_star.h header file.

General Astrodynamics Library – Reference Manual

122

 g a l _ f k 5 2 h [0.1]

Transform FK5 (J2000) star data into the Hipparcos system.

void

gal_fk52h

 (

 double r5,

 double d5,

 double dr5,

 double dd5,

 double px5,

 double rv5,

 double *rh,

 double *dh,

 double *drh,

 double *ddh,

 double *pxh,

 double *rvh

) ;

On entry the variables must be set as follows (all FK5, equinox J2000, epoch J2000):

 r5 right ascension (radians)
 d5 declination (radians)
 dr5 proper motion in right ascension (dRA/dt, radians per Julian year)
 dd5 proper motion in declination (dDec/dt, radians per Julian year)
 px5 parallax (arcseconds)
 rv5 radial velocity (positive = receding)

On return the variables are set as follows (all Hipparcos, epoch J2000):

 rh right ascension (radians)
 dh declination (radians)
 drh proper motion in right ascension (dRA/dt, radians per Julian year)
 ddh proper motion in declination (dDec/dt, radians per Julian year)
 pxh parallax (arcseconds)
 rvh radial velocity (positive = receding)

This routine transforms FK5 star positions and proper motions into the system of the
Hipparcos catalogue. The proper motions in right ascension are dRA/dt rather than
cos(Dec)*dRA/dt, and are per year rather than per century. The FK5 to Hipparcos
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue
are not taken into account. See also gal_h2fk5, gal_fk5hz, gal_hfk5z.

References:

Chapter 8 – Star Routines

123

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ f k 5 h i p [0.1]

FK5 to Hipparcos rotation and spin.

void

gal_fk5hip

 (

 double r5h[3][3],

 double s5h[3]

) ;

On return r5h contains the r-matrix: FK5 rotation wrt Hipparcos, and s5h contains the
r-vector: FK5 spin wrt Hipparcos. This routine models the FK5 to Hipparcos
transformation as a pure rotation and spin; zonal errors in the FK5 catalogue are not
taken into account. The r-matrix r5h operates in the sense: P_Hipparcos = r5h x P_FK5
where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is the equivalent
Hipparcos p-vector. The r-vector s5h represents the time derivative of the FK5 to
Hipparcos rotation. The units are radians per year (Julian, TDB).

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ f k 5 h z [0.1]

Transform an FK5 (J2000) star position into the system of the Hipparcos catalogue,
assuming zero Hipparcos proper motion.

void

gal_fk5hz

 (

 double r5,

 double d5,

 double date1,

 double date2,

 double *rh,

 double *dh

) ;

On entry the variables must be set as follows:

 r5 FK5 right ascension (radians), equinox J2000, at date
 d5 FK5 declination (radians), equinox J2000, at date
 date1,date2 TDB date in standard SOFA two-piece format

On return the variables are set as follows:

General Astrodynamics Library – Reference Manual

124

 rh Hipparcos right ascension (radians)
 dh Hipparcos declination (radians)

This routine converts a star position from the FK5 system to the Hipparcos system, in
such a way that the Hipparcos proper motion is zero. Because such a star has, in general,
a non-zero proper motion in the FK5 system, the routine requires the date at which the
position in the FK5 system was determined. The FK5 to Hipparcos transformation is
modeled as a pure rotation and spin; zonal errors in the FK5 catalogue are not taken into
account. It was the intention that Hipparcos should be a close approximation to an inertial
frame, so that distant objects have zero proper motion; such objects have (in general)
non-zero proper motion in FK5, and this routine returns those fictitious proper motions.
The position returned by this routine is in the FK5 J2000 reference system but at date
date1+date2. See also gal_fk52h, gal_h2fk5, gal_hfk5z.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ h 2 f k 5 [0.1]

Transform Hipparcos star data into the FK5 (J2000) system.

void

gal_h2fk5

 (

 double rh,

 double dh,

 double drh,

 double ddh,

 double pxh,

 double rvh,

 double *r5,

 double *d5,

 double *dr5,

 double *dd5,

 double *px5,

 double *rv5

) ;

On entry the variables must be set as follows (all Hipparcos, epoch J2000):

 rh right ascension (radians)
 dh declination (radians)
 drh proper motion in right ascension (dRA/dt, radians per Julian year)
 ddh proper motion in declination (dDec/dt, radians per Julian year)
 pxh parallax (arcseconds)
 rvh radial velocity (positive = receding)

Chapter 8 – Star Routines

125

On return the variables are set as follows (all FK5, equinox J2000, epoch J2000):

 r5 right ascension (radians)
 d5 declination (radians)
 dr5 proper motion in right ascension (dRA/dt, radians per Julian year)
 dd5 proper motion in declination (dDec/dt, radians per Julian year)
 px5 parallax (arcseconds)
 rv5 radial velocity (positive = receding)

This routine transforms Hipparcos star positions and proper motions into FK5 J2000.
The proper motions in right ascension are dRA/dt rather than cos(Dec)*dRA/dt, and are
per year rather than per century. The FK5 to Hipparcos transformation is modeled as a
pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account. See
also gal_fk52h, gal_fk5hz, gal_hfk5z.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ h f k 5 z [0.1]

Transform a Hipparcos star position into FK5 J2000, assuming zero Hipparcos proper
motion.

void

gal_hfk5z

 (

 double rh,

 double dh,

 double date1,

 double date2,

 double *r5,

 double *d5,

 double *dr5,

 double *dd5

) ;

On entry the variables must be set as follows:

rh Hipparcos right ascension (radians)
dh Hipparcos declination (radians)
date1,date2 TDB date in standard SOFA two-piece format

On return the variables are set as follows (all FK5, equinox J2000, date date1+date2):

 r5 right ascension (radians)

General Astrodynamics Library – Reference Manual

126

 d5 declination (radians)
 dr5 FK5 right ascension proper motion (radians per year)
 dd5 declination proper motion (radians per year)

The proper motion in right ascension is dRA/dt rather than cos(Dec)*dRA/dt. The FK5 to
Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the FK5
catalogue are not taken into account. It was the intention that Hipparcos should be a close
approximation to an inertial frame, so that distant objects have zero proper motion; such
objects have (in general) non-zero proper motion in FK5, and this routine returns those
fictitious proper motions. The position returned by this routine is in the FK5 J2000
reference system but at date date1+date2. See also gal_fk52h, gal_h2fk5, gal_fk5zhz.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ p v s t a r [0.1]

Convert star position & velocity vector to catalog coordinates.

int

gal_pvstar

 (

 double pv[2][3],

 double *ra,

 double *dec,

 double *pmr,

 double *pmd,

 double *px,

 double *rv

) ;

On entry pv contains the pv-vector (AU, AU per day). On return the variables are set as
follows:

 ra right ascension (radians)
 dec declination (radians)
 pmr right ascension proper motion (radians per year)
 pmd declination proper motion (radians per year)
 px parallax (arcseconds)
 rv radial velocity (kilometers per second, positive = receding)

The routine returns one of the following status codes:
 0 success
 -1 superluminal speed
 -2 null position vector

Chapter 8 – Star Routines

127

The specified pv-vector is the coordinate direction (and its rate of change) for the epoch at
which the light leaving the star reached the solar-system Barycenter. The star data
returned by this routine are "observables" for an imaginary observer at the solar-system
Barycenter. Proper motion and radial velocity are, strictly, in terms of Barycentric
Coordinate Time, TCB. For most practical applications, it is permissible to neglect the
distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The result will, as
a rule, be limited by the intrinsic accuracy of the proper-motion and radial-velocity data;
moreover, the supplied pv-vector is likely to be merely an intermediate result (for example
generated by the routine gal_starpv), so that a change of time unit will cancel out overall.
In accordance with normal star-catalog conventions, the object's right ascension and
declination are freed from the effects of secular aberration. The frame, which is aligned to
the catalog equator and equinox, is Lorentzian and centered on the SSB. Summarizing,
the specified pv-vector is for most stars almost identical to the result of applying the
standard geometrical "space motion" transformation to the catalog data. The differences,
which are the subject of the Stumpff paper cited below, are:

(i) In stars with significant radial velocity and proper motion, the constantly changing
light-time distorts the apparent proper motion. Note that this is a classical, not a
relativistic, effect.

 (ii) The transformation complies with special relativity.

Care is needed with units. The star coordinates are in radians and the proper motions in
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in
kilometers per second, but the pv-vector result is in AU and AU per day. The proper
motions are the rate of change of the right ascension and declination at the catalog epoch
and are in radians per Julian year. The right ascension proper motion is in terms of
coordinate angle, not true angle, and will thus be numerically larger at high declinations.
Straight-line motion at constant speed in the inertial frame is assumed. If the speed is
greater than or equal to the speed of light, the routine aborts with an error status. The
inverse transformation is performed by the routine gal_starpv.

References:

Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).

 g a l _ s t a r p m [0.1]

Star proper motion: update star catalog data for space motion.

int

gal_starpm

 (

 double ra1,

 double dec1,

 double pmr1,

 double pmd1,

General Astrodynamics Library – Reference Manual

128

 double px1,

 double rv1,

 double ep1a,

 double ep1b,

 double ep2a,

 double ep2b,

 double *ra2,

 double *dec2,

 double *pmr2,

 double *pmd2,

 double *px2,

 double *rv2

) ;

On entry the variables must be set as follows:

 ra1 right ascension (radians), before
 dec1 declination (radians), before
 pmr1 right ascension proper motion (radians per year), before
 pmd1 declination proper motion (radians per year), before
 px1 parallax (arcseconds), before
 rv1 radial velocity (kilometers per second, +ve = receding), before
 ep1a "before" epoch, part A
 ep1b "before" epoch, part B
 ep2a "after" epoch, part A
 ep2b "after" epoch, part B

On return the variables are set as follows:

 ra2 right ascension (radians), after
 dec2 declination (radians), after
 pmr2 right ascension proper motion (radians per year), after
 pmd2 declination proper motion (radians per year), after
 px2 parallax (arcseconds), after
 rv2 radial velocity (kilometers per second, +ve = receding), after

The routine returns the following status codes:

 -1 system error (should not occur)
 0 no warnings or errors
 1 distance overridden
 2 excessive velocity
 4 solution didn't converge
 else binary logical OR of the above warnings

The starting and ending TDB epochs ep1a+ep1b and ep2a+ep2b are Julian Dates in
standard SOFA two-piece format. In accordance with normal star-catalog conventions,

Chapter 8 – Star Routines

129

the object's right ascension and declination are freed from the effects of secular
aberration. The frame, which is aligned to the catalog equator and equinox, is Lorentzian
and centered on the SSB. The proper motions are the rate of change of the right
ascension and declination at the catalog epoch and are in radians per TDB Julian year.
The parallax and radial velocity are in the same frame. Care is needed with units. The star
coordinates are in radians and the proper motions in radians per Julian year, but the
parallax is in arcseconds. The ra proper motion is in terms of coordinate angle, not true
angle. If the catalog uses arcseconds for both ra and dec proper motions, the ra proper
motion will need to be divided by cos(dec) before use. Straight-line motion at constant
speed, in the inertial frame, is assumed. An extremely small (or zero or negative) parallax
is interpreted to mean that the object is on the "celestial sphere", the radius of which is an
arbitrary (large) value (see the gal_starpv routine for the value used). When the distance
is overridden in this way, the status, initially zero, has 1 added to it. If the space velocity is
a significant fraction of c (see the constant VMAX in the routine gal_starpv), it is arbitrarily
set to zero. When this action occurs, 2 is added to the status. The relativistic adjustment
carried out in the gal_starpv routine involves an iterative calculation. If the process fails to
converge within a set number of iterations, 4 is added to the status.

 g a l _ s t a r p v [0.1]

Convert star catalog coordinates to position & velocity vector.

int

gal_starpv

 (

 double ra,

 double dec,

 double pmr,

 double pmd,

 double px,

 double rv,

 double pv[2][3]) ;

On entry the variables must be set as follows:

 ra right ascension (radians)
 dec declination (radians)
 pmr right ascension proper motion (radians per year)
 pmd declination proper motion (radians per year)
 px parallax (arcseconds)
 rv radial velocity (kilometers per second, positive = receding)

On return pv contains the pv-vector (AU, AU per day).

The routine returns one of the following status codes:

 0 no warnings

General Astrodynamics Library – Reference Manual

130

 1 distance overridden
 2 excessive velocity
 4 solution didn't converge
 else binary logical OR of the above

The star data accepted by this routine are "observables" for an imaginary observer at the
solar-system Barycenter. Proper motion and radial velocity are, strictly, in terms of
Barycentric Coordinate Time, TCB. For most practical applications, it is permissible to
neglect the distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The
result will, as a rule, be limited by the intrinsic accuracy of the proper-motion and radial-
velocity data; moreover, the pv-vector is likely to be merely an intermediate result, so that
a change of time unit would cancel out overall. In accordance with normal star-catalog
conventions, the object's right ascension and declination are freed from the effects of
secular aberration. The frame, which is aligned to the catalog equator and equinox, is
Lorentzian and centered on the SSB. The resulting position and velocity pv-vector is with
respect to the same frame and, like the catalog coordinates, is freed from the effects of
secular aberration. Should the "coordinate direction", where the object was located at the
catalog epoch, be required, it may be obtained by calculating the magnitude of the
position vector pv[0][0-2] dividing by the speed of light in AU per day to give the light-time,
and then multiplying the space velocity pv[1][0-2] by this light-time and adding the result
to pv[0][0-2]. Summarizing, the pv-vector returned is for most stars almost identical to the
result of applying the standard geometrical "space motion" transformation. The
differences, which are the subject of the Stumpff paper referenced below, are:

In stars with significant radial velocity and proper motion, the constantly changing
light-time distorts the apparent proper motion. Note that this is a classical, not a
relativistic, effect.

The transformation complies with special relativity.

Care is needed with units. The star coordinates are in radians and the proper motions in
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in
kilometers per second, but the pv-vector result is in AU and AU per day. The ra proper
motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for
both ra and dec proper motions, the ra proper motion will need to be divided by cos(dec)
before use. Straight-line motion at constant speed, in the inertial frame, is assumed. An
extremely small (or zero or negative) parallax is interpreted to mean that the object is on
the "celestial sphere", the radius of which is an arbitrary (large) value (see the constant
PXMIN). When the distance is overridden in this way, the status, initially zero, has 1
added to it. If the space velocity is a significant fraction of c (see the constant VMAX), it is
arbitrarily set to zero. When this action occurs, 2 is added to the status. The relativistic
adjustment involves an iterative calculation. If the process fails to converge within a set
number (IMAX) of iterations, 4 is added to the status. The inverse transformation is
performed by the routine gal_pvstar.

References:

Chapter 8 – Star Routines

131

Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).

General Astrodynamics Library – Reference Manual

132

133

Chapter 9 - Ellipsoids

The routines detailed in this chapter are defined in the gal_ellipsoids.h header file.

General Astrodynamics Library – Reference Manual

134

 g a l _ e l l i p s o i d s . h [0.2]

This header file includes the header files of the routines that make up the ellipsoids
sub-library, and defines the constants for the Ellipsoid Model identifiers.

/*

 * ---

 * Constants for the Ellipsoid Model Identifiers

 * ---

 */

enum {

 GAL_EMEA_DEL1800 = 0, /* Delambre 1800 */

 GAL_EMEA_AIRY1830 = 1, /* Airy 1830 */

 GAL_EMEA_EVER1830 = 2, /* Everest 1830 */

 GAL_EMEA_EVER1830BA = 3, /* Everest 1830 Boni Alt */

 GAL_EMEA_BESL1841 = 4, /* Bessel 1841 */

 GAL_EMEA_CL1866 = 5, /* Clarke 1866 */

 GAL_EMEA_CL1880 = 6, /* Clarke 1880 */

 GAL_EMEA_CLA1880M = 7, /* Clarke 1880 Modified */

 GAL_EMEA_HEL1906 = 8, /* Helmert 1906 */

 GAL_EMEA_INTL1909 = 9, /* International 1909 */

 GAL_EMEA_KRSV = 10, /* Krassovsky */

 GAL_EMEA_MERC1960 = 11, /* Mercury 1960 */

 GAL_EMEA_WGS1960 = 12, /* World Geodetic System 1960 */

 GAL_EMEA_IAU1964 = 13, /* IAU 1964 */

 GAL_EMEA_AUSNAT1965 = 14, /* Australian National 1965 */

 GAL_EMEA_WGS1966 = 15, /* World Geodetic System 1966 */

 GAL_EMEA_MERC1968M = 16, /* Modified Mercury 1968 */

 GAL_EMEA_SA1969 = 17, /* South American 1969 */

 GAL_EMEA_GRS1967 = 18, /* Geodetic Reference System 1967 */

 GAL_EMEA_WGS1972 = 19, /* World Geodetic System 1972 */

 GAL_EMEA_IAG1975 = 20, /* IAG 1975 */

 GAL_EMEA_IAU1976 = 21, /* IAU 1976 */

 GAL_EMEA_GRS1980 = 22, /* Geodetic Reference System 1980 */

 GAL_EMEA_MERIT1983 = 23, /* MERIT 1983 */

 GAL_EMEA_WGS1984 = 24, /* World Geodetic System 1984 */

 GAL_EMEA_IERS1989 = 25, /* IERS 1989 */

 GAL_EMEA_IERS2000 = 26, /* IERS 2000 */

} ;

Chapter 9 - Ellipsoids

135

 g a l _ e m d e t a i l s [0.2]

This routine returns the full details of the requested ellipsoid model.

int

gal_emdetails

 (

 const int em,

 int *body,

 char *name,

 double *sma,

 double *inf

) ;

On entry em contains the identifier code of the requested ellipsoid model. On return the
variables are set as follows:

 body Solar System Body Identifier
 name Ellipsoid Model name
 sma Semi-major axis (meters)
 inf Inverse flattening factor

The routine returns one of the following status codes:

0 success
1 invalid Ellipsoid Model Identifier

The header file gal_ellipsoids.h defines the following constants for the valid values of em:

 Identifier Ellipsoid Model

 GAL_EMEA_DEL1800 Delambre 1800
 GAL_EMEA_AIRY1830 Airy 1830
 GAL_EMEA_EVER1830 Everest 1830
 GAL_EMEA_EVER1830BA Everest 1830 Boni Alt
 GAL_EMEA_BESL1841 Bessel 1841
 GAL_EMEA_CL1866 Clarke 1866
 GAL_EMEA_CL1880 Clarke 1880
 GAL_EMEA_CLA1880M Clarke 1880 Modified
 GAL_EMEA_HEL1906 Helmert 1906
 GAL_EMEA_INTL1909 International 1909
 GAL_EMEA_KRSV Krassovsky
 GAL_EMEA_MERC1960 Mercury 1960
 GAL_EMEA_WGS1960 World Geodetic System 1960
 GAL_EMEA_IAU1964 IAU 1964
 GAL_EMEA_AUSNAT1965 Australian National 1965
 GAL_EMEA_WGS1966 World Geodetic System 1966

General Astrodynamics Library – Reference Manual

136

 GAL_EMEA_MERC1968M Modified Mercury 1968
 GAL_EMEA_SA1969 South American 1969
 GAL_EMEA_GRS1967 Geodetic Reference System 1967
 GAL_EMEA_WGS1972 World Geodetic System 1972
 GAL_EMEA_IAG1975 IAG 1975
 GAL_EMEA_IAU1976 IAU 1976
 GAL_EMEA_GRS1980 Geodetic Reference System 1980
 GAL_EMEA_MERIT1983 MERIT 1983
 GAL_EMEA_WGS1984 World Geodetic System 1984
 GAL_EMEA_IERS1989 IERS 1989
 GAL_EMEA_IERS2000 IERS 2000

Where differences in values were found between references Seidelmann was selected.

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann,
1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

 g a l _ e m n a m e [0.2]

This routine returns the name of the requested ellipsoid model.

char *

gal_emname

 (

 const int em,

 char *name

) ;

On entry em contains the identifier code of the required ellipsoid model. On return name
contains the model name. The header file gal_ellipsoids.h defines constants for the
supported model identifiers. The routine returns a pointer to the string name or NULL if
the specified ellipsoid model identifier is not supported.

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann,
1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

Chapter 9 - Ellipsoids

137

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

 g a l _ e m p a r a m s [0.2]

This routine returns the parameters of the requested ellipsoid model.

int

gal_emparams

 (

 const int em,

 double *sma,

 double *inf

) ;

On entry em contains the identifier code of the requested ellipsoid model. The header file
gal_ellipsoids.h defines constants for the supported model identifiers. On return the
variables are set as follows:

 sma Semi-major axis (meters)
 inf Inverse flattening factor

The routine returns one of the following status codes:

0 success
1 invalid Ellipsoid Model Identifier

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann,
1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

General Astrodynamics Library – Reference Manual

138

139

Chapter 10 - Gravity Models

The routines detailed in this chapter are defined in the gal_gravity.h header file.

General Astrodynamics Library – Reference Manual

140

 g a l _ g m . h [0.3]

This header file defines the gravity model structures, and constants for the gravity model
identifiers and status codes.

/* --

 * Structure to store the gravity model details

 * --

 */

typedef struct {

 int body ; /* Solar System Body Identifier */

 char name[40] ; /* Gravity Model name */

 double gm ; /* GM (mu) (m^3 s^-2) */

 double sma ; /* Semi-Major Axis(meters) */

 int max_degree ; /* Highest degree of coefficients */

 int max_order ; /* Highest order of coefficients */

 int normalized ; /* 1 = Normalized, 0 = Unnormalized */

 double *terms ; /* Pointer to spherical terms */

} gal_gm_t ;

/* ---

 * Structure to store the derivative parameters for derivs

 * ---

 */

typedef struct {

 gal_gm_t *gm ; /* Gravity Model */

 int max_degree ; /* Max degree to use */

 int max_order ; /* Max order to use */

} gal_derivsp_t ;

/*

 * ---

 * Constants for the gravity model identifiers

 * ---

 */

enum {

/*

 * Earth

 */

Chapter 10 – Gravity Models

141

 GAL_GMEA_EGM96 = 0,

 GAL_GMEA_JGM3 = 1,

 GAL_GMEA_WGS72 = 2,

 GAL_GMEA_WGS66 = 3,

/*

 * The Moon

 */

 GAL_GMMO_GLGM1 = 4,

 GAL_GMMO_GLGM2 = 5,

/*

 * Venus

 */

 GAL_GMVE_MGNP180U = 6,

 GAL_GMVE_MGNP120PSAAP = 7,

/*

 * Mars

 */

 GAL_GMMA_GMM2B = 8,

 GAL_GMMA_MGM1025 = 9,

} ;

/*

 * --

 * Constants for gravity model coefficients normalization state

 * --

 */

enum {

 GAL_UNNORMALIZED = 0,

 GAL_NORMALIZED = 1,

} ;

g a l _ a c c h [0.3]

Computes the body fixed acceleration due to the harmonic gravity field of the central
body.

int

gal_acch

 (

General Astrodynamics Library – Reference Manual

142

 double pbf[3],

 gal_gm_t *gm,

 int max_n,

 int max_m,

 double abf[3]

) ;

On entry the variables must be set as follows:

 p Position vector in body fixed frame
 gm Gravity Model
 max_n Maximum degree to use
 max_m Maximum order to use

On return abf contains the body fixed acceleration vector.

The routine returns one of the following status codes:
 0 success
 1 maximum degree or order exceeds limits of gravity model

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 61-68

 g a l _ a c c p m [0.1]

Computes the perturbational acceleration due to a point mass

void

gal_accpm

 (

 double ps[3],

 double ppm[3],

 double gm,

 double a[3]

) ;

On entry the variables must be set as follows:

 ps Position vector of satellite
 ppm Position vector of point mass
 gm Gravitational coefficient of point mass

On return a contains the acceleration vector (a=d^2r/dt^2).

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 69-70

Chapter 10 – Gravity Models

143

 g a l _ c a n p v [0.4]

This routine converts a pv-vector from regular to canonical units.

void

gal_canpv

 (

 double pv1[2][3],

 double gm,

 double re,

 double pv2[2][3]

) ;

On entry pv1 contains the pv-vector to convert, gm contains the gravitational parameter,
and re contains the mean radius of the reference orbit. On return pv2 contains the
converted position and velocity vectors in canonical units. gm and re must be stated in
consistent units, i.e. meters or kilometers based.

 g a l _ g m a l l o c [0.3]

This routine creates a blank gravity model of given degree.

gal_gm_t *

gal_gmalloc

 (

 int n

) ;

On entry n contains the required degree. The routine returns a pointer to gravity model
structure or NULL if failure.

 g a l _ g m c p y [0.3]

This routine allocates memory and populates it with all or a subset of a gravity model.

gal_gm_t *

gal_gmcpy

 (

 gal_gm_t *gm1,

 int maxn,

 int maxm,

 int norm

) ;

On entry the variables must be set as follows:

 gm1 Pointer to source gravity model structure to copy
 maxn Maximum degree to be returned

General Astrodynamics Library – Reference Manual

144

 maxm Maximum order to be returned
 norm 1 = spherical terms are to be normalized
 0 = spherical terms are to be unnormalized

The routine returns a pointer to the newly allocated model. This function additionally
allows the user to limit the maximum degree and order of the coefficients to be included,
useful when the full accuracy of the model is not required. If a maximum degree or order is
requested greater than that provided for the base model then the higher unknown
coefficients are set to zero. If the routine is unable to allocate memory then NULL is
returned.

 g a l _ g m d e n o r m [0.3]

This routine un-normalizes a gravity model's coefficients

gal_gm_t *

gal_gmdenorm

 (

 gal_gm_t *gm1,

 gal_gm_t *gm2

) ;

On entry gm1 contains the source gravity model. On return gm2 contains the
unnormalized terms. The routine returns a pointer to gm2.

 g a l _ g m e g m 9 6 . h [0.3]

This file defines gal_gmegm96, the external variable structure for the EGM96 Earth
gravity model.

gal_gm_t gal_gmegm96 = {
GAL_SSB_EA,

"EGM96",

3.986004415e+14,

6.3781363e+06,

360,

360,

1,

(double *) &gal_gmegm96_terms

} ;

This header must only be included at the top level of the program.

References:

Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox
C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis
E.C., Rapp R.H., Olson T.R.; The Development of the Joint NASA GSFC and the National

Chapter 10 – Gravity Models

145

Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; NASA Technical
Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA, 1998

 g a l _ g m f r e e [0.3]

This routine frees a gravity model previously allocated by gal_gmalloc or gal_gmcpy

void
gal_gmfree

 (

 gal_gm_t *gm

) ;

On entry gm contains a pointer to the model to be deallocated.

 g a l _ g m g e t [0.3]

This routine makes a copy of the selected gravity model.

gal_gm_t *

gal_gmget

 (

 int gmi,

 int maxn,

 int maxm,

 int norm

) ;

On entry the variables must be set as follows:

 gmi Identifier of the required gravity model
 maxn Maximum degree to return
 maxm Maximum order to return
 norm 1 = spherical terms are to be normalized
 0 = spherical terms are to be unnormalized

The routine returns a pointer to new allocated copy of gravity model. If the identifier
parameter is unknown or if the routine was unable to allocate memory then NULL is
returned.

The header file gal_gm.h defines the following constants for the gravity model identifiers:

 GAL_GMEA_EGM96 Earth Gravity Model 1996
 GAL_GMEA_JGM3 Joint Gravity Model 3
 GAL_GMEA_WGS72 World Geodetic System 1972
 GAL_GMEA_WGS66 World Geodetic System 1966
 GAL_GMMO_GLGM1 Goddard Lunar Gravity Model-1
 GAL_GMMO_GLGM2 Goddard Lunar Gravity Model-2

General Astrodynamics Library – Reference Manual

146

 GAL_GMVE_MGNP180U Magellan MGNP180U Venus Gravity Model
 GAL_GMVE_MGNP120PSAAP Magellan MGNP120PSAAP Venus G. M.
 GAL_GMMA_GMM2B Goddard Mars Model 2B
 GAL_GMMA_MGM1025 Improved Goddard Mars Model 2B

 g a l _ g m g l g m 1 . h [0.3]

This file defines gal_glgm1, the external variable structure for the GLGM1 Lunar gravity
model.

gal_gm_t gal_gmglgm1 = {

GAL_SSB_MO,

"GLGM-1",

4.9028026273352e+12,

1.7380e+06,

70,

70,

1,

(double *) &gal_gmglgm1_terms

} ;

This model for the Lunar Gravity Field is derived from a tracking of Lunar Orbiters 1,2,3,4
& 5, the Apollo-15 subsatellite, and Clementine: 361,000 observations from Clementine,
and 300,000 observations from the other spacecraft. The field was derived using the
1992 IAU Model for the Moon. Note that the reference for this model has typographical
errors for two the quantities describing the angular librations.

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A.
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S Tjuflin,
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992.

Table II lists the IAU model for the orientation for the lunar pole and prime meridian.

The quantities which read:

 E3 = 260.008 - 13.012001*d
 E5 = 357.529 - 0.985600*d

should instead read:

 E3 = 260.008 + 13.012001*d
 E5 = 357.529 + 0.985600*d

The Reference radius for this model is 1738.0 kilometers.

The model gives the Planet GM in m3s-2, and the Spherical Harmonic Coefficients. All the

Chapter 10 – Gravity Models

147

C and S terms are normalized. GM(1 sigma error) = .000946 kilometers3s-2

References:

Goddard Lunar Gravity Model-1 (GLGM-1): A 70th degree and order gravity model for the
Moon, by F G Lemoine, D E Smith, and M T Zuber, P11A-9, EOS, Transactions of the
American Geophysical Union Volume 75, No. 44, 1994.

 g a l _ g m g l g m 2 . h [0.3]

This file defines gal_glgm2, the external variable structure for the GLGM2 Lunar gravity
model.

gal_gm_t gal_gmglgm2 = {

GAL_SSB_MO,

"GLGM-2",

4.9028029535968e+12,

1.7380e+06,

70,

70,

1,

(double *) &gal_gmglgm2_terms

} ;

The field was derived using the 1992 IAU Model for the Moon. Note that the reference for
this model has typographical errors for two of the quantities describing the angular
librations.

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A.
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S Tjuflin,
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992.

Table II lists the IAU model for the orientation for the lunar pole and prime meridian.

The quantities which read:

 E3 = 260.008 - 13.012001*d
 E5 = 357.529 - 0.985600*d

should instead read:

 E3 = 260.008 + 13.012001*d
 E5 = 357.529 + 0.985600*d

The Reference radius for this model is 1738.0 kilometers.

General Astrodynamics Library – Reference Manual

148

The model gives the Planet GM in m3s-2, and the Spherical Harmonic Coefficients. All the
C and S terms are normalized. gm=4902.80295 ;dgm = .00224

References:

Journal Geophysical Research, GLGM-2, A 70th Degree and Order Lunar Gravity Model
from Clementine and Historical Data, Submitted, November 1995. by F. G. Lemoine, D.
E. Smith, M.T. Zuber, G. A. Neumann, and D. D. Rowlands.

High Degree and Order Spherical Harmonic Models for the Moon from Clementine and
Historic S-Band Doppler Data, 1995 XXI General Assembly, IUGG, Boulder, Colorado,
July 12, 1995. by F. G. Lemoine, D. E. Smith, M. T. Zuber, and G. A. Neumann.

 g a l _ g m g m m 2 b . h [0.3]

This file defines gal_gmgmm2b, the external variable structure for the GMM2B Mars
gravity model.

gal_gm_t gal_gmgmm2b = {

GAL_SSB_MA,

"GMM-2B",

4.2828371901284e+13,

3.3970e+06,

80,

80,

1,

(double *) &gal_gmgmm2b_terms

} ;

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no
Mariner 9 or Viking data are included. Coordinate system is IAU 1991 (Davies et al.,
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992). The model was
constructed from 955,115 observations, summarized in the table below. MGS data are
limited to tracking from the Aerobraking Hiatus and Science Phasing Orbit (SPO)
subphases of the Orbit Insertion phase of the mission and to February 1999 to
February 2000 after the orbit was circularized.

Time Periods Arcs Observations

Hiatus 2 24119
SPO-1 8 31001
SPO-2 16 157972
Feb-Mar 1999 9 76813
Apr 1999 - Feb 2000 47 665210

Total 955115

Chapter 10 – Gravity Models

149

Orbit reconstruction was improved using Mars Orbiter Laser Altimeter (MOLA) data on 5
arcs between March and December 1999. Inter-arc and intra-arc crossovers at 21343
points were included in the orbit solutions. The gravity model was derived using a Kaula
type constraint: sqrt(2)*13*10**(-5)/L**2. The analysis and results were described by F.G.
Lemoine, D.D. Rowlands, D.E. Smith, D.S. Chinn, G.A. Neumann, and M.T. Zuber at the
Spring Meeting of the American Geophysical Union, May 30 - June 3, 2000, Washington.
DC. Further improvements to the model are expected as additional MGS data are
incorporated. This Mars gravity model was produced by F.G. Lemoine under the
direction of D.E. Smith of the MGS Radio Science Team."

References:

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell, Waltham, MA, 1966

 g a l _ g m j g m 3 . h [0.3]

This file defines gal_gmjgm3, the external variable structure for the JGM-3 Earth gravity
model.

gal_gm_t gal_gmjgm3 = {

GAL_SSB_EA,

"JGM-3",

3.986004461e+14,

6.3781363e+06,

70,

70,

1,

(double *) &gal_gmjgm3_terms

} ;

References:

Tapley B., Watkins M., Ries J., Davis G., Eanes R., Poole S., Rim H., Schutz B., Shum C.,
Nerem R., Lerch F., Marshall J.A., Klosko S.M., Pavlis N., Williamson R.; The Joint
Gravity Model 3; Journal of Geophysical Research, Vol. 101, No. B12, S. 28029-28049,
1996

 g a l _ g m m g m 1 0 2 5 . h [0.3]

This file defines gal_gmmgm1025, the external variable structure for the MGM1025 Mars
gravity model.

gal_gm_t gal_gmmgm1025 = {

GAL_SSB_MA,

"MGM1025",

4.2828369773938997e+13,

3.3970e+06,

General Astrodynamics Library – Reference Manual

150

80,

80,

1,

(double *) &gal_gmmgm1025_terms

} ;

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no
Mariner 9 or Viking data are included. The MGM1025 gravity model is an update to the
GMM-2B gravity model. It was determined from 155 arcs of MGS tracking data in Hiatus,
SPO, GCO and Mapping. MGM1025 includes the same Mapping and GCO data as were
in GMM2B; in addition, it includes data from the first half of 2001 (through July 21, 2001)
when the MGS orbit orientation angle with respect to the line-of-sight (LOS) was optimum
for gravity measurements. It excludes data in the vicinity of solar conjunction from May 8
to July 30 in 2000.

 GMM2B MGM1025

 Model Size 80x80 80x80
 Coordinate System IAU 1991 IAU 2000

 Observations

 Hiatus 24,119 24,119
 SPO-1 31,001 31,014
 SPO-2 157,972 136,667
 GCO 76,813 80,795
 Mapping 665,210 1,352,661
 TOTAL 955,155 1,625,276

 Number of Arcs
 Hiatus 2 2
 SPO-1 8 8
 SPO-2 16 14
 GCO 9 9
 Mapping 47 122

MGM1025 has improved correlation with topography compared with GMM-2B. The
average correlation with MOLA derived topography (through degree 70) is 0.722 for
GMM-2B and 0.756 for MGM1025. The new model has slightly greater power in the band
from l=60 to 70. The average RMS of fit to the F2 (two-way) tracking data is 0.13 to 0.20
millimeters per second with this model, excluding arcs in the vicinity of solar conjunction.
The average RMS of fit for the one-way (F1) Doppler tracking with this model is 0.10 to
0.15 millimeters per second. The one-way data contribute to solutions starting
sporadically in February 2000 and more consistently in arcs starting in March of 2000.
They are used solely to fill in what would otherwise be gaps in the two-way tracking
Frequency biases are estimated for each pass of one-way data. The coordinate system
for the model is IAU 2000 (Seidelman et al., Celestial Mechanics & Dynamical Astronomy,

Chapter 10 – Gravity Models

151

82, 83-110, 2002), defined by the Mars Cartography Working Group. It includes updates
to the orientation of the Mars Pole and rotation rate from a joint Pathfinder/Viking solution,
and a re-determination of the location of the prime meridian (with respect to the crater
Airy-0) from Mars Global Surveyor MOC and MOLA data. Pole right ascension (alpha)
and declination (delta), prime meridian (Wo), and rotation rate (Wodot) in IAU 2000 are:

 alpha 317.68143 deg -0.1061 degrees per century
 delta 52.88650 deg -0.0609 degrees per century
 Wo 176.630 deg
 Wdot 350.89198266 deg/day

This Mars gravity model was produced by F.G. Lemoine under the direction of D.E. Smith
of the MGS Radio Science Team."

References:

The analysis and results for MGM1025 were described by F.G. Lemoine, G.A. Neumann,
D.S. Chinn, D.E. Smith, M.T. Zuber, D.D. Rowlands, D.P. Rubincam, and D.E. Pavlis in
'Solution for Mars Geophysical Parameters from Mars Global Surveyor Tracking Data',
American Geophysical Union Fall Meeting 2001 (EOS, Trans. AGU 82(47), Fall
Meeting Supplement, Abstract P42A-0545, F721, 2001). The GMM2B model was
described by Lemoine et al., 'An Improved Solution of the Gravity Field of Mars (GMM-2B)
from Mars Global Surveyor', Journal Geophysical Research, 106(E10), 23359-23376,
October 25, 2001.

 g a l _ g m m g n p 1 2 0 p . h [0.3]

This file defines gal_gmmgnp120p, the external variable structure for the
MGNP120PSAAP Venus gravity model.

gal_gm_t gal_gmmgnp120p = {
GAL_SSB_VE,

"MGNP120PSAAP",

3.248585897260e+14,

6.0510e+06,

120,

120,

1,

(double *) &gal_gmmgnp120p_terms

} ;

This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus
gravity model is produced by the Magellan Gravity Science Team at JPL under the
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution.

 g a l _ g m m g n p 1 8 0 u . h [0.3]

General Astrodynamics Library – Reference Manual

152

This file defines gal_gmmgnp180u, the external variable structure for the MGNP180U
Venus gravity model.

gal_gm_t gal_gmmgnp180u = {

GAL_SSB_VE,

"MGNP180U",

3.248585920790e+14,

6.0510e+06,

180,

180,

1,

(double *) &gal_gmmgnp180u_terms

} ;

This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus
gravity model is produced by the Magellan Gravity Science Team at JPL under the
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution.

 g a l _ g m n o r m [0.3]

This routine normalizes a gravity model's coefficients

gal_gm_t *
gal_gmnorm

 (

 gal_gm_t *gm1,

 gal_gm_t *gm2

) ;

On entry gm1 contains the source gravity model. On return gm2 contains the normalized
coefficients. The routine returns a pointer to gm2.

 g a l _ g m u z h [0.3]

This routine calculates an un-normalized zonal harmonic

double

gal_gmuzh

 (

 gal_gm_t *gm,

 gal_facexp_t *facexp,

 int harmonic

) ;

On entry the variables must be set as follows:

 gm Pointer to gravity model
 facexp Pointer to factorial exponent lookup table

Chapter 10 – Gravity Models

153

 harmonic Required harmonic

The routine returns the required unnormalized zonal harmonic

 g a l _ g m w g s 6 6 . h [0.3]

This file defines gal_gmwgs66, the external variable structure for the WGS66 Earth
gravity model.

gal_gm_t gal_gmwgs66 = {

GAL_SSB_EA,

"WGS-66",

3.986008e+14,

6.378145e+06,

24,

24,

1,

(double *) &gal_gmwgs66_terms

} ;

The value for GM is unknown, so the value for WGS72 is used instead.

 g a l _ g m w g s 7 2 . h [0.3]

This file defines gal_gmwgs72, the external variable structure for the WGS72 Earth
gravity model.

gal_gm_t gal_gmwgs72 = {

GAL_SSB_EA,

"WGS-72",

3.986008e+14,

6.378135e+06,

28,

27,

1,

(double *) &gal_gmwgs72_terms

} ;

 g a l _ s t g e t [0.3]

This routine gets spherical terms C & S of degree n and order m from the given gravity
model

int

gal_stget

 (

 const int n,

General Astrodynamics Library – Reference Manual

154

 const int m,

 gal_gm_t *gm,

 double *c,

 double *s

) ;

On entry n contains the required degree, and m the required order, gm is a pointer to the
gravity model structure. On return c and s contain the C and S coefficients of degree n
and order m. The routine returns one of the following status codes:

0 success
1 degree or order out of range

Gravitational coefficients C, S are efficiently stored in a single array CS. The lower
triangle matrix CS holds the non-sectorial C coefficients C[n][m] (n != m). Sectorial C
coefficients C[n][n] are the diagonal elements of CS and the upper triangular matrix stores
the S[n][m] (m != 0) coefficients in columns, for the same degree n. Mapping of CS to C,
S is achieved through C[n][m] = CS[n][m], S[n][m] = CS[m-1][n].

 g a l _ s t n f [0.3]

This function computes the spherical terms normalization factor.

double

gal_stnf

 (

 gal_facexp_t *facexp,

 const int n,

 const int m

) ;

On entry facexp contains a pointer to the factorial exponent lookup table, n the required
degree, and m the required order. The routine returns the normalization factor.

References:

Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section,
Second Pressing Pages 519-520

 g a l _ s t s e t [0.3]

This routine sets spherical terms C & S of degree N and order M in the given gravity
model

int

gal_stset

 (

 const int n,

Chapter 10 – Gravity Models

155

 const int m,

 const double c,

 const double s,

 gal_gm_t *gm

) ;

On entry n contains the required degree, m the required order, c and s contain the values
to store in the gravity model. On return the spherical terms of the gravity model gm have
been updated. The routine returns one of the following status codes:

 0 success
 1 degree or order out of range

Gravitational coefficients C, S are efficiently stored in a single array CS. The lower
triangle matrix CS holds the non-sectorial C coefficients C[n][m] (n != m). Sectorial
Coefficients C[n][n] are the diagonal elements of CS and the upper triangular matrix
stores the S[n][m] (m != 0) coefficients in columns, for the same degree n. Mapping of CS
to C, S is achieved through C[n][m] = CS[n][m], S[n][m] = CS[m-1][n].

 g a l _ s t u n f [0.3]

This function computes the spherical terms un-normalization factor.

double

gal_stunf

 (

 gal_facexp_t *facexp,

 const int n,

 const int m

) ;

On entry facexp contains a pointer to the factorial exponent lookup table, n contains the
required degree, and m the required order. The routine returns the un-normalization
factor of degree n and order m.

References:

Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section,
Second Pressing Pages 519-520

 g a l _ t u [0.4]

This routine computes the canonical unit TU factor from the mean radius and gravitational
parameter.

double

gal_tu

 (

General Astrodynamics Library – Reference Manual

156

 double gm,

 double re

) ;

On entry gm contains the gravitational parameter, and re the mean radius of the reference
orbit. The routine returns the TU factor. gm and re must be stated in consistent units, i.e.
meters or kilometers based.

 g a l _ u n c a n p v [0.4]

This routine converts a pv-vector from canonical units to regular units

void

gal_uncanpv

 (

 double pv1[2][3],

 double gm,

 double re,

 double pv2[2][3]

) ;

On entry pv1 contains the position and velocity vectors in canonical units, gm contains the
gravitational parameter, and re the mean radius of the reference orbit. On return pv2
contains the position and velocity vectors in regular units. gm and re must be stated in
consistent units, i.e. meters or kilometers based.

157

Chapter 11 - Reference Frames

The routines detailed in this chapter are defined in the gal_frames.h header file.

General Astrodynamics Library – Reference Manual

158

 g a l _ c 2 r a d e c [0.2]

This routine converts a position and velocity vector in the GCRF reference frame to right
ascension and declination.

void

gal_c2radec

 (

 double gcrf[2][3],

 double *ra,

 double *dec,

 double *range,

 double *radot,

 double *decdot,

 double *rangedot

) ;

On entry gcrf contains the GCRF position and velocity vector (m, meters per second). On
return the variables are set as follows:

 ra Right Ascension (radians)
 dec Declination (radians)
 range Range (meters)
 radot Right Ascension dot (radians per second)
 decdot Declination dot (radians per second)
 rangedot Range dot (meters per second)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 248-250

 g a l _ c 2 t p v 0 0 a [0.2]

This routine converts a position & velocity vector in the GCRF reference frame to the ITRF
reference frame (IAU 2000A Resolutions).

void

gal_c2tpv00a

 (

 double gcrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

Chapter 11 – Reference Frames

159

 double itrf[2][3]

) ;

On entry the variables must be set as follows:

 gcrf GCRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2
 dut1 UT1 - UTC (seconds)
 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return itrf contains the ITRF position & velocity vector (meters, meters per second).
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ c 2 t p v 0 0 b [0.2]

This routine converts a position & velocity vector in the GCRF reference frame to the ITRF
reference frame (IAU 2000B Resolutions).

void

gal_c2tpv00b

 (

 double gcrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

 double itrf[2][3]

General Astrodynamics Library – Reference Manual

160

) ;

On entry the variables must be set as follows:

 gcrf GCRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2
 dut1 UT1 - UTC (seconds)
 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return itrf contains the ITRF position & velocity vector (meters, meters per second).
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ c 2 t p v 0 6 a [0.2]

This routine converts a position & velocity vector in the GCRF reference frame to the ITRF
reference frame (IAU 2006A Resolutions).

void

gal_c2tpv06a

 (

 double gcrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

 double itrf[2][3]

) ;

Chapter 11 – Reference Frames

161

 On entry the variables must be set as follows:

 gcrf GCRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2
 dut1 UT1 - UTC (seconds)
 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return itrf contains the ITRF position & velocity vector (meters, meters per second).
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ i 2 t p v 0 0 [0.2]

This routine converts a position & velocity vector in the CIRS reference frame to the ITRF
reference frame (IAU 2000 Resolutions).

void

gal_i2tpv00

 (

 double cirs[2][3],

 double tta,

 double ttb,

 double ut1a,

 double ut1b,

 double lod,

 double xp,

 double yp,

 double itrf[2][3]

) ;

General Astrodynamics Library – Reference Manual

162

On entry the variables must be set as follows:

 cirs CIRS position & velocity vector (meters, meters per second)
 tta TT date part 1
 ttb TT date part 2
 ut1a UT1 date part 1
 ut1b UT1 date part 2
 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

Both dates are Julian Dates in standard SOFA two-piece format. On return itrf contains
the ITRF position & velocity vector (meters, meters per second). xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ l a t l o n 2 t [0.2]

This routine creates a position vector in the ITRF reference frame from given geodetic
latitude and longitude.

void

gal_latlon2t

 (

 double lat,

 double lon,

 double height,

 double re,

 double invf,

 double itrf[3]

) ;

On entry the variables are set as follows:

Chapter 11 – Reference Frames

163

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)
 re Earth Equatorial Radius (meters)
 invf Inverse flattening factor

On return itrf contains the ITRF position vector (meters).

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ l a t l o n 2 t _ i a u 7 6 [0.2]

This routine creates a position vector in the ITRF reference frame from given geodetic
latitude and longitude using IAU76 reference ellipsoid.

gal_latlon2t_iau76
 (

 double lat,

 double lon,

 double height,

 double itrf[3]

) ;

On entry the variables must be set as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

On return itrf contains the ITRF position vector (meters).

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ l a t l o n 2 t _ i e r s 0 0 [0.2]

This routine creates a position vector in the ITRF reference frame from given geodetic
latitude and longitude using IERS 2000 reference ellipsoid.

General Astrodynamics Library – Reference Manual

164

void

gal_latlon2t_iers00

 (

 double lat,

 double lon,

 double height,

 double itrf[3]

) ;

On entry the variables must be set as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

On return itrf contains the ITRF position vector (meters).

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ l a t l o n 2 t _ w g s 7 2 [0.2]

This routine creates a position vector in the ITRF reference frame from given geodetic
latitude and longitude using WGS72 reference ellipsoid.

void

gal_latlon2t_wgs72

 (

 double lat,

 double lon,

 double height,

 double itrf[3]

) ;

On entry the variables must be set as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

On return itrf contains the ITRF position vector (meters).

References:

Chapter 11 – Reference Frames

165

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ l a t l o n 2 t _ w g s 8 4 [0.2]

This routine creates a position vector in the ITRF reference frame from given geodetic
latitude and longitude using WGS84 reference ellipsoid.

void

gal_latlon2t_wgs84

 (

 double lat,

 double lon,

 double height,

 double itrf[3]

) ;

On entry the variables must be set as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

On return itrf contains the ITRF position vector (meters).

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ t 2 a z e l [0.2]

This routine converts a pv-vector in the ITRF reference frame to azimuth, elevation, range
& range-rate

void

gal_t2azel

 (

 double itrf[2][3],

 double site[3],

 double lat,

 double lon,

General Astrodynamics Library – Reference Manual

166

 double *az,

 double *el,

 double *range,

 double *rdot

) ;

On entry the variables must be set as follows:

 itrf ITRF position & velocity vector of target (meters, meters per second)
 site ITRF position vector of observer (meters)
 lat Latitude of observer (radians)
 lon Longitude of observer (radians)

On return the variables are set as follows:

 az Azimuth (radians)
 el Elevation (radians)
 range Range (meters)
 rdot Range Rate (meters, meters per second)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 252-257

 g a l _ t 2 c p v 0 0 a [0.2]

This routine converts a position & velocity vector in the ITRF reference frame to the GCRF
reference frame (IAU 2000A Resolutions).

void

gal_t2cpv00a

 (

 double itrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

 double gcrf[2][3]

) ;

On entry the variables must be set as follows:

 itrf ITRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2

Chapter 11 – Reference Frames

167

 dut1 UT1 - UTC (seconds)
 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return gcrf contains the GCRF position & velocity vector (meters, meters per second).
utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 c p v 0 0 b [0.2]

This routine converts a position & velocity vector in the ITRF reference frame to the GCRF
reference frame (IAU 2000B Resolutions).

void

gal_t2cpv00b

 (

 double itrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

 double gcrf[2][3]

) ;

On entry the variables must be set as follows:

 itrf ITRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2
 dut1 UT1 - UTC (seconds)

General Astrodynamics Library – Reference Manual

168

 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return gcrf contains the GCRF position & velocity vector (meters, meters per second).
The utc1+utc2 Julian Date in is standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 c p v 0 6 a [0.2]

This routine converts a position & velocity vector in the ITRF reference frame to the GCRF
reference frame (IAU 2006A Resolutions).

void

gal_t2cpv06a

 (

 double itrf[2][3],

 double utc1,

 double utc2,

 double dut1,

 double lod,

 double xp,

 double yp,

 double gcrf[2][3]

) ;

On entry the variables must be set as follows:

 itrf ITRF position & velocity vector (meters, meters per second)
 utc1 UTC date part 1
 utc2 UTC date part 2
 dut1 UT1 - UTC (seconds)
 lod Excess length of day (seconds)

http://www.iau-sofa.rl.ac.uk/

Chapter 11 – Reference Frames

169

 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return gcrf contains the GCRF position & velocity vector (meters, meters per second).
The utc1+utc2 Julian Date in is standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 i p v 0 0 [0.2]

This routine converts a position & velocity vector in the ITRF reference frame to the CIRS
reference frame (IAU 2000 Resolutions).

void

gal_t2ipv00

 (

 double itrf[2][3],

 const double tta,

 const double ttb,

 const double ut1a,

 const double ut1b,

 const double lod,

 const double xp,

 const double yp,

 double cirs[2][3]

) ;

On entry the variables must be set as follows:

 itrf ITRF position & velocity vector (meters, meters per second)
 tta TT date part 1
 ttb TT date part 2
 dut1 UT1 - UTC (seconds)

http://www.iau-sofa.rl.ac.uk/

General Astrodynamics Library – Reference Manual

170

 lod Excess length of day (seconds)
 xp x coordinate of the pole (radians)
 yp y coordinate of the pole (radians)

On return cirs contains the CIRS position & velocity vector (meters, meters per second).
The tta+ttb Julian Date in is standard SOFA two-piece format. xp and yp are the
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis
points towards the origin of longitudes and the u axis completes the system, xp = +u and
yp = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board
2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 l a t l o n [0.2]

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude.

void

gal_t2latlon

 (

 double itrf[3],

 double re,

 double invf,

 double *lat,

 double *lon,

 double *height

) ;

On entry the variables must be set as follows:

 itrf ITRF position vector (meters)
 re Earth Equatorial Radius (meters)
 invf Inverse flattening factor

On return the variables are set as follows:

 lat Latitude (radians)

http://www.iau-sofa.rl.ac.uk/

Chapter 11 – Reference Frames

171

 lon Longitude (radians)
 height Height above the reference spheroid (meters)

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 177-178

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992,
Pages 202-207

The Astronomical Almanac 1997, Pages K11-K12

 g a l _ t 2 l a t l o n _ i a u 7 6 [0.2]

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude using Fukushima's 1999 Method using the IAU76 reference ellipsoid.

void

gal_t2latlon_iau76

 (

 double itrf[3],

 double *lat,

 double *lon,

 double *height

) ;

On entry itrf contains the ITRF position vector(meters). On return the variables are set as
follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal
Geodesy (1999) 73: 603-610

 g a l _ t 2 l a t l o n _ i e r s 0 0 [0.2]

General Astrodynamics Library – Reference Manual

172

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude using Fukushima's 1999 Method using the IERS 2000 reference ellipsoid.

void

gal_t2latlon_iers00

 (

 double itrf[3],

 double *lat,

 double *lon,

 double *height

) ;

On entry itrf contains the ITRF position vector (meters). On return the variables are set
as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal
Geodesy (1999) 73: 603-610

 g a l _ t 2 l a t l o n _ w g s 7 2 [0.2]

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude using Fukushima's 1999 Method using the WGS72 reference ellipsoid.

void

gal_t2latlon_wgs72

 (

 double itrf[3],

 double *lat,

 double *lon,

 double *height

) ;

On entry itrf contains the ITRF position vector (meters). On return the variables are set
as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

Chapter 11 – Reference Frames

173

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal
Geodesy (1999) 73: 603-610

 g a l _ t 2 l a t l o n _ w g s 8 4 [0.2]

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude using Fukushima's 1999 Method using the WGS84 reference ellipsoid.

void

gal_t2latlon_wgs84

 (

 double itrf[3],

 double *lat,

 double *lon,

 double *height

) ;

On entry itrf contains the ITRF position vector(meters). On return the variables are set as
follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal
Geodesy (1999) 73: 603-610

 g a l _ t 2 l a t l o n f [0.2]

This routine converts a position vector in the ITRF reference frame to geodetic latitude
and longitude using Fukushima's 1999 Method.

void

gal_t2latlonf

 (

 double itrf[3],

 double re,

General Astrodynamics Library – Reference Manual

174

 double invf,

 double *lat,

 double *lon,

 double *height

) ;

On entry the variables must be set as follows:

 itrf ITRF position vector (meters)
 re Earth Equatorial Radius (meters)
 invf Inverse flattening factor

On return the variables are set as follows:

 lat Latitude (radians)
 lon Longitude (radians)
 height Height above the reference spheroid (meters)

The height refers to a height above the reference spheroid and differs from the height
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point.

References:

Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal
Geodesy (1999) 73: 603-610

175

Chapter 12 - SGP4

The routines detailed in this chapter are defined in the gal_sgp4.h header file.

General Astrodynamics Library – Reference Manual

176

 g a l _ s g p 4 [0.2]

This routine is the SGP4 prediction model from Space Command.

int

gal_sgp4

 (

 gal_sgp4_t *sgp4,

 double epoch1,

 double epoch2,

 double pv[2][3]

) ;

On entry the variables must be set as follows:

 sgp4 Initialized structure from gal_sgp4init call.
 epoch1 UTC epoch part A
 epoch2 UTC epoch part B

On return the variables are set as follows:

 sgp4 Common values for subsequent calls
 pv Geocentric position/velocity (meters, meters per second)

The routine returns one of the following status codes:

 0 success
 1 mean elements, eccentricity >= 1.0 or < -0.001 or semi-major-axis < 0.95 Earth

radii
 2 mean motion less than 0.0
 3 pert elements, eccentricity < 0.0 or > 1.0
 4 semi-latus rectum < 0.0
 5 epoch elements are sub-orbital
 6 satellite has decayed

This is an updated and combined version of SGP4 and SDP4, which were originally
published separately in Spacetrack Report #3. This version follows the methodology from
the AIAA paper (2006) describing the history and development of the code. This routine is
a translation from c++ to c of David Vallado's SGP4UNIT.sgp4 routine (2007 November
16). The UTC epoch epoch1+epoch2 is a Julian Date in standard SOFA two-piece
format.

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Chapter 12 – SGP4

177

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

 g a l _ s g p 4 g m [0.2]

This routine gets the gravity model parameters required by SGP4

void
gal_sgp4gm

 (

 gal_gm_t *gm,

 double *tumin,

 double *mu,

 double *re,

 double *xke,

 double *j2,

 double *j3,

 double *j4,

 double *j3oj2

) ;

On entry gm points to the gravity model structure. On return the variables are set as
follows:

 tumin Minutes in one time unit
 mu Earth gravitational parameter
 re Radius of the Earth in kilometers
 xke Reciprocal of tumin
 j2 Un-normalized second zonal harmonic value
 j3 Un-normalized third zonal harmonic value
 j4 Un-normalized fourth zonal harmonic value
 j3oj2 j3 divided by j2

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

General Astrodynamics Library – Reference Manual

178

 g a l _ s g p 4 i n i t [0.2]

This routine initializes the variables for gal_sgp4.

int

gal_sgp4init

 (

 gal_gm_t *gm,

 gal_tle_t *tle,

 gal_sgp4_t *sgp4

) ;

On entry gm points to the gravity model structure, and tle points to the two-line-elements
parameters structure. On return sgp4 is initialized to its start state. The routine returns
one of the following status codes:

 0 success
 1 mean elements, eccentricity >= 1.0 or < -0.001 or semi-major axis < 0.95 Earth

radii
 2 mean motion less than 0.0
 3 pert elements, eccentricity < 0.0 or > 1.0
 4 semi-latus rectum < 0.0
 5 epoch elements are sub-orbital
 6 satellite has decayed

This routine is based on a translation from c++ to c of David Vallado's SGP4UNIT.sgp4init
routine (2007 November 16).

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

 g a l _ s g p 4 t . h [0.2]

This header file defines the SGP4 data structure that is used to store interim results
between successive calls to gal_sgp4.

typedef struct {

/*

Chapter 12 – SGP4

179

 * Internal Control Variables

 */

 int error ;

 char init ;

 char method ;

/*

 * TLE Parameters

 */

 int satnum ; /* NORAD Catalog Number */

 char classification ; /* Security Classification */

 char intldesg[10] ; /* International Designator (COSPAR/WDC-A-R&S) */

 int epochyr ; /* Epoch Year */

 double epochdays ; /* Epoch Day of Year (plus Fraction) */

 double epoch ; /* Epoch Date (days since 1950-01-01 0h) */

 double ndot ; /* Mean motion derivative */

 double nddot ; /* Mean motion second derivative */

 double bstar ; /* Bstar / Drag Term */

 int ephtype ; /* Ephemeris Type */

 int setnum ; /* Element set number */

 double inclo ; /* Inclination (rad) */

 double nodeo ; /* Right Ascension of Ascending Node (rad) */

 double ecco ; /* Eccentricity */

 double argpo ; /* Argument of Perigee (rad) */

 double mo ; /* Mean Anomaly (rad) */

 double no ; /* Mean Motion (rad/min) */

 int revnum ; /* Epoch Revolution Number */

 double a ;

 double altp ;

 double alta ;

 double jdepoch1 ; /* Julian Date of Epoch Part 1 */

 double jdepoch2 ; /* Julian Date of Epoch Part 2 */

 double rcse ;

 int epochtynumrev ;

/*

 * Gravity Model Parameters

 */

 double tumin ; /* Minutes in one time unit */

 double mu ; /* Earth gravitational parameter */

 double radiusearthkm ; /* Radius of the earth in kilometers

*/

 double xke ; /* Reciprocal of tumin */

 double j2 ; /* Un-normalized second zonal harmonic value */

 double j3 ; /* Un-normalized third zonal harmonic value */

 double j4 ; /* Un-normalized fourth zonal harmonic value */

 double j3oj2 ; /* j3 divided by j2 */

 double vkmpersec ;

/*

 * Near Earth

 */

General Astrodynamics Library – Reference Manual

180

 int isimp ;

 double aycof ;

 double con41 ;

 double cc1 ;

 double cc4 ;

 double cc5 ;

 double d2 ;

 double d3 ;

 double d4 ;

 double delmo ;

 double eta ;

 double argpdot ;

 double omgcof ;

 double sinmao ;

 double t ;

 double t2cof ;

 double t3cof ;

 double t4cof ;

 double t5cof ;

 double x1mth2 ;

 double x7thm1 ;

 double mdot ;

 double nodedot ;

 double xlcof ;

 double xmcof ;

 double nodecf ;

/*

 * Deep Space

 */

 int irez ;

 double d2201 ;

 double d2211 ;

 double d3210 ;

 double d3222 ;

 double d4410 ;

 double d4422 ;

 double d5220 ;

 double d5232 ;

 double d5421 ;

 double d5433 ;

 double dedt ;

 double del1 ;

 double del2 ;

 double del3 ;

 double didt ;

 double dmdt ;

 double dnodt ;

 double domdt ;

 double e3 ;

 double ee2 ;

 double peo ;

 double pgho ;

 double pho ;

 double pinco ;

 double plo ;

Chapter 12 – SGP4

181

 double se2 ;

 double se3 ;

 double sgh2 ;

 double sgh3 ;

 double sgh4 ;

 double sh2 ;

 double sh3 ;

 double si2 ;

 double si3 ;

 double sl2 ;

 double sl3 ;

 double sl4 ;

 double gsto ;

 double xfact ;

 double xgh2 ;

 double xgh3 ;

 double xgh4 ;

 double xh2 ;

 double xh3 ;

 double xi2 ;

 double xi3 ;

 double xl2 ;

 double xl3 ;

 double xl4 ;

 double xlamo ;

 double zmol ;

 double zmos ;

 double atime ;

 double xli ;

 double xni ;

} gal_sgp4_t ;

References:

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

 g a l _ t l e . h [0.2]

This header file defines the two-line element set structure

typedef struct {

 int satnum ; /* NORAD Catalog Number */

 char classification ; /* Security Classification */

 char intldesg[10] ; /* International Designator (COSPAR/WDC-A-R&S) */

 int epochyr ; /* Epoch Year */

 double epochdays ; /* Epoch Day of Year (plus Fraction) */

 double ndot ; /* Mean motion derivative (rev/day /2) */

 double nddot ; /* Mean motion second derivative (rev/day2 /6) */

 double bstar ; /* Bstar / Drag Term */

 int ephtype ; /* Ephemeris Type */

 int setnum ; /* Element set number */

 double inclo ; /* Inclination */

 double nodeo ; /* Right Ascension of Ascending Node (deg) */

 double ecco ; /* Eccentricity */

General Astrodynamics Library – Reference Manual

182

 double argpo ; /* Argument of Perigee (deg) */

 double mo ; /* Mean Anomaly (deg) */

 double no ; /* Mean Motion (rev/day) */

 int revnum ; /* Epoch Revolution Number */

} gal_tle_t ;

References:

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

 g a l _ t l e c h k s u m [0.2]

This routine calculates the NORAD TLE checksum character

char

gal_tlechksum

 (

 char *card

) ;

On entry card points to the string containing the line for which the checksum is required.
The routine returns the checksum character. The NORAD checksum is modulo 10,
letters, blanks, periods, plus signs = 0; minus signs = 1.

 g a l _ t l e d e c [0.2]

This routine decodes the packed two line element cards into the tle structure

int

gal_tledec

 (

 char *card1,

 char *card2,

 gal_tle_t *tle

) ;

On entry card1 and card2 point to the first and second TLE lines respectively. On return
the structure pointed to by tle contains the decoded TLE parameters. The routine returns
on of the following status codes:

0 success
 1 failure

References:

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso,
T.S., AIAA 2006-6753

183

Chapter 13 - ODE Integrators

The routines detailed in this chapter are defined in the gal_odeint.h header file.

General Astrodynamics Library – Reference Manual

184

 g a l _ r k f [0.3]

This routine integrates an ordinary deferential equation using the Runge-Kutte-Fehlberg
method.

int

gal_rkf

 (

 double ystart[],

 int nvar,

 double x1,

 double x2,

 double eps,

 double h1,

 double hmin,

 void (*derivs) (double, double [], double [], int *),

 int (*rkfs) (double [], double [], int, double, double, double [], double

[], void (*) (double, double [], double [], int *), int *) ,

 int *derivsp

) ;

On entry the variables must be set as follows:

 ystart Starting y values
 nvar Number of equations to integrate
 x1 Starting x value
 x2 Ending x value
 eps Accuracy
 h1 First guess step-size
 hmin Minimum step-size
 derivs User defined function for calculating the right hand side derivatives
 rkfs Required Runge-Kutte-Fehlberg stepper routine
 derivsp Pointer to parameters structure for derivs routine

On return ystart contains the ending y values. The routine returns one of the following
status codes:

 0 success
 1 failed to allocate workspace memory
 2 step size underflow
 3 maximum steps exceeded
 4 step size too small

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg October 1970

 g a l _ r k f c k s 4 5 [0.3]

Chapter 13 – ODE Integrators

185

This routine takes a Runge-Kutte-Fehlberg-Cash-Karp 4(5) step

int gal_rkfcks45

 (

 double y[],

 double dydx[],

 int n,

 double x,

 double h,

 double yout[],

 double yerr[],

 void (*derivs) (double, double [], double [], int *),

 int *derivsp

) ;

On entry the variables must be set as follows:

 y dependent variable vector
 dydx derivative of dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 h Step size

derivs User defined function for calculating the right hand side derivatives
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 yout Ending y values
 yerr Errors

The routine returns one of the following status codes:

 0 success
 1 failed to allocate memory

The parameters (but not the code) (Cash-Karp version) are from Numerical Recipes for
RKF45. These values are taken from the c code and not from the table on page 717 which
has different values (which don't work, but look like they almost do). The Cash-Karp
values seem to make the routine a bit faster compared to the Fehlberg values.

References:

Numerical Recipes in C The Art of Scientific Computing Second Edition by William H.
Press, Saul A. Teukolsky, William T. Vettering & Brian P. Flannery Pages 710 - 722

General Astrodynamics Library – Reference Manual

186

 g a l _ r k f q s [0.3]

This routine takes one "quality-controlled" Runge-Kutte-Fehlberg step

int

gal_rkfqs

 (

 double y[],

 double dydx[],

 int n,

 double *x,

 double htry,

 double eps,

 double yscal[],

 double *hdid,

 double *hnext,

 void (*derivs) (double, double [], double [], int *),

 int (*rkfs) (double [], double [], int, double, double, double [], double

[], void (*) (double, double [], double [], int *), int *),

 int *derivsp

) ;

On entry the variables are set as follows:

 y dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 htry Step size to attempt
 eps Accuracy

derivs User defined function for calculating the right hand side derivatives
 rkfs Required Runge-Kutte-Fehlberg stepper routine
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 dydx derivative of dependent variable vector
 yscal Used for error scaling
 hdid Step size accomplished
 hnext Estimated next step size

The routine returns one of the following status codes:

0 success
 1 unable to allocate workspace memory
 2 step size underflow

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

Chapter 13 – ODE Integrators

187

 g a l _ r k f s 4 5 [0.3]

This routine takes a Runge-Kutte-Fehlberg 4(5) step

int

gal_rkfs45

 (

 double y[],

 double dydx[],

 int n,

 double x,

 double h,

 double yout[],

 double yerr[],

 void (*derivs) (double, double [], double [], int *),

 int *derivsp

) ;

On entry the variables must be set as follows:

 y dependent variable vector
 dydx derivative of dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 h Step size

derivs User defined function for calculating the right hand side derivatives
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 yout Ending y values
 yerr Errors

The routine returns one of the following status codes:

0 success
 1 failed to allocate memory

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 5 6 [0.3]

This routine takes a Runge-Kutte-Fehlberg 5(6) step

General Astrodynamics Library – Reference Manual

188

int

gal_rkfs56

 (

 double y[],

 double dydx[],

 int n,

 double x,

 double h,

 double yout[],

 double yerr[],

 void (*derivs) (double, double [], double [], int *),

 int *derivsp

) ;

On entry the variables must be set as follows:

 y dependent variable vector
 dydx derivative of dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 h Step size

derivs User defined function for calculating the right hand side derivatives
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 yout Ending y values
 yerr Errors

The routine returns one of the following status codes:

 0 success
 1 failed to allocate memory

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 6 7 [0.3]

This routine takes a Runge-Kutte-Fehlberg 6(7) step

int

gal_rkfs67

 (

Chapter 13 – ODE Integrators

189

 double y[],

 double dydx[],

 int n,

 double x,

 double h,

 double yout[],

 double yerr[],

 void (*derivs) (double, double [], double [], int *),

 int *derivsp

) ;

On entry the variables must be set as follows:

 y dependent variable vector
 dydx derivative of dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 h Step size

derivs User defined function for calculating the right hand side derivatives
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 yout Ending y values
 yerr Errors

The routine returns one of the following status codes:

 0 success

1 failed to allocate memory

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 7 8 [0.3]

This routine takes a Runge-Kutte-Fehlberg 7(8) step

int

gal_rkfs78

 (

 double y[],

 double dydx[],

 int n,

 double x,

General Astrodynamics Library – Reference Manual

190

 double h,

 double yout[],

 double yerr[],

 void (*derivs) (double, double [], double [], int *),

 int *derivsp

) ;

On entry the variables must be set as follows:

 y dependent variable vector
 dydx derivative of dependent variable vector
 n Number of equations to integrate
 x Independent variable value
 h Step size

derivs User defined function for calculating the right hand side derivatives
 derivsp Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 yout Ending y values
 yerr Errors

The routine returns one of the following status codes:

 0 success
 1 failed to allocate memory

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

191

Chapter 14 – Keplerian Propagation

The routines detailed in this chapter are defined in the gal_kepler.h header file.

General Astrodynamics Library – Reference Manual

192

 g a l _ k e p 2 p v [0.4]

This routine computes position and velocity from the classical orbital elements.

void

gal_kep2pv

 (

 double gm,

 double ecc,

 double raan,

 double argp,

 double inc,

 double p,

 double v,

 double truelon,

 double u,

 double lonper,

 double pv[2][3]

) ;

On entry the variables must be set as follows, if any parameter is unknown then the
constant GAL_UNDEFINED (defined in gal_const.h) should be passed as parameter:

gm Gravitational parameter
ecc Eccentricity
raan Longitude of the ascending mode (radians)
argp Argument of Pericenter (radians)
inc Inclination (radians)
p Semi-Latus Rectum (meters)
v True Anomaly (radians)
truelon True Longitude (radians)
u Argument of Latitude (radians)
lonper True Longitude of Periapsis (radians)

On return pv contains the position and velocity vectors (meters, meters per second).

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 118-122

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32

Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 1991,
Pages 149-157

 g a l _ p v 2 k e p [0.4]

Chapter 14 – Keplerian Propagation

193

This routine computes the classical orbital elements from position and velocity.

void

gal_pv2kep

 (

 double gm,

 double pv[2][3],

 double *sma,

 double *ecc,

 double *raan,

 double *argp,

 double *ma,

 double *inc,

 double *p,

 double *v,

 double *truelon,

 double *u,

 double *lonper

) ;

On entry gm contains the gravitational parameter, and pv the position and velocity vectors
(meters, meters per second). On return the variables are set as follows, if any result
cannot be calculated then GAL_UNDEFINED (defined in gal_const.h) is returned:

sma Semi-Major Axis (meters)
ecc Eccentricity
raan Longitude of the ascending mode (radians)
argp Argument of Pericenter (radians)
ma Mean Anomaly (radians)
inc Inclination (radians)
p Semi-Latus Rectum (meters)
v True Anomaly (radians)
truelon True Longitude (radians)
u Argument of Latitude (radians)
lonper True Longitude of Periapsis (radians)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 118-122

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32

Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 1991,
Pages 149-157

General Astrodynamics Library – Reference Manual

194

 g a l _ p v t 2 p v [0.4]

This routine calculates position and velocity from starting position and velocity at given
time using Universal variables. This routine is valid for all orbit types.

void

gal_pvt2pv

 (

 double gm,

 double pv0[2][3],

 double ed0,

 double ed1,

 double tt0,

 double tt1,

 double pv[2][3]

) ;

On entry the variables are set as follows:

gm Gravitational coefficient
pv0 Epoch Position & Velocity Vectors (meters, meters per second)
ed0, ed1 Epoch date (TT)
tt0, tt1 Required date (TT)

Both Julian Dates are in standard SOFA two-piece format. On return pv contains the
position and velocity vectors (meters, meters per second). The iteration method is the
Laguerre's method described in Chobotov page 58. It was selected as it converged faster
than the Newton-Raphson method described by Vallado, and the choice of initial value is
simpler. The calculations of sn and cn are from Vallado as they are simple to implement.

References:

Orbital Mechanics Third Edition, AIAA Education Series, Chobotov, Vladimir A. Ed.,
Pages 55-61

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 101-103

195

Chapter 15 - Ephemerides

The routines detailed in this chapter are defined in the gal_ephemerides.h header file.

General Astrodynamics Library – Reference Manual

196

 g a l _ b e a p v 8 7 [0.4]

Earth Barycentric position and velocity, with respect to the FK5 Reference Frame.

void
gal_beapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

On entry the variables must be set as follows:

tt1 TT epoch part 1
tt2 TT epoch part 2
ref Reference frame

0 = dynamical equinox and ecliptic J2000.
1 = FK5 (VSOP87)

On return pv contains the position and velocity vectors (AU, AU per day).

pv[0][0] x
pv[0][1] y
pv[0][2] z

pv[1][0] xdot
pv[1][1] ydot
pv[1][2] zdot

The vectors are Barycentric with respect to the FK5 Reference Frame. The time unit is
one day in TT. The routine is a solution from the planetary theory VSOP87. The main
version of VSOP87 is similar to the previous theory VSOP82. In the both cases the
constants of integration have been determined by fitting to the numerical integration
DE200 of the Jet Propulsion Laboratory. The differences between VSOP87 and VSOP82
mainly improve the validity time-span for Mercury, Venus, Earth-Moon Barycenter and
Mars with a precision of 1" for 4000 years before and after J2000. The same precision is
ensured for Jupiter and Saturn over 2000 years and for Uranus and Neptune over 6000
years before and after J2000. The size of the relative precision p0 of VSOP87 solutions is
given hereunder. That means that the actual precision is close by p0*a0 au for the
distances (a0 being the semi-major axis) and close by p0 radian for the other variables.
By derivation with respect to time expressed in day (d), the precision of the velocities is
close by p0*a0 au/d for the distances and close by p0 radian/d for the other variables.

Body a0 (au) p0 (10-8)
Mercury 0.3871 0.6

Chapter 15 - Ephemerides

197

Venus 0.7233 2.5
Earth 1.0000 2.5
Mars 1.5237 10.0
Jupiter 5.2026 35.0
Saturn 9.5547 70.0
Uranus 19.2181 8.0
Neptune 30.1096 42.0

References:

Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309.

 g a l _ b e b p v 8 7 [0.4]

Earth-Moon Barycenter Barycentric position and velocity, with respect to the FK5
Reference Frame.

void

gal_bebpv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b j u p v 8 7 [0.4]

Jupiter Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bjupv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b m a p v 8 7 [0.4]

Mars Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

General Astrodynamics Library – Reference Manual

198

gal_bmapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b m e p v 8 7 [0.4]

Mercury Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bmepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b n e p v 8 7 [0.4]

Neptune Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bnepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b p l p v 8 7 [0.4]

Pluto Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bplpv87

 (

 double tt1,

Chapter 15 - Ephemerides

199

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87, and gal_hplpv87 for details.

 g a l _ b s a p v 8 7 [0.4]

Saturn Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bsapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b s u p v 8 7 [0.4]

Sun Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bsupv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ b u r p v 8 7 [0.4]

Uranus Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_burpv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

General Astrodynamics Library – Reference Manual

200

See gal_beapv87 for details.

 g a l _ b v e p v 8 7 [0.4]

Venus Barycentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_bvepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_beapv87 for details.

 g a l _ e p v 0 0 [0.1]

Earth position and velocity, heliocentric and Barycentric, with respect to the International
Celestial Reference Frame.

int

gal_epv00

 (

 double epoch1,

 double epoch2,

 double pvh[2][3],

 double pvb[2][3]

) ;

On entry epoch1+epoch2 contain the TDB Julian epoch date in standard SOFA two-piece
format. On return pvh contains the heliocentric Earth position and velocity, and pvb the
Barycentric Earth position and velocity (AU, AU per day). The routine returns one of the
following status codes:

0 success
1 warning: date outside 1900-2100CE

The vectors are with respect to the International Celestial Reference Frame. The time unit
is one day in TDB. The routine is a SIMPLIFIED SOLUTION from the planetary theory
VSOP2000 (X. Moisson, P. Bretagnon, 2001, Celestial Mechanics & Dynamical
Astronomy, 80, 3/4, 205-213) and is an adaptation of original Fortran code supplied by P.
Bretagnon (private comm., 2000). Comparisons over the time span 1900-2100 with this
simplified solution and the JPL DE405 ephemeris give the following results:

 RMS max

Chapter 15 - Ephemerides

201

Heliocentric:

position error 3.7 11.2 kilometers
velocity error 1.4 5.0 millimeters per second

Barycentric:

position error 4.6 13.4 kilometers
velocity error 1.4 4.9 millimeters per second

 g a l _ g m o p v 0 0 [0.3]

Moon position and velocity, with respect to the Geocentric Celestial Reference Frame
(GCRF).

int

gal_gmopv02

 (

 double epoch1,

 double epoch2,

 int icor,

 double pv[2][3]

) ;

On entry the variables must be set as follows:

epoch1 TDB epoch part A
epoch2 TDB epoch part B
icor correction type

0: the constants are fitted to LLR observations provided from 1970 to
2001; it is the default value;
1: the constants are fitted to DE405 ephemeris over one also
additive corrections to the secular coefficients.

On return pv contains the Geocentric Moon position & velocity (meters, meters per
second). The routine returns one of the following status codes:

 0 success

1 warning: date outside 1940-2060 CE

The epoch1+epoch2 TDB Julian Date is in standard SOFA two-piece format. The
algorithm used is the Lunar Solution ELP/MPP02.

References:

Lunar Solution ELP version ELP/MPP02, Jean Chapront and Gerard Francou,
Observatoire de Paris -SYRTE department - UMR 8630/CNRS, October 2002

General Astrodynamics Library – Reference Manual

202

 g a l _ g s u p v 0 0 [0.3]

Sun position and velocity, with respect to the Geocentric Celestial Reference Frame
(GCRF).

int

gal_gsupv00

 (

 double epoch1,

 double epoch2,

 double pv[2][3]

) ;

On entry epoch1+epoch2 contain the TDB Julian Date in standard SOFA two-piece
format. On return pv contains the geocentric Sun position & velocity (meters, meters per
second). The routine returns one of the following status codes:

0 success
1 warning: date outside 1900-2100CE range

References:

IERS Technical Note 32, IERS Conventions 2003, Dennis D. McCarthy et al., Page 12

 g a l _ h e a p v 8 7 [0.4]

Earth heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_heapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

On entry the variables must be set as follows:

tt1 TT epoch part 1
tt2 TT epoch part 2
ref Reference frame

0 dynamical equinox and ecliptic J2000.
1 FK5 (VSOP87)

On return pv contains the position and velocity vectors (AU, AU per day).

Chapter 15 - Ephemerides

203

pv[0][0] x
pv[0][1] y
pv[0][2] z

pv[1][0] xdot
pv[1][1] ydot
pv[1][2] zdot

The vectors are heliocentric with respect to the FK5 Reference Frame. The time unit is
one day in TT. The routine is a solution from the planetary theory VSOP87. The main
version of VSOP87 is similar to the previous theory VSOP82. In the both cases the
constants of integration have been determined by fitting to the numerical integration
DE200 of the Jet Propulsion Laboratory. The differences between VSOP87 and VSOP82
mainly improve the validity time-span for Mercury, Venus, Earth-Moon Barycenter and
Mars with a precision of 1" for 4000 years before and after J2000. The same precision is
ensured for Jupiter and Saturn over 2000 years and for Uranus and Neptune over 6000
years before and after J2000. The size of the relative precision p0 of VSOP87 solutions is
given hereunder. That means that the actual precision is close by p0*a0 au for the
distances (a0 being the semi-major axis) and close by p0 radian for the other variables.
By derivation with respect to time expressed in day (d), the precision of the velocities is
close by p0*a0 au/d for the distances and close by p0 radian/d for the other variables.

Body a0 (au) p0 (10 -8)
Mercury 0.3871 0.6
Venus 0.7233 2.5
Earth 1.0000 2.5
Mars 1.5237 10.0
Jupiter 5.2026 35.0
Saturn 9.5547 70.0
Uranus 19.2181 8.0
Neptune 30.1096 42.0

References:

Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309.

 g a l _ h e b p v 8 7 [0.4]

Earth-Moon Barycenter heliocentric position and velocity, with respect to the FK5
Reference Frame.

void

gal_hebpv87

 (

 double tt1,

 double tt2,

 int ref,

General Astrodynamics Library – Reference Manual

204

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h j u p v 8 7 [0.4]

Jupiter heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hjupv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h m a p v 8 7 [0.4]

Mars heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hmapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h m e p v 8 7 [0.4]

Mercury heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hmepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

Chapter 15 - Ephemerides

205

 g a l _ h n e p v 8 7 [0.4]

Neptune heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hnepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h p l p v 8 7 [0.4]

Pluto heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hplpv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details. The tables of Pluto have been constructed by J. Chapront
(BDL) with a method of approximation using frequency analysis as described in the
paper: Representation of planetary ephemerides by frequency analysis. Application to
the five outer planets. Astronomy & Astrophysics Supplement Series, 109, 191 (1995).

This representation uses the result of numerical integration DE200 of Jet Propulsion
Laboratory as a source : Standish E. M., 1990, The observational basis for JPL'DE200,
the planetary ephemerides of the Astronomical Almanac. Astronomy & Astrophysics,
233, 252.

The interval of validity is 146120 days. Start : Jan 01 1700 0h JD2341972.5 End : Jan 24
2100 0h JD2488092.5 The tables contain series which represent the heliocentric
rectangular coordinates of Pluto as functions of time. The reference frame is defined with
dynamical equinox and equator J2000 (DE200). The time scale is Barycentric Dynamical
Time (TDB).

 g a l _ h s a p v 8 7 [0.4]

General Astrodynamics Library – Reference Manual

206

Saturn heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hsapv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h u r p v 8 7 [0.4]

Uranus heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hurpv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ h v e p v 8 7 [0.4]

Venus heliocentric position and velocity, with respect to the FK5 Reference Frame.

void

gal_hvepv87

 (

 double tt1,

 double tt2,

 int ref,

 double pv[2][3]

) ;

See gal_heapv87 for details.

 g a l _ p l a n 9 4 [0.1]

Approximate heliocentric position and velocity of a nominated major planet: Mercury,
Venus, Earth-Moon Barycenter, Mars, Jupiter, Saturn, Uranus or Neptune (but not the
Earth itself).

Chapter 15 - Ephemerides

207

int

gal_plan94

 (

 double date1,

 double date2,

 int np,

 double pv[2][3]

) ;

On entry date1+date2 contains the TDB Julian Date in standard SOFA two-piece format,
np contains the number of the required planet (1=Mercury, 2=Venus, 3=EMB ...
8=Neptune). On return pv contains the planet‘s heliocentric J2000 position and velocity
vectors (AU, AU per day). The routine returns one of the following status codes:

-1 illegal NP (outside 1-8)
0 success
+1 warning: date outside 1000-3000 CE
+2 warning: solution failed to converge

If an np value outside the range 1-8 is supplied, an error status (-1) is returned and the pv
vector set to zeroes. For np=3 the result is for the Earth-Moon Barycenter. To obtain the
heliocentric position and velocity of the Earth, use instead the routine gal_epv00. The
reference frame is equatorial and is with respect to the mean equator and equinox of
epoch J2000. The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M.
Chapront-Touze, G. Francou and J. Laskar (Bureau des Longitudes, Paris, France).
From comparisons with JPL ephemeris DE102, they quote the following maximum errors
over the interval 1800-2050:

L (arcseconds) B (arcseconds) R (kilometers)

Mercury 4 1 300
Venus 5 1 800
EMB 6 1 1000
Mars 17 1 7700
Jupiter 71 5 76000
Saturn 81 13 267000
Uranus 86 7 712000
Neptune 11 1 253000

Over the interval 1000-3000, they report that the accuracy is no worse than 1.5 times that
over 1800-2050. Outside 1000-3000 the accuracy declines.

Comparisons of this routine with the JPL DE200 ephemeris give the following RMS errors
over the interval 1960-2025:

position (kilometers) velocity (meters per second)

General Astrodynamics Library – Reference Manual

208

Mercury 334 0.437
Venus 1060 0.855
EMB 2010 0.815
Mars 7690 1.98
Jupiter 71700 7.70
Saturn 199000 19.4
Uranus 564000 16.4
Neptune 158000 14.4

Comparisons against DE200 over the interval 1800-2100 gave the following maximum
absolute differences. (The results using DE406 were essentially the same.)

L B R Rdot

Mercury 7 1 500 0.7
Venus 7 1 1100 0.9
EMB 9 1 1300 1.0
Mars 26 1 9000 2.5
Jupiter 78 6 82000 8.2
Saturn 87 14 263000 24.6
Uranus 86 7 661000 27.4
Neptune 11 2 248000 21.4

References:

Simon, J.L, Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., and Laskar,
J., Astronomy & Astrophysics 282, 663 (1994).

Appendix A – GNU Free Documentation License

209

Appendix A – GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software. We
have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language. A "Secondary Section" is a named appendix or a front-matter
section of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them. The

General Astrodynamics Library – Reference Manual

210

"Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none. The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says
that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent"
copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque". Examples of
suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only. The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as
such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text. A section "Entitled
XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition. The Document may include
Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license

Appendix A – GNU Free Documentation License

211

notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying of
the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3. You may also lend copies, under the same
conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects. If the required texts for either cover
are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages. If you
publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at
least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public. It is requested, but not
required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated
version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

General Astrodynamics Library – Reference Manual

212

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher. D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers. If the Modified Version includes new
front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be

Appendix A – GNU Free Documentation License

213

distinct from any other section titles. You may add a section Entitled
"Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one. The author(s) and publisher(s) of
the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers. The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work. In the combination, you must
combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all
sections Entitled "Endorsements".

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the
documents in all other respects. You may extract a single document from such a
collection, and distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compilation is

General Astrodynamics Library – Reference Manual

214

not used to limit the legal rights of the compilation's users beyond what the
individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document. If the Cover Text requirement of
section 3 is applicable to these copies of the Document, then if the Document is
less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail. If a section in the Document is Entitled
"Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/. Each version of the License is given
a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software
Foundation.

12. ADDENDUM:

Appendix A – GNU Free Documentation License

215

How to use this License for your documents To use this License in a document you
have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page: Copyright (c) YEAR YOUR
NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License". If you have Invariant
Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this: with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you
have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation. If your document contains
nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software

General Astrodynamics Library – Reference Manual

216

Index

217

Index

acceleration, body fixed 141

acceleration, due to a point mass 142

angular separation 24, 25

argument of latitude 192, 193

argument of pericenter 192, 193

azimuth 165

barycentric dynamical time 48

barycentric position and velocity196, 197,

198, 199, 200

Besselian Epoch 49

canonical units 143, 155, 156

Cartesian 17, 23, 24

catalog coordinates 126

Celestial Intermediate Origin112, 113, 114,

115
celestial to intermediate frame of date matrix

 61, 62

celestial to intermediate matrix 58, 59, 60

celestial to terrestrial matrix63, 64, 65, 66,

67, 68, 69

CIO locator s 112, 113, 114, 115, 117, 118

CIRS reference frame 161, 169

classical orbital elements 192, 193
coordinates of celestial intermediate pole

 116
coordinates of the Celestial Intermediate

Pole 58, 117, 118

day of the year 48
days to hours, minutes, seconds, and

fraction 13

declination 158

Discard velocity component 17

Earth 196, 200, 202

Earth rotation angle 75

Earth-Moon-Barycenter 197, 203, 206

eccentricity 192, 193

elevation 165

ellipsoid model 134, 135, 136, 137

equation of the equinoxes 70, 71, 72, 74

equation of the origins 73, 74

Euler angles 99

excess length of day159, 160, 161, 162,

167, 168, 170

Express an r-matrix as an r-vector 20

Extend a p-vector to a pv-vector 14

factorial 31, 32

FK5 122, 123, 124, 125, 196

frame bias 56, 57

Fukushima's 1999 Method 171, 172, 173

Fukushima-Williams 83, 84, 99

GAL_2PI 30

gal_a2af 10

gal_a2tf 10

gal_acch 141

gal_accpm 142

gal_anp 11

gal_anpm 12

GAL_AS2R 30

GAL_AU03 30

gal_beapv87 196

gal_bebpv87 197

gal_bi00 56

gal_bjupv87 197

gal_bmapv87 198

gal_bmepv87 198

gal_bnepv87 198

gal_bp00 56

gal_bp06 57

gal_bplpv87 198

gal_bpn2xy 58

gal_bsapv87 199

gal_bsupv87 199

gal_burpv87 199

gal_bvepv87 200

gal_c2i00a 58

gal_c2i00b 59

gal_c2i06a 60

gal_c2ibpn 60

gal_c2ixy 61

gal_c2ixys 62

gal_c2radec 158

gal_c2s 12

gal_c2t00a 63

gal_c2t00b 64

gal_c2t06a 65

gal_c2tceo 66

gal_c2tcio 66

General Astrodynamics Library – Reference Manual

218

gal_c2teqx 67

gal_c2tpe 68

gal_c2tpv00a 158

gal_c2tpv06a 160

gal_c2txy 69

gal_cal2jd 46

gal_canpv 143

gal_center 34

gal_cp 12

gal_cpv 12

gal_cr 13

GAL_D2H 30

GAL_D2M 30

GAL_D2R 30

GAL_D2S 30

gal_d2tf 13

gal_dat 46

gal_days2cal 48

gal_delete 34

GAL_DJC 30

GAL_DJM 30

GAL_DJY 30

gal_dtdb 48

gal_ee00 70

gal_ee00a 70

gal_ee00b 71

gal_ee06a 72

gal_eect00 72

gal_emdetails 135

gal_emname 136

gal_emparams 137

gal_eo06a 73

gal_eors 74

gal_epb 49

gal_epb2jd 49

gal_epj2jd 50

gal_epv00 200

gal_eqeq94 74

gal_era00 75

gal_facexp_alloc 31

gal_facexp_free 31

gal_facexp_t 31

gal_factorial 32

gal_factorial2 32

gal_fad03 75

gal_fae03 76

gal_faf03 76

GAL_FAILURE 31

gal_faju03 77

gal_fal03 77

gal_falp03 78

gal_fama03 78

gal_fame03 79

gal_fane03 79

gal_faom03 80

gal_fapa03 80

gal_fasa03 81

gal_faur03 82

gal_fave03 82

gal_fk52h 122

gal_fk5hip 123

gal_fk5hz 123

gal_fw2m 83

gal_fw2xy 84

gal_gmalloc 143

gal_gmcpy 143

gal_gmdenorm 144

gal_gmegm96 144

gal_gmfree 145

gal_gmget 145

gal_gmglgm1 146

gal_gmglgm2 147

gal_gmgmm2b 148

gal_gmjgm3 149

gal_gmmgm1025 149

gal_gmmgnp120p 151

gal_gmmgnp180u 152

gal_gmnorm 152

gal_gmopv02 201

gal_gmst00 85

gal_gmst06 85

gal_gmst82 86

gal_gmuzh 152

gal_gmwgs66 153

gal_gmwgs72 153

gal_gst00a 86

gal_gst00b 87

gal_gst06 88

gal_gst06a 88

gal_gst94 89

Index

219

gal_gsupv00 202

gal_h2fk5 124

GAL_H2R 30

gal_heapv87 202

gal_hebpv87 203

gal_hfk5z 125

gal_hjupv87 204

gal_hmapv87 204

gal_hmepv87 204

gal_hnepv87 205

gal_hplpv87 205

gal_hsapv87 206

gal_hurpv87 206

gal_hvepv87 206

gal_i2tpv00 161

gal_insert 34

gal_instr 35

gal_ir 14

GAL_J2000 30

gal_jd2cal 50

gal_jdcalf 51

gal_justl 35

gal_justr 35

gal_kep2pv 192

GAL_KM2M 30

gal_latlon2t 162

gal_latlon2t_iau76 163

gal_latlon2t_iers00 164

gal_latlon2t_wgs72 164

gal_latlon2t_wgs84 165

gal_leftstr 36

GAL_MAS2R 30

GAL_MAX 30

gal_midstr 36

GAL_MIN 31

GAL_MJ2000 30

GAL_MJD0 30

gal_num00a 89

gal_num00b 90

gal_num06a 90

gal_numat 91

gal_nut00a 92

gal_nut00b 93

gal_nut06a 95

gal_nut80 95

gal_obl06 96

gal_obl80 97

gal_p06e 97

gal_p2pv 14

gal_p2s 14

gal_padl 36

gal_padr 37

gal_pap 15

gal_pas 15

gal_pb06 99

gal_pdp 15

gal_pfw06 99

GAL_PI 30

gal_plan94 207

gal_pm 16

gal_pmat00 101

gal_pmat06 101

gal_pmat76 102

gal_pmp 16

gal_pn 16

gal_pn00 102

gal_pn00a 103

gal_pn00b 104

gal_pn06 106

gal_pn06a 107

gal_pnm00a 108

gal_pnm00b 108

gal_pnm06a 109

gal_pnm80 109

gal_pom00 110

gal_ppp 17

gal_ppsp 17

gal_pr00 110

gal_pv2kep 193

gal_pv2p 17

gal_pv2s 17

gal_pvdpv 18

gal_pvm 18

gal_pvmpv 19

gal_pvppv 19

gal_pvstar 126

gal_pvt2pv 194

gal_pvu 19

gal_pvup 19

gal_pvxpv 20

General Astrodynamics Library – Reference Manual

220

gal_pxp 20

GAL_R2AS 30

GAL_R2D 30

GAL_R2H 30

GAL_R2S 30

gal_replace 37

gal_rightstr 37

gal_rkf 184

gal_rkfcks45 185

gal_rkfqs 186

gal_rkfs45 187

gal_rkfs56 188

gal_rkfs67 188

gal_rkfs78 189

gal_rm2v 20

gal_rv2m 21

gal_rx 21

gal_rxp 22

gal_rxpv 22

gal_rxr 22

gal_ry 22

gal_rz 23

gal_s00 112

gal_s00a 113

gal_s00b 114

gal_s06 114

gal_s06a 115

gal_s2c 23

gal_s2p 23

gal_s2pv 24

GAL_S2R 30

gal_s2xpv 24

gal_sepp 25

gal_seps 25

gal_sgp4 176

gal_sgp4_t 181

gal_sgp4gm 177

gal_sgp4init 178

GAL_SIGN 30

gal_sp00 116

GAL_SSB_EA 30

GAL_SSB_EB 30

GAL_SSB_JU 30

GAL_SSB_MA 30

GAL_SSB_ME 30

GAL_SSB_MO 30

GAL_SSB_NE 30

GAL_SSB_PL 30

GAL_SSB_SA 30

GAL_SSB_SU 30

GAL_SSB_UR 30

GAL_SSB_VE 30

gal_starpm 127

gal_starpv 129

gal_stget 153

gal_stnf 154

gal_strn 38

gal_stset 154

gal_stunf 155

GAL_SUCCESS 31

gal_sxp 25

gal_sxpv 25

gal_t2azel 165

gal_t2cpv00a 166

gal_t2cpv00b 167

gal_t2cpv06a 168

gal_t2ipv00 169

gal_t2latlon 170

gal_t2latlon_iau76 171

gal_t2latlon_iers00 172

gal_t2latlon_wgs72 172

gal_t2latlonf 173

gal_tai2tt 52

gal_test_start 42

gal_test_stop 42

gal_tle_t 182

gal_tlechksum 182

gal_tledec 182

gal_tr 26

gal_trim 38

gal_triml 38

gal_trimr 38

gal_trxp 26

gal_trxpv 26

gal_tu 155

GAL_TURNAS 30

GAL_U2R 30

gal_ucase 39

gal_uncanpv 156

GAL_UNDEFINED 31

Index

221

gal_utc2tai 52

gal_utc2tt 53

gal_utc2ut1 53

gal_vcv 42

gal_vdv 43

gal_viv 43

gal_vldv 44

gal_vsv 44

gal_xy06 116

gal_xys00a 117

gal_xys00b 118

gal_xys06a 118

gal_zp 27

gal_zpv 27

gal_zr 27

GCRF reference frame158, 159, 160, 166,

167, 168
general accumulated precession in longitude

 80

geocentric position and velocity 201, 202

geodetic latitude and longitude162, 163,

164, 165, 170, 171, 172, 173

gravitational parameter 142, 192

gravity model 140, 143, 145, 153, 154, 177

gravity model, Earth EGM96 144

gravity model, Earth JGM-3 149

gravity model, Earth WGS66 153

gravity model, Earth WGS72 153

gravity model, Lunar GLGM1 146

gravity model, Lunar GLGM2 147

gravity model, Mars GMM2B 148

gravity model, Mars MGM1025 149

gravity model, Venus MGNP120PSAAP 151

gravity model, Venus MGNP180U 152

Greenwich apparent sidereal time86, 87, 88,

89

Greenwich mean sidereal time 85, 86

Gregorian Calendar 51

Gregorian Calendar to Julian Date 46

Gregorian year 50

harmonic gravity field 141

heliocentric position and velocity200, 202,

203, 204, 205, 206

Hipparcos 122, 123, 124, 125

IAU 2000 precession-nutation 56

inclination 192, 193

initializes the variables for gal_sgp4 178

inverse flattening factor 135

ITRF reference frame158, 159, 160, 161,

162, 163, 164, 165, 166, 167, 168, 169,

170, 171, 172, 173

Julian Epoch 50

Jupiter 197, 204, 206

longitude of the ascending mode 192, 193

Lunar gravity field 146

Mars 197, 204, 206

matrix, copy 13

matrix, identity 14

matrix, rotation 21, 22, 23

matrix, transpose 26

matrix-matrix, product 22

mean anomaly 193

mean anomaly of the Moon 77

mean anomaly of the Sun 78
mean elongation of the Moon from the Sun

 75

mean longitude of Earth 76

mean longitude of Jupiter 77

mean longitude of Mars 78

mean longitude of Mercury 79

mean longitude of Neptune 79

mean longitude of Saturn 81

mean longitude of the Moon 76
mean longitude of the Moon's ascending

node 80

mean longitude of Uranus 82

mean longitude of Venus 82

Mean obliquity of the ecliptic 96, 97

Mercury 198, 204, 206

Moon 201

Neptune 198, 205, 206

NORAD TLE checksum 182

normalizes a gravity model's coefficients 152

null matrix 27

nutation 91, 93, 95

nutation, matrix of 89, 90, 91, 96

Pluto 198, 205

polar coordinates. 14

polar motion, matrix of 110

position and velocity vectors 8

position-angle 15

precession 56, 57, 97, 99, 110, 111

precession matrix 100, 101

precession-nutation 102, 103, 104, 105, 107

precession-nutation, matrix of 108, 109

General Astrodynamics Library – Reference Manual

222

proper motion 123, 127
radians into degrees, arc-minutes,

arc-seconds, and fraction 10

range 158, 165

range rate 158, 165

right ascension 158

r-matrix corresponding to a given r-vector 21

Runge-Kutte-Fehlberg184, 185, 186, 187,

188, 189

Saturn 199, 206

semi-latus rectum 192, 193

semi-major axis 135, 193

SGP4 prediction model 176

spherical 24

spherical coordinates 15, 17, 23

spherical terms 153, 154

spherical terms normalization factor 154

star catalog coordinates 129

star data 124

star position 123, 125, 126

string, center in field 34

string, copy left sub-string 36

string, copy middle sub-string 36

string, copy right sub-string 37

string, delete characters 34

string, fill string with character 38

string, find and replace 37

string, find sub-string 35

string, force to upper-case 39

string, insert sub-string 34

string, left justify 35

string, pad on left 36

string, pad on right 37

string, right justify 35

string, trim white-space 38

string, trim white-space from left 38

string, trim white-space from right 38

Sun 199, 202

TAI 46, 52

TDB 48

terms un-normalization 155

Terrestrial Intermediate Origin 116

test run, start 42

test run, stop 42

TIO locator s' 116

tle structure 182

true anomaly 192, 193

true longitude 192, 193

true longitude of periapsis 192, 193

TT 53

TU factor 155

two line element cards 182

universal variables 194

un-normalized zonal harmonic 152
un-normalizes a gravity model's coefficients

 144

Update a pv-vector 19

Uranus 199, 206

UT1 53

UTC 46

Validate a double precision result 43

Validate an integer result 43

Validate character result 42

Validate long double precision result 44

Validate string result 44

vector, addition 16, 19

vector, copy 12

vector, cross product 20

vector, dot product 15, 18

vector, modulus 16, 18

vector, subtraction 16, 19

vector, zero 27

vector-matrix, product 22

vector-matrix, product 22

vector-scalar, addition 17

vector-scalar, product 25

vector-scaler, product 24

vector-transpose-matrix, product 26

Venus 200, 206

VSOP87 196

	Preface
	Chapter 1 - Introduction
	Routines available in GAL
	Standards for Fundamental Astronomy Library (SOFA)
	GAL is Free Software
	Obtaining GAL
	No Warranty
	Reporting Bugs
	Compatibility with C++
	Deprecated Functions
	ANSI C Compliance
	Free Software Needs Free Documentation
	SOFA Julian Date Format
	Position & Velocity Vectors

	Chapter 2 - Vector & Matrix Routines
	Chapter 3 - Math Routines
	Chapter 4 - String Handling
	Chapter 5 - Test Framework
	Chapter 6 - Date & Time
	Chapter 7 - Earth Orientation
	Chapter 8 - Star Routines
	Chapter 9 - Ellipsoids
	Chapter 10 - Gravity Models
	Chapter 11 - Reference Frames
	Chapter 12 - SGP4
	Chapter 13 - ODE Integrators
	Chapter 14 – Keplerian Propagation
	Chapter 15 - Ephemerides
	Appendix A – GNU Free Documentation License
	Index

