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Preface 

This manual documents the use of the General Astrodynamics Library, a numerical library 
for C and C++ programmers. The GAL Project is an attempt to gather a comprehensive 
set of astrodynamics routines in a single library and in a consistent form.  
 
The project started life as an extension to the GNU Scientific Library, however once the 
authors discovered the IAU‘s SOFA Library it was decided to drop GSL and adopt SOFA. 
Much of the core functionality of SOFA is directly applicable to Astrodynamics 
applications. The main reason for dropping GSL compatibility was the GSL approach to 
matrix and vector storage – an overly complicated scheme. 
 
The test framework is central to GAL‘s design, nearly all routines have a corresponding 
test routine. The test framework allows routines to be upgraded as new techniques are 
published, whilst ensuring that nothing gets broken in the process. Users of the library 
may also use the test routines as examples of how to use the main routines. 
 

The General Astrodynamics Library is free software. The term ―free software‖ is 
sometimes misunderstood – it has nothing to do with price. It is about freedom. It refers to 
your freedom to run, copy, distribute, study, change and improve the software. With the 
General Astrodynamics Library you have all those freedoms. 
 

Paul Willmott 
Somerset, Bermuda 
October 2008 
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The General Astrodynamics Library (GAL) is a collection of routines for numerical 
computing. The routines have been written in C, and present a modern Applications 
Programming Interface (API) for C and C++ programmers, allowing wrappers to be 
written for very high level languages. The source code is distributed under the GNU 
General Public License. 

 Routines available in GAL 

The library covers a wide range of topics in astrodynamics computing. Routines are 
available for the following areas: 

 Vector and Matrix Manipulation 

 Dates and Times 

 Ellipsoids 

 Earth Orientation 

 Reference Frames 
 Ephemerides 

 SGP4 Propagation 

 ODE Integrators 

 Force Models 

 Gravity Models 

 Classical Keplerian Propagators 

The use of these routines is described in this manual. Each chapter provides detailed 
definitions of the functions, including references to the articles upon which the algorithms 
are based. 

 Standards for Fundamental Astronomy Library (SOFA) 

GAL is built upon an independent translation of the IAU‘s SOFA Fortran Library. The 
majority of the routines included in release 0.1 of GAL are translations of SOFA routines. 
These routines have not been verified by the IAU and are not supported by the IAU or the 
SOFA Review Board. Any errors introduced by the translation process are the 
responsibility of the GAL Team solely. That said, the GAL Team would like to thank 
Patrick Wallace, Chair of the SOFA Review Board, for making the SOFA test suite 
available to the GAL Team, and for answering many questions and providing insight into 
the thinking behind the Fortran SOFA implementations. At the time of writing version 0.1 
of GAL a real IAU SOFA C implementation was not available, since the release of version 
0.1 of GAL an authorized IAU SOFA C library has been written and is currently in beta 
testing. The results of GAL and the IAU C beta version have been compared, and shown 
that identical results are computed. The form of the GAL function calls mirror the IAU C 
beta version, albeit with a different routine naming convention. The entries in this 
document for the SOFA derived routines are based upon the comments in the original 
SOFA Fortran code. 

 GAL is Free Software  

The subroutines in the General Astrodynamics Library are ―free software‖; this means that 
everyone is free to use them, and to redistribute them in other free programs. The library 
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is not in the public domain; it is copyrighted and there are conditions on its distribution. 
These conditions are designed to permit everything that a good cooperating citizen would 
want to do. What is not allowed is to try to prevent others from further sharing any version 
of the software that they might get from you.  

Specifically, we want to make sure that you have the right to share copies of programs 
that you are given which use the General Astrodynamics Library, that you receive their 
source code or else can get it if you want it, that you can change these programs or use 
pieces of them in new free programs, and that you know you can do these things.  

To make sure that everyone has such rights, we have to forbid you to deprive anyone else 
of these rights. For example, if you distribute copies of any code which uses the General 
Astrodynamics Library, you must give the recipients all the rights that you have received. 
You must make sure that they, too, receive or can get the source code, both to the library 
and the code which uses it. And you must tell them their rights. This means that the library 
should not be redistributed in proprietary programs.  

Also, for our own protection, we must make certain that everyone finds out that there is no 
warranty for the General Astrodynamics Library. If these programs are modified by 
someone else and passed on, we want their recipients to know that what they have is not 
what we distributed, so that any problems introduced by others will not reflect on our 
reputation.  

The precise conditions for the distribution of software related to the General 
Astrodynamics Library are found in the GNU General Public License. 

Further information about this license is available from the GNU Project webpage 
Frequently Asked Questions about the GNU GPL,     

http://www.gnu.org/copyleft/gpl-faq.html 

 Obtaining GAL  

The source code for the library can be obtained in different ways, by copying it from a 
friend, or downloading it from the internet.    

http://www.homepage.mac.com/pclwillmott/GAL/index.html 

 No Warranty 

The software described in this manual has no warranty, it is provided ―as is‖. It is your 
responsibility to validate the behavior of the routines and their accuracy using the source 
code provided, or to purchase support and warranties from commercial redistributors. 
Consult the GNU General Public license for further details (see GNU General Public 
License).  

 Reporting Bugs  

A list of known bugs can be found in the BUGS file included in the GAL distribution. 
Details of compilation problems can be found in the INSTALL file. If you find a bug which 
is not listed in these files, please report it to vp9mu@amsat.org. All bug reports should 
include:     

http://www.homepage.mac.com/pclwillmott/GAL/index.html
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 The version number of GAL     

 The hardware and operating system     

 The compiler used, including version number and compilation options     

 A description of the bug behavior     

 A short program which exercises the bug, showing actual and expected results  

It is useful if you can check whether the same problem occurs when the library is compiled 
without optimization. Thank you. Any errors or omissions in this manual can also be 
reported to the same address.  

 Compatibility with C++  

The library header files automatically define functions to have extern ―C‖ linkage when 
included in C++ programs. This allows the functions to be called directly from C++. To use 
C++ exception handling within user-defined functions passed to the library as 
parameters, the library must be built with the additional CFLAGS compilation option 
–fexceptions. 

 Deprecated Functions  

From time to time, it may be necessary for the definitions of some functions to be altered 
or removed from the library. In these circumstances the functions will first be declared 
deprecated and then removed from subsequent versions of the library. Functions that are 
deprecated can be disabled in the current release by setting the preprocessor definition 
GAL_DISABLE_DEPRECATED. This allows existing code to be tested for forwards 
compatibility.  

 ANSI C Compliance  

The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). 
It should be portable to any system with a working ANSI C compiler. The library does not 
rely on any non-ANSI extensions in the interface it exports to the user. Programs you 
write using GAL can be ANSI compliant. To avoid namespace conflicts all exported 
function names and variables have the prefix gal_, while exported macros have the prefix 
GAL_.  

 Free Software Needs Free Documentation     

The following article was written by Richard Stallman, founder of the GNU Project. The 
biggest deficiency in the free software community today is not in the software - it is the 
lack of good free documentation that we can include with the free software. Many of our 
most important programs do not come with free reference manuals and free introductory 
texts. Documentation is an essential part of any software package; when an important 
free software package does not come with a free manual and a free tutorial, that is a 
major gap. We have many such gaps today. Consider Perl, for instance. The tutorial 
manuals that people normally use are non-free. How did this come about? Because the 
authors of those manuals published them with restrictive terms - no copying, no 
modification, source files not available - which exclude them from the free software world. 
That wasn‘t the first time this sort of thing happened, and it was far from the last. Many 
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times we have heard a GNU user eagerly describe a manual that he is writing, his 
intended contribution to the community, only to learn that he had ruined everything by 
signing a publication contract to make it non-free. Free documentation, like free software, 
is a matter of freedom, not price. The problem with the non-free manual is not that 
publishers charge a price for printed copies - that in itself is fine. (The Free Software 
Foundation sells printed copies of manuals, too.) The problem is the restrictions on the 
use of the manual. Free manuals are available in source code form, and give you 
permission to copy and modify. Non-free manuals do not allow this. The criteria of 
freedom for a free manual are roughly the same as for free software. Redistribution 
(including the normal kinds of commercial redistribution) must be permitted, so that the 
manual can accompany every copy of the program, both on-line and on paper. 
Permission for modification of the technical content is crucial too. When people modify the 
software, adding or changing features, if they are conscientious they will change the 
manual too—so they can provide accurate and clear documentation for the modified 
program. A manual that leaves you no choice but to write a new manual to document a 
changed version of the program is not really available to our community. Some kinds of 
limits on the way modification is handled are acceptable. For example, requirements to 
preserve the original author‘s copyright notice, the distribution terms, or the list of authors, 
are ok. It is also no problem to require modified versions to include notice that they were 
modified. Even entire sections that may not be deleted or changed are acceptable, as 
long as they deal with nontechnical topics (like this one). These kinds of restrictions are 
acceptable because they don‘t obstruct the community‘s normal use of the manual. 
However, it must be possible to modify all the technical content of the manual, and then 
distribute the result in all the usual media, through all the usual channels. Otherwise, the 
restrictions obstruct the use of the manual, it is not free, and we need another manual to 
replace it. Please spread the word about this issue. Our community continues to lose 
manuals to proprietary publishing. If we spread the word that free software needs free 
reference manuals and free tutorials, perhaps the next person who wants to contribute by 
writing documentation will realize, before it is too late, that only free manuals contribute to 
the free software community. If you are writing documentation, please insist on publishing 
it under the GNU Free Documentation License or another free documentation license. 
Remember that this decision requires your approval - you don‘t have to let the publisher 
decide. Some commercial publishers will use a free license if you insist, but they will not 
propose the option; it is up to you to raise the issue and say firmly that this is what you 
want. If the publisher you are dealing with refuses, please try other publishers. If you‘re 
not sure whether a proposed license is free, write to licensing@gnu.org. You can 
encourage commercial publishers to sell more free, copylefted manuals and tutorials by 
buying them, and particularly by buying copies from the publishers that paid for their 
writing or for major improvements. Meanwhile, try to avoid buying non-free 
documentation at all. Check the distribution terms of a manual before you buy it, and insist 
that whoever seeks your business must respect your freedom. Check the history of the 
book, and try reward the publishers that have paid or pay the authors to work on it. The 
Free Software Foundation maintains a list of free documentation published by other 
publishers:     

http://www.fsf.org/doc/other-free-books.html 

http://www.fsf.org/doc/other-free-books.html
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 SOFA Julian Date Format 

GAL uses Julian Dates stored in standard SOFA two-piece format. The Julian Date is 
apportioned in any convenient way between two arguments. For example, the Julian Date 
2450123.7 could be expressed in any of these ways, among others:   

2450123.7      0.0     Julian Date method  

2451545.0    -1421.3    J2000 method  

2400000.5    50123.2    Modified Julian Date method 

2450123.5     0.2     date & time method  

The GAL routines are optimized assuming that the first date argument is of a greater 
magnitude than the second argument. The routines will work with either ordering, but 
greatest precision is obtained by using the recommended ordering. 

 Position & Velocity Vectors 

GAL stores position and velocity vectors in a single 2 by 3 array. This allows both vectors 
to be passed to functions as a single entity. The combined position and velocity vectors‘ 
array is called a pv-vector.  

 pv[0][0] x position 
 pv[0][1] y position 
 pv[0][2] z position 
 
 pv[1][0] x velocity 
 pv[1][1] y velocity 
 pv[1][2] z velocity 
 
A pv-vector may be split into individual p-vectors (1 by 3 array).  
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Chapter 2 - Vector & Matrix Routines 

The routines detailed in this chapter are defined in the gal_vecmat.h header file. 
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g a l _ a 2 a f                              [0.1]  

 
Decompose angle in radians into degrees, arc-minutes, arc-seconds, and fraction.   

void   
gal_a2af   

 (   

    int ndp,   

    double angle,   

    char *sign,   

    int idmsf[4]   

 ) ;     

On entry ndp specifies the required resolution, and is interpreted as follows:   
    
      ndp        resolution  

  

       :      ...0000 00 00   

      -7         1000 00 00   

      -6          100 00 00   

      -5           10 00 00   

      -4            1 00 00   

      -3            0 10 00   

      -2            0 01 00   

      -1            0 00 10   

       0            0 00 01   

       1            0 00 00.1   

       2            0 00 00.01   

       3            0 00 00.001   

       :            0 00 00.000...   

    

The largest positive useful value for ndp is determined by the size of angle, the format of 
double precision floating-point numbers on the target platform, and the risk of overflowing 
idmsf[3]. On a typical platform, for angles up to 2π, the available floating-point precision 
might correspond to ndp=12. However, the practical limit is typically ndp=9, set by the 
capacity of a 32-bit idmsf[3]. angle is the angle in radians. On return sign contains '+' or '-', 
and idmsf contains degrees, arc-minutes, arc-seconds, and fraction. The absolute value 
of angle may exceed 2π. In cases where it does not, it is up to the caller to test for and 
handle the case where angle is very nearly 2π and rounds up to 360 degrees, by testing 

for ihmsf[0]=360 and setting ihmsf[0-3] to zero.   
 

g a l _ a 2 t f              [0.1] 
 
Decompose angle in radians into hours, minutes, seconds, and fraction.   

void   
gal_a2tf   

 (   



Chapter 2 – Vector & Matrix Routines 

11 

 

    int ndp,   

    double angle,   

    char *sign,   

    int ihmsf[4]   

 ) ;   

 
On entry ndp specifies required resolution, and is interpreted as follows:   
    
      ndp        resolution  

  

       :      ...0000 00 00   

      -7         1000 00 00   

      -6          100 00 00   

      -5           10 00 00   

      -4            1 00 00   

      -3            0 10 00   

      -2            0 01 00   

      -1            0 00 10   

       0            0 00 01   

       1            0 00 00.1   

       2            0 00 00.01   

       3            0 00 00.001   

       :            0 00 00.000...   

 
angle is the angle in radians. On return sign contains '+' or '-', and ihmsf contains hours, 
minutes, seconds, and fraction. The largest useful value for ndp is determined by the size 
of angle, the format of double floating-point numbers on the target platform, and the risk of 
overflowing ihmsf[3]. On a typical platform, for angle up to 2π, the available floating-point 
precision might correspond to ndp=12. However, the practical limit is typically ndp=9, set 
by the capacity of a 32-bit ihmsf[3]. The absolute value of angle may exceed 2π. In cases 
where it does not, it is up to the caller to test for and handle the case where angle is very 
nearly 2π and rounds up to 24 hours, by testing for ihmsf[0]=24 and setting ihmsf[0-3] to 
zero.   
 

g a l _ a n p            [0.1] 
 
Normalize angle into the range 0 <= a < 2π.   

double   
gal_anp   

 (   

    double a   

 ) ;   

On entry a is the angle in radians. The routine returns the normalized angle.  
 

g a l _ a n p m           [0.1]  
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Normalize angle into the range -π <= a < +π.   

double   
gal_anpm   

 (   

    double a   

 ) ;   

a is the angle in radians.  
  

 g a l _ c 2 s            [0.1] 
 
p-vector to spherical coordinates.   

void   
gal_c2s   

 (   

    double p[3],   

    double *theta,   

    double *phi   

 ) ;   

On return theta and phi contain the longitude and latitude angle in radians respectively. p 
can have any magnitude; only its direction is used. If p is null, zero theta and phi are 
returned. At either pole, zero theta is returned.   
 

 g a l _ c p            [0.1] 
 
Copy a p-vector. 

void   
gal_cp   

 (   

    double p[3],   

    double c[3]   

 ) ;   

On return c contains a duplicate of p. 
 

 g a l _ c p v            [0.1] 
 
Copy a position/velocity vector   

void   
gal_cpv   

 (   

    double pv[2][3],   

    double c[2][3]   
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 ) ;   

On return c contains a duplicate of pv. 
 

 g a l _ c r            [0.1] 
 
Copy an r-matrix.   

void   
gal_cr   

 (   

    double r[3][3],   

    double c[3][3]   

 ) ;   

On return c contains a duplicate of r. 
 

 g a l _ d 2 t f            [0.1] 
 
Decompose days to hours, minutes, seconds, and fraction.   

void   
gal_d2tf   

 (   

    int ndp,   

    double days,   

    char *sign,   

    int ihmsf[4]   

 ) ;   

On entry ndp contains the resolution, and days contain the interval in days. On return sign 
contains ‗+‘ or ‗-‗, and ihmsf contain the hours, minutes, seconds, fraction. ndp is 
interpreted as follows: 
   
      ndp        resolution  

  

       :      ...0000 00 00   

      -7         1000 00 00   

      -6          100 00 00   

      -5           10 00 00   

      -4            1 00 00   

      -3            0 10 00   

      -2            0 01 00   

      -1            0 00 10   

       0            0 00 01   

       1            0 00 00.1   

       2            0 00 00.01   

       3            0 00 00.001   

       :            0 00 00.000...  
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The largest positive useful value for ndp is determined by the size of days, the format of 
double floating-point numbers on the target platform, and the risk of overflowing ihmsf[3].  
On a typical platform, for days up to 1.0, the available floating-point precision might 
correspond to ndp=12. However, the practical limit is typically ndp=9, set by the capacity 
of a 32-bit ihmsf[3]. The absolute value of days may exceed 1.0. In cases where it does 
not, it is up to the caller to test for and handle the case where days is very nearly 1.0 and 
rounds up to 24 hours, by testing for ihmsf[0]=24 and setting ihmsf[0-3] to zero.  
 

 g a l _ i r            [0.1] 
 
Initialize an r-matrix to the identity matrix.   

void   
gal_ir   

 (   

    double r[3][3]   

 ) ;   

On return r contains an identity matrix. 
 

 g a l _ p 2 p v            [0.1] 
 
Extend a p-vector to a pv-vector by appending a zero velocity.   

void   
gal_p2pv   

 (   

    double p[3],   

    double pv[2][3]   

 ) ;    

On return pv[0][0-2] contains p[0-2], and pv[1][0-2] contain zero. 
 

 g a l _ p 2 s            [0.1] 
 
p-vector to spherical polar coordinates.   

void   
gal_p2s   

 (   

    double p[3],   

    double *theta,   

    double *phi,   

    double *r   

 ) ;   

On return theta and phi contain the longitude and latitude angles in radians respectively, 
and r contains the radial distance. If p is null, zero theta, phi and r are returned. At either 
pole, zero theta is returned.   
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 g a l _ p a p            [0.1] 
 
Position-angle from two p-vectors.   

double   
gal_pap   

 (   

    double a[3],   

    double b[3]   

 ) ;   

Given a the direction of the reference point, and b the direction of the point whose position 
angle is required, the function returns the position angle of b with respect to b in radians.  
The result is the position angle, in radians, of direction b with respect to direction a. It is in 
the range -π to +π. The sense is such that if b is a small distance "north" of a the position  
angle is approximately zero, and if b is a small distance "east" of a the position angle is 
approximately + π/2. a and b need not be unit vectors. Zero is returned if the two 
directions are the same or if either vector is null. If a is at a pole, the result is ill-defined.   
 

 g a l _ p a s          [0.1]    

 
Position-angle from spherical coordinates.   

double  
gal_pas   

 (   

    double al,   

    double ap,   

    double bl,   

    double bp  

 ) ;   

Given al the longitude of point A (e.g. RA), ap the latitude of point A (e.g. Dec), bl the 
longitude of point B, and bp the latitude of point B. All angles in radians. The result is the 
bearing (position angle), in radians, of point B with respect to point A. It is in the range -π 

to +π. The sense is such that if B is a small distance "east" of point A, the bearing is 
approximately + π/2. Zero is returned if the two points are coincident.   
 

 g a l _ p d p          [0.1]   
 
p-vector dot product.   

double   
gal_pdp   

 (   

    double a[3],   

    double b[3]   



General Astrodynamics library – Reference Manual 

16 

 

 ) ;   

Returns the dot product of vectors a and b. 
 

 g a l _ p m          [0.1]   

 
Modulus of p-vector.   

double   
gal_pm   

 (   

    double p[3] 

 ) ;   

Returns the modulus of the p-vector p.  
 

 g a l _ p m p          [0.1]   

 
p-vector subtraction.   

void   
gal_pmp   

 (   

    double a[3],   

    double b[3],   

    double amb[3]   

 ) ;   

On return p-vector amb contains p-vector a minus p-vector b.  
 

 g a l _ p n           [0.1]   
 
Convert a p-vector into modulus and unit vector.   

void   
gal_pn   

 (   

    double p[3],   

    double *r,   

    double u[3]   

 ) ;   

On return the p-vector u contains the unit vector of p-vector p, and r contains the modulus 
of p-vector p. If p is null, the result is null. Otherwise the result is a unit vector.   
 

 g a l _ p p p             [0.1]   
 
p-vector addition.   
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void   
gal_ppp   

 (   

    double a[3],   

    double b[3],   

    double apb[3]   

 ) ;   

On return p-vector apb contains the sum of p-vectors a and b. 
 

 g a l _ p p s p            [0.1]   
 
p-vector plus scaled p-vector.   

void   
gal_ppsp   

 (   

    double a[3],   

    double s,   

    double b[3],   

    double apsb[3]   

 ) ; 

On return p-vector apsb contains the sum of p-vector a and the product of scalar s and 
p-vector b. 
 

 g a l _ p v 2 p            [0.1]   
 
Discard velocity component of a pv-vector.   

void   
gal_pv2p   

 (   

    double pv[2][3],   

    double p[3]   

 ) ;   

On return the p-vector p contains a copy of the position vector portion of pv-vector pv. 
 

 g a l _ p v 2 s            [0.1]   
 
Convert position/velocity from Cartesian to spherical coordinates.   

void   
gal_pv2s   

 (   

    double pv[2][3],   

    double *theta,   

    double *phi,   
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    double *r,   

    double *td,   

    double *pd,   

    double *rd   

 ) ;   

On return theta contains the longitude angle, phi contains the latitude angle, r contains 
the radial distance, td contains the rate of change of theta, pd contains the rate of change 
of phi, and rd contains the rate of change of r. All angles are in radians. If the position part 
of pv is null, theta, phi, td and pd are indeterminate. This is handled by extrapolating the 
position through unit time by using the velocity part of pv. This moves the origin without 
changing the direction of the velocity component. If the position and velocity components 
of pv are both null, zeroes are returned for all six results. If the position is a pole, theta, td 
and pd are indeterminate. In such cases zeroes are returned for theta, td and pd.   
 

 g a l _ p v d p v            [0.1]   
 
Dot product of two pv-vectors.   

void   
gal_pvdpv   

 (   

    double a[2][3],   

    double b[2][3],   

    double adb[2]   

 ) ;   

On return pv-vector adb contains the dot product of pv-vectors a and b. If the position and 
velocity components of the two pv-vectors are ( ap, av ) and ( bp, bv ), the result, a . b, is 
the pair of numbers ( ap . bp , ap . bv + av . bp ). The two numbers are the dot-product of 
the two p-vectors and its derivative.   
 

 g a l _ p v m             [0.1]  
 
Modulus of pv-vector.   

void   
gal_pvm   

 (   

    double pv[2][3],   

    double *r,   

    double *s   

 ) ;   

On return r and s contain the modulus of the position and velocity components of the 
pv-vector pv respectively. 
 

 g a l _ p v m p v            [0.1]   
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Subtract one pv-vector from another.   

void   
gal_pvmpv   

 (   

    double a[2][3],   

    double b[2][3],   

    double amb[2][3]   

 ) ;   

On return the pv-vector amb contains pv-vector a minus pv-vector b. 
 

 g a l _ p v p p v            [0.1]   
 
Add one pv-vector to another.   

void   
gal_pvppv   

 (   

    double a[2][3],   

    double b[2][3],   

    double apb[2][3]   

 ) ;   

On return the pv-vector apb contains the sum of pv-vectors a and b. 
 

 g a l _ p v u             [0.1]   
 
Update a pv-vector.   

void   
gal_pvu   

 (   

    double dt,   

    double pv[2][3],   

    double upv[2][3]   

 ) ;   

"Update" means "refer the position component of the vector to a new epoch dt time units 
from the existing epoch. The time units of dt must match those of the velocity. The velocity 
component is unchanged.  
 

 g a l _ p v u p            [0.1]   
 
Update a pv-vector, discarding the velocity component.   

void   
gal_pvup   
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 (   

    double dt,   

    double pv[2][3],   

    double p[3]   

 ) ;    

"Update" means refer the position component of the vector to a new epoch dt time units 
from the existing epoch". The time units of dt must match those of the velocity.   
 

 g a l _ p v x p v            [0.1]   
 
Cross product of two pv-vectors.   

void   
gal_pvxpv   

 (   

    double a[2][3],   

    double b[2][3],   

    double axb[2][3]   

 ) ;    

On return the pv-vector axb contains the cross product of pv-vectors a and b. If the 
position and velocity components of the two pv-vectors are ( ap, av ) and ( bp, bv ), the 
result, a x b, is the pair of vectors ( ap x bp, ap x bv + av x bp ). The two vectors are the  
cross-product of the two p-vectors and its derivative.   
 

 g a l _ p x p             [0.1]   
 
p-vector cross product.   

void   
gal_pxp   

 (   

    double a[3],   

    double b[3],   

    double axb[3]   

 ) ;   

On return the p-vector axb contains the cross product of p-vectors a and b. 
 

 g a l _ r m 2 v            [0.1]   
 
Express an r-matrix as an r-vector.   

void   

gal_rm2v   

 (   

    double r[3][3],   

    double w[3]   
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 ) ;    

 
On return w contains the rotation vector. A rotation matrix describes a rotation through 
some angle about some arbitrary axis called the Euler axis. The "rotation vector" returned 
by this routine has the same direction as the Euler axis, and its magnitude is the angle in 
radians. The magnitude and direction can be separated by means of the routine gal_pn. If 
r is null, so is the result. If r is not a rotation matrix the result is undefined. r must be proper 
(i.e. have a positive determinant) and real orthogonal (inverse = transpose). The 
reference frame rotates clockwise as seen looking along the rotation vector from the 
origin.   
 

 g a l _ r v 2 m            [0.1]   
 
Form the r-matrix corresponding to a given r-vector.   

void   
gal_rv2m   

 (   

    double w[3],   

    double r[3][3]   

 ) ;   

 
On return the r-matrix r contains the rotation matrix. A rotation matrix describes a rotation 
through some angle about some arbitrary axis called the Euler axis. The rotation vector 
supplied to this routine has the same direction as the Euler axis, and its magnitude is the 
angle in radians. If w is null, the unit matrix is returned. The reference frame rotates 
clockwise as seen looking along the rotation vector from the origin.   
 

 g a l _ r x             [0.1]   
 
Rotate an r-matrix about the x-axis.   

void   

gal_rx   

 (   

    double phi,   

    double r[3][3]   

 ) ;   

On return the r-matrix r has been rotated by the angle phi about the x axis. The angle phi 
is in radians. Sign convention: The matrix can be used to rotate the reference frame of a 
vector. Calling this routine with positive phi incorporates in the matrix an additional 
rotation, about the x-axis, anticlockwise as seen looking towards the origin from positive 
x. 
 

 g a l _ r x p             [0.1]  
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Multiply a p-vector by an r-matrix.   

void   
gal_rxp   

 (   

    double r[3][3],   

    double p[3],   

    double rp[3]   

 ) ;     

On return the p-vector rp contains the product of the r-matrix r and the p-vector p. 
 

 g a l _ r x p v            [0.1]   
 
Multiply a pv-vector by an r-matrix.   

void   
gal_rxpv   

 (   

    double r[3][3],   

    double pv[2][3],   

    double rpv[2][3]   

 ) ;   

On return the pv-vector rpv contains the product of the r-matrix r and the pv-vector pv. 
 

 g a l _ r x r             [0.1]   
 
Multiply two r-matrices.   

void   
gal_rxr   

 (   

    double a[3][3],   

    double b[3][3],   

    double atb[3][3]   

 ) ; 

On return the r-matrix atb contains the product of the r-matrix a and the r-matrix b. 
 

 g a l _ r y             [0.1]   

 
Rotate an r-matrix about the y-axis.   

void   
gal_ry   

 (   

    double theta,   

    double r[3][3]   
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 ) ;   

On return the r-matrix r has been rotated by the angle theta about the y-axis. The angle 
theta is in radians. Sign convention: The matrix can be used to rotate the reference frame 
of a vector. Calling this routine with positive theta incorporates in the matrix an additional 
rotation, about the y-axis, anticlockwise as seen looking towards the origin from positive 
y. 
 

 g a l _ r z             [0.1]   

 
Rotate an r-matrix about the z-axis.  

void   
gal_rz   

 (   

    double psi,   

    double r[3][3]   

 ) ;   

On return the r-matrix r has been rotated by the angle psi about the z-axis. The angle psi 
is in radians. Sign convention: The matrix can be used to rotate the reference frame of a 
vector. Calling this routine with positive psi incorporates in the matrix an additional 
rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive 
z.  
 

 g a l _ s 2 c             [0.1]   
  
Convert spherical coordinates to Cartesian.   

void   
gal_s2c   

 (   

    double theta,   

    double phi,   

    double c[3]   

 ) ;   

On return the p-vector c contains the direction cosines, given theta the longitude angle, 
and phi the latitude angle. All angles in radians. 
 

g a l _ s 2 p             [0.1]   
 
Convert spherical polar coordinates to p-vector.   

void   
gal_s2p   

 (   

    double theta,   
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    double phi,   

    double r,   

    double p[3]   

 ) ;   

On return the p-vector p contains the polar coordinates given theta the longitude angle, 
phi the latitude angle, and r the radial distance. The angles are both in radians. 
 

g a l _ s 2 p v            [0.1]   
 
Convert position/velocity from spherical to Cartesian coordinates.   

void   
gal_s2pv   

 (   

    double theta,   

    double phi,   

    double r,   

    double td,   

    double pd,   

    double rd,   

    double pv[2][3]   

 ) ;    

On return the pv-vector pv contains the position and velocity in Cartesian coordinates 
given theta the longitude angle, phi the latitude angle, r the radial distance, td the rate of 
change of theta, pd the rate of change of phi, and rd the rate of change of r. 
 

g a l _ s 2 x p v            [0.1]   
 
Multiply a pv-vector by two scalars.   

void   
gal_s2xpv   

 (   

    double s1,   

    double s2,   

    double pv[2][3],   

    double spv[2][3]   

 ) ;   

On return the position component of pv-vector spv contains the product of the scalar s1 
and the position component of pv-vector pv, and the velocity component of pv-vector spv 
contains the product of scalar s2 and the velocity component of pv-vector pv. 
 

g a l _ s e p p              [0.1] 
 
Angular separation between two p-vectors.   
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double   
gal_sepp   

 (   

    double a[3],   

    double b[3] 

 ) ;   

The routine returns the angular separation between the p-vectors a and b in radians 
(always positive). If either vector is null, a zero result is returned. The angular separation 
is most simply formulated in terms of scalar product. However, this gives poor accuracy 
for angles near zero and π. The algorithm uses both cross product and dot product, to 
deliver full accuracy whatever the size of the angle.   
 

g a l _ s e p s            [0.1]   
 
Angular separation between two sets of spherical coordinates.   

double   
gal_seps   

 (   

    double al,   

    double ap,   

    double bl,   

    double bp   

 ) ; 

Returns the angular separation between first longitude and latitude (al, ap) and the 
second longitude and latitude (bl, bp). All angles in radians. 
 

g a l _ s x p              [0.1]  
 
Multiply a p-vector by a scalar.   

void   
gal_sxp   

 (   

    double s,   

    double p[3],   

    double sp[3]   

 ) ;   

On return the p-vector sp contains the product of the scalar s and the p-vector p. 
 

g a l _ s x p v             [0.1]  
   
Multiply a pv-vector by a scalar.   

void   
gal_sxpv   
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 (   

    double s,   

    double pv[2][3],   

    double spv[2][3]   

 ) ;   

On return the pv-vector spv contains the product of the scalar s and the pv-vector pv. 
 

g a l _ t r             [0.1]   
 
Transpose an r-matrix.   

void   
gal_tr   

 (   

    double r[3][3],   

    double rt[3][3]   

 ) ;   

On return the r-matrix rt contains the transpose of the r-matrix r. 
 

g a l _ t r x p             [0.1]   
  
Multiply a p-vector by the transpose of an r-matrix.   

void   
gal_trxp   

 (   

    double r[3][3],   

    double p[3],   

    double trp[3]   

 ) ;    

On return the p-vector trp contains the product of the transpose of the r-matrix r and the 
p-vector p. 
 

g a l _ t r x p v             [0.1]  
 
Multiply a pv-vector by the transpose of an r-matrix.   

void   
gal_trxpv   

 (   

    double r[3][3],   

    double pv[2][3],   

    double trpv[2][3]   

 ) ;   

On return the pv-vector trpv contains the product of the transpose of the r-matrix r and the 
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pv-vector pv. 
 

 g a l _ z p             [0.1]   
 
Zero a p-vector.   

void   
gal_zp   

 (   

    double p[3]   

 ) ;   

On return the all elements of the p-vector p have been set to zero. 
 

 g a l _ z p v             [0.1]   
 
Zero a pv-vector.   

void   
gal_zpv   

 (   

    double pv[2][3]   

 ) ;   

On return all the elements of the pv-vector pv are set to zero. 
 

 g a l _ z r             [0.1]   
 
Initialize an r-matrix to the null matrix.   

void   
gal_zr   

 (   

    double r[3][3]   

 ) ;    

On return all elements of the r-matrix r are set to zero.  
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Chapter 3 - Math Routines 

The routines detailed in this chapter are defined in the gal_math.h header file.
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 g a l _ c o n s t . h         [0.1] 

This header file defines the standard numerical constants and support macros. 

/* 
 * ------------------- 

 * Numerical Constants 

 * ------------------- 

 */ 

 

#define GAL_PI     3.141592653589793238462643      /* Pi                                     */   

#define GAL_2PI    6.283185307179586476925287      /* 2 * Pi                                 */   

#define GAL_R2H    3.819718634205488058453210      /* Radians to hours                       */   

#define GAL_R2D    57.29577951308232087679815      /* Radians to degrees                     */   

#define GAL_R2S    13750.98708313975701043156      /* Radians to seconds                     */   

#define GAL_R2AS   206264.8062470963551564734      /* Radians to arc seconds                 */   

#define GAL_H2R    0.2617993877991494365385536     /* Hours to radians                       */   

#define GAL_D2R    1.745329251994329576923691e-2   /* Degrees to radians                     */   

#define GAL_S2R    7.272205216643039903848712e-5   /* Seconds to radians                     */   

#define GAL_AS2R   4.848136811095359935899141e-6   /* Arc seconds to radians                 */   

#define GAL_TURNAS 1296000.0                       /* Arc seconds in a full circle           */   

#define GAL_U2R    ( GAL_AS2R / 1e7 )              /* Units of 0.1 microarcsecond to radians */   

#define GAL_MAS2R  ( GAL_AS2R / 1e3 )              /* Milliarcseconds to radians             */   

#define GAL_DJM    365250.0                        /* Days per Julian millennium             */   

#define GAL_DJC    36525.0                         /* Days per Julian century                */   

#define GAL_DJY    365.25                          /* Days per Julian year                   */   

#define GAL_D2S    86400.0                         /* Days to Seconds                        */   

#define GAL_D2M    1440.0                          /* Days to Minutes                        */ 

#define GAL_D2H    24.0                            /* Days to Hours                          */ 

#define GAL_J2000  2451545.0                       /* Reference epoch (J2000), JD            */   

#define GAL_MJD0   2400000.5                       /* Modified Julian Date Day 0             */   

#define GAL_MJ2000 51544.5                         /* Reference epoch (J2000), MJD           */   

#define GAL_KM2M   1000.0                          /* Kilometers to meters                   */ 

#define GAL_AU03   149597870691.0                  /* Astronomical Unit IERS 2003 meters     */ 

 

/* 

 * ------------------------------------- 

 * Constants for the Solar System bodies 

 * ------------------------------------- 

 */ 

  

enum { 

  GAL_SSB_SU = 0,  /* The Sun               */ 

  GAL_SSB_ME = 1,  /* Mercury               */ 

  GAL_SSB_VE = 2,  /* Venus                 */ 

  GAL_SSB_EA = 3,  /* Earth                 */ 

  GAL_SSB_MA = 4,  /* Mars                  */ 

  GAL_SSB_JU = 5,  /* Jupiter               */ 

  GAL_SSB_SA = 6,  /* Saturn                */ 

  GAL_SSB_UR = 7,  /* Uranus                */ 

  GAL_SSB_NE = 8,  /* Neptune               */ 

  GAL_SSB_EB = 9,  /* Earth-Moon Barycenter */ 

  GAL_SSB_PL = 10, /* Pluto                 */ 

  GAL_SSB_MO = 11, /* The Moon              */ 

} ; 

   

/*   

 * Macro to simulate the FORTRAN SIGN function   

 */   

   

#define GAL_SIGN( a, b) fabs ( a ) * ( ( ( b ) >= 0.0 ) ? 1.0 : -1.0 )   

 

/* 

 * Macro for Maximum value 

 */ 

  

#define GAL_MAX( a, b ) ( a ) >= ( b ) ? ( a ) : ( b ) 

 

/* 

 * Macro for Minimum value 
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 */ 

  

#define GAL_MIN( a, b ) ( a ) <= ( b ) ? ( a ) : ( b ) 

 

/* 

 * ------------------------------------------ 

 * Constants for routine return status values 

 * ------------------------------------------ 

 */ 

  

enum { 

  GAL_SUCCESS = 0, 

  GAL_FAILURE = 1, 

} ; 

 

/* 

 * Constant for undefined results 

 */ 

  

#define GAL_UNDEFINED DBL_MAX 

 

g a l _ f a c e x p _ a l l o c         [0.3] 
 
This routine computes a factorial exponent lookup table required by the gal_factorial2 
routine. 

gal_facexp_t * 
gal_facexp_alloc 

  ( 

     int max_factorial 

  ) ; 

Returns a pointer to the factorial exponents lookup table if successful, returns NULL 
otherwise. max_factorial determines the maximum factorial for which exponents are 
determined. 
 

 g a l _ f a c e x p _ f r e e          [0.3] 
 
Free factorial exponent lookup table. 

void 
gal_facexp_free 

  ( 

    gal_facexp_t *facexp 

  ) ; 

This routine frees a factorial exponent lookup table previously allocated by the 
gal_facexp_alloc routine. On entry the pointer facexp contains a pointer to a table 
previously allocated by gal_facexp_alloc. 
 

 g a l _ f a c t o r i a l           [0.2]   
 
Compute the factorial n!  

long double 
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gal_factorial 

  ( 

    int n  

  ) ; 

Returns the factorial of integer n. On compilers that define long double to be the same 
precision as double the maximum factorial is 170!, otherwise it is 1754! 
 

 g a l _ f a c t o r i a l 2           [0.3] 
 
Computes the factorial n!, or the value of n! / m!, or n! * m!. 

int 
gal_factorial2 

  ( 

    gal_facexp_t *facexp, 

    int n, 

    int m, 

    int s, 

    long double *f  

  ) ; 

The routine returns 0 if successful, +1 if the requested factorial is beyond the range of the 
lookup table, and +2 if the requested factorial is greater than 1754! . The pointer facexp 
points to a lookup table allocated by gal_facexp_alloc(). Parameters n and m must be 
greater than or equal to zero. On return when s equals 0, f contains n!, when s equals -1, 
f contains n! / m!, and when f equals +1, f contains is n! * m!. On compilers that define long 
double to be the same precision as double the maximum factorial or result that can be 
returned is 170!, otherwise it is 1754!. 
  
References: 
 
Calculation of Factorials, M. L. Charnow and Jesse L. Maury, Jr., NASA TM X-55733 
GSFC X-542-66-460, September 1966 
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Chapter 4 - String Handling 

The routines detailed in this chapter are defined in the gal_pstrings.h header file.
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 g a l _ c e n t e r            [0.1] 
 
Center string in field. 

char * 
gal_center 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ; 

This routine copies the source string s2 to s1, then centers the trimmed string in a field of 
length l. Returns a pointer to the start of the target string. The target string s1 must be at 
least the same length as the source string s2.  
 

 g a l _ d e l e t e            [0.1] 
 
Delete characters from string. 

char * 
gal_delete 

  ( 

    char *s, 

 int  n, 

 int  l 

  ) ;    

This routine deletes a sequence of characters of length l. A pointer to the start of the 
target string s is returned. 
 

 g a l _ i n s e r t             [0.1] 
 
Insert sub-string into string. 

char * 
gal_insert 

  ( 

    char *s1, 

 char *s2, 

 int  n 

  ) ;    

This routine inserts the sub-string s2 into string s1 at the specified character position n. 
Returns a pointer to the start of the target string. 
 

 g a l _ i n s t r            [0.1]   
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Find sub-string in string. 

int   
gal_instr 

  ( 

    char *s1, 

 char *s2 

  ) ;    

This routine finds the first occurrence of the sub-string s2 in the string s1. It returns the 
position of the first character of the sub-string in s1. If the sub-string cannot be found then 
-1 is returned. 
 

 g a l _ j u s t l            [0.1] 
 
Left justify string. 

char * 
gal_justl 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies the source string s2 to s1, then trims white-space from the beginning 
and end of the string. If the resultant string length is less than l then spaces are added on 
the right hand side to bring the string to length l. If the resultant string length is greater 
than l then the left-most l characters of the resultant string are returned in s1. 
 

 g a l _ j u s t r            [0.1] 
 
Right justify string. 

char * 
gal_justr 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies the source string s2 to s1, then trims white-space from the beginning 
and end of the string. If the resultant string length is less than l then spaces are added on 
the left hand side to bring the string to length l. If the resultant string length is greater than 
l then the right-most l characters of the resultant string are returned in s1. The target string 
s1 must be at least the same length as the source. 
 

 g a l _ l e f t s t r            [0.1] 
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Copy sub-string from left of string. 

char * 
gal_leftstr 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies the left-most l characters from s2 to s1. If the length of s2 is less than 
or equal to l then s2 is copied to s1 unchanged. The target string s1 must be at least the 
same length as the source string s2. 
 

 g a l _ m i d s t r            [0.1] 
 
Copy sub-string from middle of string. 

char * 
gal_midstr 

  ( 

    char *s1, 

 char *s2, 

 int  n, 

 int  l 

  ) ;    

This routine copies the l characters from s2 to s1 starting at character position n in s2. If 
there are less than l characters remaining in the string s2 from position n onwards then all 
the available characters are returned. 
 

 g a l _ p a d l            [0.1] 
 
Pad string with spaces on left. 

char * 
gal_padl 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies a maximum of l characters from the right side of s2 to s1. If the length 
of s2 is less than l then the left hand side is padded with spaces up to the required length. 
The target string s1 must be at least the same length as the source string s2. 
 

 g a l _ p a d r            [0.1] 
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Pad string with spaces on right. 

char * 
gal_padr 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies a maximum of l characters from the left side of s2 to s1. If the length of 
s2 is less than l then the right hand side is padded with spaces up to the required length l. 
The target string s1 must be at least the same length as the source string s2. 
 

 g a l _ r e p l a c e           [0.1] 
  
Find and replace sub-string in string. 

char * 
gal_replace 

  ( 

    char *s1, 

    char *s2, 

    char *s3, 

    char *s4 

  ) ;    

This routine copies the source string s2 to the target string s1. Then replaces all 
occurrences of the sub-string s3 in s1 with sub-string s4. 
 

 g a l _ r i g h t s t r           [0.1]  

 
Copy right sub-string from string. 

char * 
gal_rightstr 

  ( 

    char *s1, 

 char *s2, 

 int  l 

  ) ;    

This routine copies the right-most l characters from s2 to s1. If the length of s2 is less than 
or equal to l then s2 is copied to s1 unchanged. The target string s1 must be at least the 
same length as the source string s2. 
 

 g a l _ s t r n            [0.1] 
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Fill string with character. 

char * 
gal_strn 

  ( 

    char *s, 

 char c, 

 int  l 

  ) ;   

This routine fills the target string with l characters of value c   
 

 g a l _ t r i m            [0.1] 
 
Trim white-space from left and right of string. 

char * 
gal_trim 

  ( 

    char *s1, 

 char *s2 

  ) ;    

This routine copies s2 to s1, then deletes any leading or trailing white-space characters at 
the beginning or end of s1. The target string s1 must be at least the same length as the 
source string s2. 
 

 g a l _ t r i m l            [0.1] 
 
Trim white-space from left side of string. 

char * 
gal_triml 

  ( 

    char *s1, 

 char *s2 

  ) ;    

This routine copies s2 to s1, then deletes any leading white-space characters at the 
beginning of s1. The target string s1 must be at least the same length as the source string 
s2. 
 

 g a l _ t r i m r            [0.1] 
 
Trim white-space from right of string. 

char * 
gal_trimr 

  ( 
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    char *s1, 

 char *s2 

  ) ;    

This routine copies s2 to s1, then deletes any trailing white-space characters at the end of 
s1. The target string s1 must be at least the same length as the source string s2. 
 

 g a l _ u c a s e             [0.1] 
 
Force string to upper-case. 

char * 
gal_ucase 

  ( 

    char *s1, 

 char *s2 

  ) ;    

This routine copies s2 to s1, then forces all lower case characters in s1 to upper case.  
The target string s1 must be at least the same length as the source string s2. 
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Chapter 5 - Test Framework 

The routines detailed in this chapter are defined in the gal_test.h header file. 
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g a l _ t e s t _ s t a r t           [0.1] 
 
Start test run. 

void 
gal_test_start 

  ( 

    char *libname, 

    int verbose 

  ) ;    

This starts a test run and resets the various statistics. On entry libname contains the 
name of the sub-library under test. If verbose is set to 1 then both success and failure 
messages are output by the test routines, and when set to 0 then only failure messages 
are output. On return the external variables gal_tpass, gal_tfail, and gal_tfunc are set to 
zero. The external variable gal_tverb is set to the value of the parameter verbose.     
The library name is copied to the external variable gal_tlibn to be used later by 
gal_test_stop.        
 

 g a l _ t e s t _ s t o p            [0.1] 
 
Stop test run and print statistics. 

int 
gal_test_stop 

  ( 

  ) ; 

This stops a test run and prints the statistics. If no tests failed during the run then 0 is 
returned, otherwise 1 is returned. 
 

 g a l _ v c v              [0.1] 
 
Validate character result. 

void    
gal_vcv   

  (   

    char cval,   

    char cvalok, 

    char *func,   

    char *test   

  ) ;   

This routine validates a character result. On entry cval contains the value computed by 
the routine under test, cvalok contains the correct value, routine contains the name of the 
routine under test, and test contains the name of the individual test. The external 
variables gal_test_success and gal_test_failure are incremented depending upon the 
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test 
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success and test failure messages are sent to the standard output. If set to 0 then only 
test failure messages are sent to the standard output. 
 

 g a l _ v d v              [0.1] 
 
Validate a double precision result. 

void     
gal_vdv   

  (   

    double dval,   

    double dvalok, 

 double dtol,   

    char   *func,   

    char   *test   

  ) ;   

This routine validates a double precision result. On entry dval contains the value 
computed by the routine under test, dvalok contains the correct value, dtol the tolerance, 
routine contains the name of the routine under test, and test contains the name of the 
individual test. The external variables gal_test_success and gal_test_failure are 
incremented depending upon the outcome of the test. If the external variable 
gal_test_verbose is set to 1 then both test success and test failure messages are sent to 
the standard output. If set to 0 then only test failure messages are sent to the standard 
output. 
 

 g a l _ v i v              [0.1] 
 
Validate an integer result. 

void    

gal_viv   

  (   

    int  ival,   

    int  ivalok,   

    char *func,   

    char *test  

  ) ;   

This routine validates an integer result. On entry ival contains the value computed by the 
routine under test, ivalok contains the correct value, routine contains the name of the 
routine under test, and test contains the name of the individual test. The external 
variables gal_test_success and gal_test_failure are incremented depending upon the 
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test 
success and test failure messages are sent to the standard output. If set to 0 then only 
test failure messages are sent to the standard output. 
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 g a l _ v l d v              [0.1] 
 
Validate long double precision result. 

void     

gal_vldv   

  (   

    long double dval,   

    long double dvalok, 

 double dtol,   

    char   *func,   

    char   *test   

  ) ;   

This routine validates a long double precision result. On entry dval contains the value 
computed by the routine under test, dvalok contains the correct value, dtol contains the 
tolerance, routine contains the name of the routine under test, and test contains the name 
of the individual test. The external variables gal_test_success and gal_test_failure are 
incremented depending upon the outcome of the test. If the external variable 
gal_test_verbose is set to 1 then both test success and test failure messages are sent to 
the standard output. If set to 0 then only test failure messages are sent to the standard 
output. 
 

 g a l _ v s v              [0.1] 
 
Validate string result. 

void     

gal_vsv   

  (   

    char *sval,   

    char *svalok,   

    char *func,   

    char *test 

  ) ;    

This routine validates a string result. On entry sval points to the value computed by the 
routine under test, svalok contains the correct value, routine contains the name of the 
routine under test, and test contains the name of the individual test. The external 
variables gal_test_success and gal_test_failure are incremented depending upon the 
outcome of the test. If the external variable gal_test_verbose is set to 1 then both test 
success and test failure messages are sent to the standard output. If set to 0 then only 
test failure messages are sent to the standard output. 
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Chapter 6 - Date & Time 

The routines detailed in this chapter are defined in the gal_datetime.h header file. 
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 g a l _ c a l 2 j d            [0.1]   
 
Gregorian Calendar to Julian Date.   

int   

gal_cal2jd   

 (   

    int iy,   

    int im,   

    int id,   

    double *djm0,   

    double *djm 

 ) ;   

On entry iy contains the year, im the month, and id the day in the Gregorian calendar. On 
return djm0 contains the Modified Julian Date zero-point of 2400000.5, and djm contains 
the Modified Julian Date for 0 hours. The routine returns one of the following status codes: 
 
 0   success   
  -1   bad year   ( date not computed )   
  -2   bad month   ( date not computed )   
  -3   bad day     ( date computed )   
  
The algorithm used is valid from -4800 March 1, but this implementation rejects dates 
before -4799 January 1. The Julian Date is returned in the standard SOFA two-piece 
format, which is designed to preserve time resolution. The Julian Date is available as a 
single number by adding djm0 and djm. In early eras the conversion is from the "Proleptic 
Gregorian Calendar"; no account is taken of the date(s) of adoption of the Gregorian 
Calendar, nor is the CE/BCE numbering convention observed.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 

 g a l _ d a t              [0.1] 
 
Calculate TAI – UTC 

int   

gal_dat   

 (   

    int iy,   

    int im,   

    int id,   

    double fd,   

    double *deltat 
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 ) ;   

This routine for a given UTC date, calculates delta(AT) = TAI-UTC. On entry iy, im, id, and 
fd contain the UTC year, month, day, and fractional part of day. On return deltat contains 
TAI minus UTC in seconds. The routine returns the following status values:  
 
 1    dubious year  
 0    success                                      
 -1    bad year   
 -2    bad month   
 -3    bad day  
 -4    bad fraction   
 
UTC began at 1960 January 1.0 (JD 2436934.5) and it is improper to call the routine with 
an earlier epoch. If this is attempted, zero is returned together with a warning status.  
Because leap seconds cannot, in principle, be predicted in advance, a reliable check for 
dates beyond the valid range is impossible. To guard against gross errors, a year five or 
more after the release year of this routine (see parameter iyv) is considered dubious. In 
this case a warning status is returned but the result is computed in the normal way. For 
both too-early and too-late years, the warning status is +1. This is distinct from the error 
status -1, which signifies a year so early that JD could not be computed. If the specified 
date is for a day which ends with a leap second, the UTC-TAI value returned is for the 
period leading up to the leap second. If the date is for a day which begins as a leap 
second ends, the UTC-TAI returned is for the period following the leap second. The day 
number must be in the normal calendar range, for example 1 through 30 for April. The 
"almanac" convention of allowing such dates as January 0 and December 32 is not 
supported in this routine, in order to avoid confusion near leap seconds. The fraction of 
day is used only for dates before the introduction of leap seconds, the first of which 
occurred at the end of 1971. It is tested for validity (zero to less than 1 is the valid range) 
even if not used; if invalid, zero is used and status -4 is returned. For many applications, 
setting FD to zero is acceptable; the resulting error is always less than 3 ms (and occurs 
only pre-1972). The status value returned in the case where there are multiple errors 
refers to the first error detected. For example, if the month and day are 13 and 32 
respectively, -2 (bad month) will be returned. In cases where a valid result is not available, 
zero is returned.   
 
References:   
 
For epochs from 1961 January 1 onwards, the expressions from the file 
ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.   
 
The 5ms time step at 1961 January 1 is taken from the Explanatory Supplement to the 
Astronomical Almanac, P. Kenneth Seidelmann (ed.), University Science Books (1992), 
Section 2.58.1 (p87).   
 

 g a l _ d a y s 2 c a l            [0.1] 
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Convert the day of the year, days, to Gregorian year, month, day, and fraction of a day.   

void   

gal_days2cal   

 (   

    int year,   

    double days,   

    int *iy,   

    int *im,   

    int *id,   

    double *fd   

 ) ;   

On entry year contains the year number between 1900 and 2100, and days contains the 
day count including fraction of day. On return iy, im, id, and fd contain the Gregorian year, 
month, day, and fractional part of day respectively. In early eras the conversion is from the 
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the 
Gregorian Calendar, nor is the CE/BCE numbering convention observed.   
 

 g a l _ d t d b              [0.1] 
 
An approximation to TDB-TT, the difference between Barycentric Dynamical Time and 
Terrestrial Time, for an observer on the Earth.   

double   

gal_dtdb   

 (   

    double date1,   

    double date2,   

    double ut,   

    double elong,   

    double u,   

    double v   

 ) ;   

On entry date1+date2 contain TDB, ut contains universal time UT1 in fraction of one day, 
elong contains longitude (east positive in radians), u contains the distance from Earth 
spin (kilometers), and v contains distance north of equatorial plane (kilometers). The 
function returns TDB-TT in seconds. Although the epoch is, formally, Barycentric 
Dynamical Time (TDB), the Terrestrial Time (TT) can be used with no practical effect on 
the accuracy of the prediction.   
 
References:   
 
Fairhead, L., & Bretagnon, P., Astronomy & Astrophysics, 229, 240-247 (1990).   
 
IAU 2006 Resolution 3. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),  
IERS Technical Note No. 32, BKG (2004)   
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Moyer, T.D., Celestial Mechanics, 23, 33 (1981).   
 
Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).   
 
Seidelmann, P.K. et al., Explanatory Supplement to the Astronomical Almanac, Chapter 
2, University Science Books (1992).   
 
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., 
Astronomy & Astrophysics, 282, 663-683 (1994).   
 

 g a l _ e p b              [0.1] 
 
Julian Date to Besselian Epoch.   

double   

gal_epb   

 (   

    double dj1,   

    double dj2   

 ) ;   

On entry dj1 and dj2 contain the Julian Date, the Besselian Epoch is returned. The Julian 
Date is supplied in standard SOFA two-piece format, which is designed to preserve time 
resolution. The Julian Date is available as a single number by adding dj1 and dj2. The 
maximum resolution is achieved if dj1 is 2451545.0 (J2000).   
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 

 g a l _ e p b 2 j d            [0.1] 
  
Besselian Epoch to Julian Date.

void   
gal_epb2jd   

 (   

    double epb,   

    double *djm0,   

    double *djm   

 ) ;   

On entry epb contains the date in the Besselian Epoch (e.g. 1957.3), on return djm0 
contains the Modified Julian Date zero-point of 2400000.5, and djm contains the date as a 
Modified Julian Date in standard SOFA two-piece format. 
 
References:   
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Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 

 g a l _ e p j              [0.1] 
 
Julian Date to Julian Epoch.   

double   
gal_epj   

 (   

    double dj1,   

    double dj2   

 ) ;   

This routine returns the Julian epoch for the given Julian Date. On entry dj1 and dj2 
contain the Julian Date in standard SOFA two-piece format. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 

 g a l _ e p j 2 j d             [0.1] 
 
Julian Epoch to Julian Date.   

void   

gal_epj2jd   

 (   

    double epj,   

    double *djm0,   

    double *djm   

 ) ;   

On entry epj contains the Julian Epoch (e.g. 1996.8). On return djm0 contains the 
Modified Julian Date zero-point of 2400000.5, and djm contains the Modified Julian Date. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 

 g a l _ j d 2 c a l             [0.1] 
 
Julian Date to Gregorian year, month, day, and fraction of a day.   

int   
gal_jd2cal   

 (   

    double dj1,   
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    double dj2,   

    int *iy,   

    int *im,   

    int *id,   

    double *fd 

 ) ;   

On entry dj1 and dj2 contain the Julian Date in standard SOFA two-piece format. On 
return iy contains the year, im the month, id the day, and fd the fractional part of day. The 
routine returns the following status values: 0 = success and -1 = unacceptable date. The 
earliest valid date is -68569.5 (-4900 March 1). The largest value accepted is 109. In early 
eras the conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the 
date(s) of adoption of the Gregorian Calendar, nor is the CE/BCE numbering convention 
observed.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 

 g a l _ j d c a l f             [0.1]  
 
Julian Date to Gregorian Calendar, expressed in a form convenient for formatting 
messages: rounded to a specified precision, and with the fields stored in a single array.   

int   
gal_jdcalf   

 (   

    int ndp,   

    double dj1,   

    double dj2,   

    int iymdf[4] 

 ) ;   

On entry dj1 and dj2 contain the date to be converted in standard SOFA two-piece format, 
ndp contains the required number of decimal places of days in fraction. On return iymdf 
contain the year, month, day, and fraction in Gregorian calendar. The routine returns the 
following status values: 
 
  -1   date out of range   
  0   success   
 +1   ndp not is the range 0-9 ( interpreted as 0 )   
 
In early eras the conversion is from the "Proleptic Gregorian Calendar"; no account is 
taken of the date(s) of adoption of the Gregorian Calendar, nor is the CE/BCE numbering 
convention observed. Refer to the routine gal_jd2cal. ndp should be 4 or less if internal 
overflows are to be avoided on machines which use 16-bit integers.   
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References:   
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 

 g a l _ t a i 2 t t             [0.2] 
 
This routine converts a TAI Julian Date to a Terrestrial Time (TT) Julian Date.   

void  

gal_tai2tt   

 (   

    double tai1, 

    double tai2, 

    double *tt1, 

    double *tt2 

 ) ;   

On entry tai1 and tai2 contain a TAI Julian Date. On return tt1 and tt2 contain the 
Terrestrial Time (TT) Julian Date. All dates are in standard SOFA two-piece format. 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 47-48 
 

 g a l _ u t c 2 t a i             [0.2] 
 
This routine converts a UTC Julian Date to a TAI Julian Date.   

int  
gal_utc2tai   

 (   

    double utc1, 

    double utc2, 

    double *tai1, 

    double *tai2 

 ) ;   

 
On entry utc1 and utc2 contain the UTC Julian Date. On return tai1 and tai2 contain the 
TAI Julian Date. All dates are in standard SOFA two-piece format. TAI began at 1960 
January 1.0 (JD 2436934.5) and it is improper to call the routine with an earlier epoch. If 
this is attempted, zero is returned together with a warning status. Because leap seconds 
cannot, in principle, be predicted in advance, a reliable check for dates beyond the valid 
range is impossible. To guard against gross errors, a year five or more after the release 
year of this routine is considered dubious. In this case a warning status is returned but the 
result is computed in the normal way.   
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 g a l _ u t c 2 t t            [0.2] 
 
This routine converts a UTC Julian Date to a TT Julian Date.   

int  
gal_utc2tt  

 (   

    double utc1, 

    double utc2, 

    double *tt1, 

    double *tt2 

 ) ;   

 
On entry utc1 and utc2 contain the UTC Julian Date. On return tt1 and tt2 contain the 
Terrestrial Time (TT) Julian Date. All dates are in standard SOFA two-piece format. The 
routine returns the following status codes: 1 = dubious year, 0 = success. TAI began at 
1960 January 1.0 (JD 2436934.5) and it is improper to call the routine with an earlier 
epoch. If this is attempted, zero is returned together with a warning status. Because leap 
seconds cannot, in principle, be predicted in advance, a reliable check for dates beyond 
the valid range is impossible. To guard against gross errors, a year five or more after the 
release year of this routine is considered dubious. In this case a warning status is 
returned but the result is computed in the normal way.  
  

 g a l _ u t c 2 u t 1             [0.2] 
 
This routine converts a UTC Julian Date to a UT1 Julian Date.   

void  

gal_utc2ut1   

 (   

    double utc1, 

    double utc2, 

    double dut1, 

    double *ut1a, 

    double *ut1b 

 ) ;    

On entry utc1 and utc2 contain the UTC Julian Date in standard SOFA two-piece format, 
dut1 contains the UT1-UTC offset in seconds. On return ut1a and ut1b contain the UT1 
Julian Date in standard SOFA two-piece format. 
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Chapter 7 - Earth Orientation 

The routines detailed in this chapter are defined in the gal_earthrot.h, and gal_precnut.h 
header files. 
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 g a l _ b i 0 0              [0.1] 
 
Frame bias components of IAU 2000 precession-nutation models (part of MHB2000 with 
additions).   

void   

gal_bi00   

 (   

    double *dpsibi,   

    double *depsbi,   

    double *dra   

 ) ;   

On return dpsibi and depsbi contain the longitude and obliquity corrections and dra the 
ICRS right ascension of the J2000 mean equinox. The frame bias corrections in longitude 
and obliquity ( radians ) are required in order to correct for the offset between the GCRS 
pole and the mean J2000 pole. They define, with respect to the GCRS frame, a J2000 
mean pole that is consistent with the rest of the IAU 2000A precession-nutation model. In 
addition to the displacement of the pole, the complete description of the frame bias 
requires also an offset in right ascension. This is not part of the IAU 2000A model, and is 
from Chapront et al. (2002). It is returned in radians. This is a supplemented 
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the 
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).   
    
References:   
    
Chapront, J., Chapront-Touze, M. & Francou, G., Astronomy & Astrophysics, 387, 700, 
2002.   
   
Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New 
nutation series for non-rigid Earth and insights into the Earth's interior", Journal 
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th 
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.   
 

 g a l _ b p 0 0              [0.1] 
 
Frame bias and precession, IAU 2000.   

void   

gal_bp00   

 (   

    double date1,   

    double date2,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3]   

 ) ;   
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On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rb contains the frame bias matrix, rp the precession matrix, 
and rbp the bias-precession matrix. The matrix rb transforms vectors from GCRS to mean 
J2000 by  applying frame bias. The matrix rp transforms vectors from J2000 mean 
equator and  equinox to mean equator and equinox of date by applying precession. The 
matrix rbp transforms vectors from GCRS to mean equator and equinox of date by 
applying frame bias then precession. It is the product rp x rb.   
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" 
(CIO) by IAU 2006 Resolution 2.   
 

 g a l _ b p 0 6              [0.1] 
 
Frame bias and precession, IAU 2006.   

void   

gal_bp06   

 (   

    double date1,   

    double date2,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rb contains the frame bias matrix, rp the precession matrix, 
and rbp the bias-precession matrix. The matrix rb transforms vectors from GCRS to mean 
J2000 by applying frame bias. The matrix rp transforms vectors from mean J2000 to 
mean of date by applying precession. The matrix rbp transforms vectors from GCRS to 
mean of date by applying frame bias then precession. It is the product rp x rb.   
 
References:   
  
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ b p n 2 x y             [0.1] 
 
Extract from the bias-precession-nutation matrix the X,Y coordinates of the Celestial 
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Intermediate Pole.   

void   
gal_bpn2xy   

 (   

    double rbpn[3][3],   

    double *x,   

    double *y   

 ) ;   

On entry rbpn contains the celestial-to-true matrix. On return x and y contain the Celestial 
Intermediate Pole. The matrix rbpn transforms vectors from GCRS to true equator (and 
CIO or equinox) of date, and therefore the Celestial Intermediate Pole unit vector is the 
bottom row of the matrix. x, y are components of the Celestial Intermediate Pole unit 
vector in the Geocentric Celestial Reference System.   
    
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)  
 
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" 
(CIO) by IAU 2006 Resolution 2.   
 

 g a l _ c 2 i 0 0 a            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2000A 
precession-nutation model.   

void   

gal_c2i00a   

 (   

    double date1,   

    double date2,   

    double rc2i[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in Standard SOFA 
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix 
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:   
    
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
    
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
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era is the Earth Rotation Angle and rpom is the polar motion matrix. A faster, but slightly 
less accurate result (about 1 mas), can be obtained by using instead the gal_c2i00b 
routine.   
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
    
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" 
(CIO) by IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ c 2 i 0 0 b            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2000B 
precession-nutation model.   

void   

gal_c2i00b   

 (   

    double date1,   

    double date2,   

    double rc2i[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix 
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:   
 
 [ITRS]  =  rpom * R_3(era) * rc2i * [GCRS]   
  
   =   rc2t * [GCRS]   
  
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
era is the Earth Rotation Angle and rpom is the polar motion matrix. This routine is faster, 
but slightly less accurate (about 1 mas), than the gal_c2i00a routine.   
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).  
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n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" 
(CIO) by IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ c 2 i 0 6 a            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2006 precession 
and IAU 2000A nutation models.   

void   

gal_c2i06a   

 (   

    double date1,   

    double date2,   

    double rc2i[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rc2i contains the celestial-to-intermediate matrix. The matrix 
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:   
    
 [ITRS]   =  rpom * R_3(era) * rc2i * [GCRS]   
  
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
era is the Earth Rotation Angle and rpom is the polar motion matrix.   
 
References:   
    
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
    
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
    
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ c 2 i b p n            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date given the bias – precession - 
nutation matrix. IAU 2000. 

void   

gal_c2ibpn   
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 (   

    double date1,   

    double date2,   

    double rbpn[3][3],   

    double rc2i[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, and rbpn contains the celestial-to-true matrix. On return rc2i contains 
the celestial-to-intermediate matrix. The matrix rbpn transforms vectors from GCRS to 
true equator (and CIO or equinox) of date. Only the CIP (bottom row) is used. The matrix 
rc2i is the first stage in the transformation from celestial to terrestrial coordinates:   
    
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
    
    =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name 
does not include "00", this routine is in fact specific to the IAU 2000 models.   
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).  n.b. 
The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) 
by IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
  

 g a l _ c 2 i x y             [0.1]  
 
Form the celestial to intermediate-frame-of-date matrix for a given date when the CIP X,Y 
coordinates are known. IAU 2000.   

void   

gal_c2ixy   

 (   

    double date1,   

    double date2,   

    double x,   

    double y,   

    double rc2i[3][3]   

 ) ;   
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On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, x and y contain the Celestial Intermediate Pole. On return rc2i contain 
the celestial-to-intermediate matrix. The Celestial Intermediate Pole coordinates are the 
x,y components of the unit vector in the Geocentric Celestial Reference System. The 
matrix rc2i is the first stage in the transformation from celestial to terrestrial coordinates:   
 
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
 
   =   rc2t * [GCRS]   
  
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name 
does not include "00", this routine is in fact specific to the IAU 2000 models.   
  
References:   
 
McCarthy D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004). 
 

 g a l _ c 2 i x y s             [0.1] 
 
Form the celestial to intermediate-frame-of-date matrix given the CIP x,y and the CIO 
locator s.   

void   

gal_c2ixys   

 (   

    double x,   

    double y,   

    double s,   

    double rc2i[3][3]   

 ) ;   

 
On entry x and y contain the coordinates of the Celestial Intermediate Pole, and s 
contains the CIO locator. On return rc2i contains the celestial-to-intermediate matrix. The 
Celestial Intermediate Pole coordinates are the x,y components of the unit vector in the 
Geocentric Celestial Reference System. The CIO locator (in radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. The matrix rc2i is the first stage in 
the transformation from celestial to terrestrial coordinates:   
 
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
 
   =   rc2t * [GCRS]   
 
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
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era is the Earth Rotation Angle and rpom is the polar motion matrix.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ c 2 t 0 0 a             [0.1] 
 
Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using 
the IAU 2000A nutation model.   

void   

gal_c2t00a   

 (   

    double tta,   

    double ttb,   

    double uta,   

    double utb,   

    double xp,   

    double yp,   

    double rc2t[3][3]   

 ) ;   

 
On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1 
Julian Date, and xp and yp contain the coordinates of the pole ( radians ). All dates are in 
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial 
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation 
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when 
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the 
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which 
position the Celestial Intermediate Pole in the International Terrestrial Reference System 
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis 
points at the north geographic pole, the v-axis points towards the origin of longitudes and 
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from 
celestial to terrestrial coordinates:   
 
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
 
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the 
polar motion matrix. A faster, but slightly less accurate result (about 1 mas), can be 
obtained by using instead the gal_c2t00b routine.   
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References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
  

 g a l _ c 2 t 0 0 b            [0.1]  
 
Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using 
the IAU 2000B nutation model.   

void   

gal_c2t00b   

 (   

    double tta,   

    double ttb,   

    double uta,   

    double utb,   

    double xp,   

    double yp,   

    double rc2t[3][3]   

 ) ;   

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1 
Julian Date, and xp and yp contain the coordinates of the pole (radians). All dates are in 
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial 
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation 
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when 
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the 
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which 
position the Celestial Intermediate Pole in the International Terrestrial Reference System 
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis 
points at the north geographic pole, the v-axis points towards the origin of longitudes and 
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from 
celestial to terrestrial coordinates:   
 
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
    
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the 
polar motion matrix. This routine is faster, but slightly less accurate (about 1 mas), than 
the gal_c2t00a routine.   
 
References:   
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McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ c 2 t 0 6 a            [0.1]  
 
Form the celestial to terrestrial matrix given the date, the UT1 and the polar motion, using 
the IAU 2006 precession and IAU 2000A nutation models.   

void   

gal_c2t06a   

 (   

    double tta,   

    double ttb,   

    double uta,   

    double utb,   

    double xp,   

    double yp,   

    double rc2t[3][3]   

 ) ;   

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1 
Julian Date, and xp and yp contain the coordinates of the pole (radians). All dates are in 
standard SOFA two-piece format. On return rc2t contains the celestial-to-terrestrial 
matrix. In the case of uta,utb, the date & time method is best matched to the Earth rotation 
angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when 
the uta argument is for 0hrs UT1 on the day in question and the utb argument lies in the 
range 0 to 1, or vice versa. xp and yp are the "coordinates of the pole", in radians, which 
position the Celestial Intermediate Pole in the International Terrestrial Reference System 
(see IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis 
points at the north geographic pole, the v-axis points towards the origin of longitudes and 
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from 
celestial to terrestrial coordinates:   
 
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
    
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
rc2i is the celestial-to-intermediate matrix, era is the Earth rotation angle and rpom is the 
polar motion matrix.  
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
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 g a l _ c 2 t c e o             [0.1] 
 
Assemble the celestial to terrestrial matrix from CIO-based components (the 
celestial-to-intermediate matrix, the Earth Rotation Angle and the polar motion matrix).   

#define gal_c2tceo( rc2i, era, rpom, rc2t ) gal_c2tcio( rc2i, ( era 

), rpom, rc2t )   

On entry rc2i contains the celestial-to-intermediate matrix, era the Earth rotation angle, 
and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial 
matrix. The name of this routine, gal_c2tceo, reflects the original name of the celestial 
intermediate origin (CIO), which before the adoption of IAU 2006 Resolution 2 was called 
the "celestial ephemeris origin" (CEO). When the name change from CEO to CIO 
occurred, a new routine called gal_c2tcio was introduced as the successor to the existing 
gal_c2tceo. This routine is merely a front end to the new one. The routine is included in 
the collection only to support existing applications. It should not be used in new 
applications. The routine is a candidate for deprecation.   
 

 g a l _ c 2 t c i o             [0.1] 
 
Assemble the celestial to terrestrial matrix from CIO-based components (the 
celestial-to-intermediate matrix, the Earth Rotation Angle and the polar motion matrix).   

void   

gal_c2tcio   

 (   

    double rc2i[3][3],   

    double era,   

    double rpom[3][3],   

    double rc2t[3][3]   

 ) ;   

On entry rc2i contains the celestial-to-intermediate matrix, era the Earth rotation angle, 
and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial 
matrix. This routine constructs the rotation matrix that transforms vectors in the celestial 
system into vectors in the terrestrial system. It does so starting from precomputed 
components, namely the matrix which rotates from celestial coordinates to the 
intermediate frame, the Earth rotation angle and the polar motion matrix. One use of this 
routine is when generating a series of celestial-to-terrestrial matrices where only the Earth 
Rotation Angle changes, avoiding the considerable overhead of recomputing the 
precession-nutation more often than necessary to achieve given accuracy objectives. 
The relationship between the arguments is as follows:   
    
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
    
   =   rc2t * [GCRS]   
 
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
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vector in the International Terrestrial Reference System (see IERS Conventions 2003).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 

 g a l _ c 2 t e q x             [0.1] 
 
Assemble the celestial to terrestrial matrix from equinox-based components (the 
celestial-to-true matrix, the Greenwich Apparent Sidereal Time and the polar motion 
matrix).   

void   

gal_c2teqx   

 (   

    double rbpn[3][3],   

    double gst,   

    double rpom[3][3],   

    double rc2t[3][3]   

 ) ;   

On entry rbpn contains the celestial-to-true matrix, gst the Greenwich (apparent) Sidereal 
Time, and rpom the polar-motion matrix. On return rc2t contains the celestial-to-terrestrial 
matrix. This routine constructs the rotation matrix that transforms vectors in the celestial 
system into vectors in the terrestrial system. It does so starting from precomputed 
components, namely the matrix which rotates from celestial coordinates to the true 
equator and equinox of date, the Greenwich Apparent Sidereal Time and the polar motion 
matrix. One use of the routine is when generating a series of celestial-to-terrestrial 
matrices where only the Sidereal Time changes, avoiding the considerable overhead of 
recomputing the precession-nutation more often than necessary to achieve given 
accuracy objectives. The relationship between the arguments is as follows:   
    
 [ITRS]   =   rpom * R_3(gst) * rbpn * [GCRS]   
 
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ c 2 t p e             [0.1] 
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Form the celestial to terrestrial matrix given the date, the UT1, the nutation and the polar 
motion. IAU 2000.   

void   

gal_c2tpe   

 (   

    double tta,   

    double ttb,   

    double uta,   

    double utb,   

    double dpsi,   

    double deps,   

    double xp,   

    double yp,   

    double rc2t[3][3]   

 ) ;   

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb contain the 
UT1 Julian Date, dpsi and deps the nutation, and xp and yp the coordinates of the pole ( 
radians ). All dates are in standard SOFA two-piece format. On return rc2t contains the 
celestial-to-terrestrial matrix.  In the case of uta, utb, the date & time method is best 
matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least, 
minimum noise) is  delivered when the uta argument is for 0hrs UT1 on the day in 
question and the utb argument lies in the range 0 to 1, or vice versa. The caller is 
responsible for providing the nutation components; they are in longitude and obliquity, in 
radians and are with respect to the equinox and ecliptic of date. For high-accuracy 
applications, free core nutation should be included as well as any other relevant 
corrections to the position of the CIP.  xp and yp are the "coordinates of the pole", in 
radians, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003). In a geocentric right-handed triad 
u,v,w, where the w-axis points at  the north geographic pole, the v-axis points towards 
the origin of longitudes and the u axis completes the system, xp = +u and yp = -v. The 
matrix RC2T transforms from celestial to terrestrial coordinates:   
    
 [ITRS]   =   rpom * R_3(gst) * rbpn * [GCRS]   
 
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
rbpn is the bias-precession-nutation matrix, gst is the Greenwich (apparent) Sidereal 
Time and rpom is the polar motion matrix. Although its name does not include "00", this 
routine is in fact specific to the IAU 2000 models.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
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 g a l _ c 2 t x y             [0.1] 
 
Form the celestial to terrestrial matrix given the date, the UT1, the CIP coordinates and 
the polar motion. IAU 2000.   

void   

gal_c2txy   

 (   

    double tta,   

    double ttb,   

    double uta,   

    double utb,   

    double x,   

    double y,   

    double xp,   

    double yp,   

    double rc2t[3][3]   

 ) ;   

On entry tta and ttb contain the Terrestrial Time (TT) Julian Date, uta and utb the UT1 
Julian Date, x and y the Celestial Intermediate Pole, and xp and yp the coordinates of the 
pole ( radians ). All dates are in standard SOFA two-piece format. On return rc2t contains 
the celestial-to-terrestrial matrix. In the case of uta,utb, the date & time method is best 
matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least, 
minimum noise) is delivered when the uta argument is for 0hrs UT1 on the day in question 
and the utb argument lies in the range 0 to 1, or vice versa. The Celestial Intermediate 
Pole coordinates are the x,y components of the unit vector in the Geocentric Celestial 
Reference System. xp and yp are the "coordinates of the pole", in radians, which position 
the Celestial Intermediate Pole in the International Terrestrial Reference System (see 
IERS Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis 
points at the north geographic pole, the v-axis points towards the origin of longitudes and 
the u axis completes the system, xp = +u and yp = -v. The matrix rc2t transforms from 
celestial to terrestrial coordinates:   
    
 [ITRS]   =   rpom * R_3(era) * rc2i * [GCRS]   
  
   =   rc2t * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
era is the Earth Rotation Angle and rpom is the polar motion matrix. Although its name 
does not include "00", this routine is in fact specific to the IAU 2000 models.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
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BKG (2004)   
 

 g a l _ e e 0 0              [0.1] 
  
The equation of the equinoxes, compatible with IAU 2000 resolutions, given the nutation 
in longitude and the mean obliquity.   

double   

gal_ee00   

 (   

    double date1,   

    double date2,   

    double epsa,   

    double dpsi   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, epsa contains the mean obliquity, and dpsi the nutation in longitude. 
The routine returns the equation of the equinoxes. The obliquity, in radians, is mean of 
date. The result, which is in radians, operates in the following sense:   
    
 Greenwich apparent ST = GMST + equation of the equinoxes   
 
The result is compatible with the IAU 2000 resolutions. For further details, see IERS 
Conventions 2003 and Capitaine et al. (2002).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ e e 0 0 a             [0.1] 
 
Equation of the equinoxes, compatible with IAU 2000 resolutions.   

double   

gal_ee00a   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the equation of the equinoxes. The result, which is 
in radians, operates in the following sense:   



Chapter 7 – Earth Orientation 

71 

 

 
 Greenwich apparent ST = GMST + equation of the equinoxes   
 
The result is compatible with the IAU 2000 resolutions. For further details, see IERS 
Conventions 2003 and Capitaine et al. (2002).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ e e 0 0 b             [0.1] 
 
Equation of the equinoxes, compatible with IAU 2000 resolutions but using the truncated 
nutation model IAU 2000B.   

double   

gal_ee00b   

 (   

    double date1,   

    double date2   

 ) ;   

 
On entry date1 and date2 contains the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the equation of the equinoxes. The result, 
which is in radians, operates in the following sense:   
 
 Greenwich apparent ST = GMST + equation of the equinoxes   
 
The result is compatible with the IAU 2000 resolutions except that accuracy has been 
compromised for the sake of speed. For further details, see McCarthy & Luzum (2001), 
IERS Conventions 2003 and Capitaine et al. (2003).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004) 
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 g a l _ e e 0 6 a             [0.1] 
  
Equation of the equinoxes, compatible with IAU 2000 resolutions and IAU 2006/2000A 
precession-nutation.   

double   

gal_ee06a   

 (   

    double date1,   

    double date2   

 ) ; 

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the equation of the equinoxes. The result, which is 
in radians, operates in the following sense:   
 
 Greenwich apparent ST = GMST + equation of the equinoxes   
  
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 

 g a l _ e e c t 0 0             [0.1] 
  
Equation of the equinoxes complementary terms, consistent with IAU 2000 resolutions.   

double   

gal_eect00   

 (   

    double date1,   

    double date2   

 ) ;   

 
On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the complementary terms. The "complementary 
terms" are part of the equation of the equinoxes (EE), classically the difference between 
apparent and mean Sidereal Time:   
 
 GAST = GMST + EE   
 
 with:   
 
 EE = dpsi * cos(eps)   
 
where dpsi is the nutation in longitude and eps is the obliquity of date. However, if the 
rotation of the Earth were constant in an inertial frame the classical formulation would lead 
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to apparent irregularities in the UT1 timescale traceable to side-effects of 
precession-nutation. In order to eliminate these effects from UT1, "complementary terms" 
were introduced in 1994 (IAU, 1994) and took effect from 1997 (Capitaine and Gontier, 
1993):   
 
 GAST = GMST + CT + EE   
 
By convention, the complementary terms are included as part of the equation of the 
equinoxes rather than as part of the mean Sidereal Time. This slightly compromises the 
"geometrical" interpretation of mean sidereal time but is otherwise inconsequential. This 
routine computes CT in the above expression, compatible with IAU 2000 resolutions 
(Capitaine et al., 2002, and IERS Conventions 2003).   
 
References:   
 
Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
IAU Resolution C7, Recommendation 3 (1994)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ e o 0 6 a             [0.1] 
 
Equation of the origins, IAU 2006 precession and IAU 2000A nutation.   

double   

gal_eo06a   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the equation of the origins in radians. The equation 
of the origins is the distance between the true equinox and the celestial intermediate 
origin and, equivalently, the difference between Earth rotation angle and Greenwich 
apparent sidereal time (ERA-GST). It comprises the precession (since J2000.0) in right 
ascension plus the equation of the equinoxes (including the small correction terms).   
 
References:   
    
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
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Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ e o r s             [0.1]  
 
Equation of the origins, given the classical NPB matrix and the quantity s.   

double   

gal_eors   

 (   

    double rnpb[3][3],   

    double s   

 ) ;   

On entry rnpb contains the classical nutation x precession x bias matrix, and s the 
quantity s (the CIO locator). The routine returns the equation of the origins in radians. The 
equation of the origins is the distance between the true equinox and the celestial 
intermediate origin and, equivalently, the difference between Earth rotation angle and 
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since 
J2000.0) in right ascension plus the equation of the equinoxes (including the small 
correction terms). The algorithm is from Wallace & Capitaine (2006).   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P. & Capitaine, N., 2006, Astronomy & Astrophysics (submitted)   
  

 g a l _ e q e q 9 4            [0.1]  
 
Equation of the equinoxes, IAU 1994 model.   

double   

gal_eqeq94   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece 
format. the routine returns the equation of the equinoxes. The result, which is in radians, 
operates in the following sense:   
 
 Greenwich apparent ST = GMST + equation of the equinoxes   
  
References:   
 
IAU Resolution C7, Recommendation 3 (1994)   
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Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)   
 

 g a l _ e r a 0 0             [0.1] 
 
Earth rotation angle (IAU 2000 model).   

double   

gal_era00   

 (   

    double dj1,   

    double dj2   

 ) ;   

On entry dj1 and dj2 contain the UT1 Julian Date in standard SOFA two-piece format. The 
routine returns the Earth rotation angle ( radians ), in the range 0 to 2 π. The date & time 
method is best matched to the algorithm used: maximum accuracy (or, at least, minimum 
noise) is delivered when the dj1 argument is for 0hrs UT1 on the day in question and the 
dj2 argument lies in the range 0 to 1, or vice versa. The algorithm is adapted from 
Expression 22 of Capitaine et al. 2000. The time argument has been expressed in days 
directly, and, to retain precision, integer contributions have been eliminated. The same 
formulation is given in IERS Conventions (2003), Chap. 5, Eq. 14.   
 
References:   
 
Capitaine N., Guinot B. and McCarthy D.D, 2000, Astronomy & Astrophysics, 355, 
398-405.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ f a d 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean elongation of the Moon from 
the Sun.   

double   

gal_fad03   

 (   

    double t   

 ) ;   

 
On entry t contains the TDB date in Julian centuries since J2000. The routine returns D in 
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no 
significant difference. The expression used is as adopted in IERS Conventions (2003) 
and is from Simon et al. (1994).   
 
References:   
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McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a e 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Earth.   

double   

gal_fae03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Earth in radians. Though t is strictly TDB, it is usually more convenient 
to use TT, which makes no significant difference. The expression used is as adopted in 
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. 
(1994).   
    
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 

 g a l _ f a f 0 3              [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of the Moon minus 
mean longitude of the ascending node.   

double   

gal_faf03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns F in 
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no 
significant difference. The expression used is as adopted in IERS Conventions (2003) 
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and is from Simon et al. (1994).   
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a j u 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Jupiter.   

double   

gal_faju03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Jupiter in radians. Though t is strictly TDB, it is usually more convenient 
to use TT, which makes no significant difference. The expression used is as adopted in 
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. 
(1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 

 g a l _ f a l 0 3              [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean anomaly of the Moon.   

double   

gal_fal03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns l in 
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no 
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significant difference. The expression used is as adopted in IERS Conventions (2003) 
and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a l p 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean anomaly of the Sun.   

double   

gal_falp03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns l‘ in 
radians. Though t is strictly TDB, it is usually more convenient to use TT, which makes no 
significant difference. The expression used is as adopted in IERS Conventions (2003) 
and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a m a 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Mars.   

double   

gal_fama03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Mars in radians. Though t is strictly TDB, it is usually more convenient 
to use TT, which makes no significant difference. The expression used is as adopted in 
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. 
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(1994).  
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 

 g a l _ f a m e 0 3           [0.1]   
 
Fundamental argument, IERS Conventions (2003): mean longitude of Mercury.   

double   

gal_fame03   

 (   

    double t   

 ) ;    

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Mercury in radians. Though t is strictly TDB, it is usually more 
convenient to use TT, which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 

 g a l _ f a n e 0 3             [0.1] 
  
Fundamental argument, IERS Conventions (2003): mean longitude of Neptune.   

double   

gal_fane03   

 (   
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    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Neptune in radians. Though t is strictly TDB, it is usually more 
convenient to use TT, which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a o m 0 3            [0.1]  
 
Fundamental argument, IERS Conventions (2003): mean longitude of the Moon's 
ascending node.   

double   

gal_faom03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns 
Omega in radians. Though t is strictly TDB, it is usually more convenient to use TT,  
which makes no significant difference. The expression used is as adopted in IERS 
Conventions (2003) and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a p a 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): general accumulated precession in 
longitude.   

double   

gal_fapa03   

 (   
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    double t   

 ) ;  

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
general precession in longitude in radians. Though t is strictly TDB, it is usually more 
convenient to use TT, which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003). It is taken from Kinoshita & Souchay (1990) and 
comes originally from Lieske et al. (1977).   
 
References:   
 
Kinoshita, H. and Souchay J. 1990, Celestial Mechanics and Dynamical Astronomy 48, 
187   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58, 
1-16  
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ f a s a 0 3            [0.1]  
 
Fundamental argument, IERS Conventions (2003): mean longitude of Saturn.   

double   

gal_fasa03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Saturn in radians. Though t is strictly TDB, it is usually more convenient 
to use TT, which makes no significant difference. The expression used is as adopted in 
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. 
(1994).   
 
References:  
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
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 g a l _ f a u r 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Uranus.   

double   

gal_faur03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Uranus in radians. Though t is strictly TDB, it is usually more 
convenient to use TT, which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 

 g a l _ f a v e 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Venus.   

double   

gal_fave03   

 (   

    double t   

 ) ;   

On entry t contains the TDB date in Julian centuries since J2000. The routine returns the 
mean longitude of Venus in radians. Though t is strictly TDB, it is usually more convenient 
to use TT, which makes no significant difference. The expression used is as adopted in 
IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. 
(1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
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Supplement Series 135, 111   
 

 g a l _ f w 2 m              [0.1] 
 
Form rotation matrix given the Fukushima-Williams angles.   

void   

gal_fw2m   

 (   

    double gamb,   

    double phib,   

    double psi,   

    double eps,   

    double r[3][3]   

 ) ;   

On entry gamb contains the F-W angle gamma_bar, phib the F-W angle phi_bar, psi the 
F-W angle psi, and eps the F-W angle epsilon. All angles are in radians. On return r 
contains the rotation matrix.  
 
Naming the following points:   
    
 e   J2000 ecliptic pole,   
 p   GCRS pole,   
 E   ecliptic pole of date,   
 P   CIP,   
    
the four Fukushima-Williams angles are as follows:   
    
 gamb  = gamma   = epE   
 phib   = phi   = pE   
 psi   = psi   = pEP   
 eps   = epsilon   = EP   
 
The matrix representing the combined effects of frame bias, precession and nutation is:   
    
 NxPxB = R_1(-eps).R_3(-psi).R_1(phib).R_3(gamb)   
 
Three different matrices can be constructed, depending on the supplied angles:   
    
To obtain the nutation x precession x frame bias matrix, generate the four precession 
angles, generate the nutation components and add them to the psi_bar and epsilon_A 
angles, and call this routine.   
 
To obtain the precession x frame bias matrix, generate the four precession angles and 
call this routine.   
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To obtain the frame bias matrix, generate the four precession angles for date J2000.0 and 
call this routine.   
 
The nutation-only and precession-only matrices can if necessary be obtained by c 
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 

 g a l _ f w 2 x y             [0.1] 
 
CIP X,Y given Fukushima-Williams bias-precession-nutation angles.   

void  

gal_fw2xy   

 (   

    double gamb,   

    double phib,   

    double psi,   

    double eps,   

    double *x,   

    double *y   

 ) ;   

On entry gamb contains the F-W angle gamma_bar, phib the F-W angle phi_bar, psi the 
F-W angle psi, and eps the F-W angle epsilon. All angles are in radians. On return x and 
y contain the CIP x and y in radians.  
 
Naming the following points:   
    
 e   J2000 ecliptic pole,   
 p   GCRS pole,   
 E   ecliptic pole of date,   
 P   CIP,   
    
the four Fukushima-Williams angles are as follows:   
    
 gamb  = gamma   = epE   
 phib   = phi   = pE   
 psi   = psi   = pEP   
 eps   = epsilon   = EP   
 
The matrix representing the combined effects of frame bias, precession and nutation is:   
 
 NxPxB = R_1(-epsa).R_3(-psi).R_1(phib).R_3(gamb)   
  
 x,y are elements [0][2] and [1][2] of the matrix.   
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References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 

 g a l _ g m s t 0 0             [0.1] 
 
Greenwich Mean Sidereal Time (model consistent with IAU 2000 resolutions).   

double   

gal_gmst00   

 (   

    double uta,   

    double utb,   

    double tta,   

    double ttb   

 ) ;   

On entry uta and utb contain the UT1 Julian Date, and tta and ttb contain the Terrestrial 
Time (TT) Julian Date. Both dates in standard SOFA two-piece format. The routine 
returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. Both UT1 and 
TT are required, UT1 to predict the Earth rotation and TT to predict the effects of 
precession. If UT1 is used for  both purposes, errors of order 100 microarcseconds 
result. This GMST is compatible with the IAU 2000 resolutions and must be used only in 
conjunction with other IAU 2000 compatible components such as precession-nutation 
and equation of the equinoxes.  The algorithm is from Capitaine et al. (2003) and IERS 
Conventions 2003.   
 
References: 
   
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ g m s t 0 6             [0.1] 
 
Greenwich mean sidereal time (consistent with IAU 2006 precession).   

double   

gal_gmst06   

 (   

    double uta,   

    double utb,   

    double tta,   

    double ttb   
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 ) ;    

On entry uta and utb contain the UT1 Julian Date, and tta and ttb contain the Terrestrial 
Time (TT) Julian Date. Both dates in standard SOFA two-piece format. The routine 
returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. Both UT1 and 
TT are required, UT1 to predict the Earth rotation and TT to predict the effects of 
precession. If UT1 is used for both purposes, errors of order 100 microarcseconds result. 
This GMST is compatible with the IAU 2006 precession and must not be used with other 
precession models.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355   
 

 g a l _ g m s t 8 2             [0.1] 
 
Universal Time to Greenwich Mean Sidereal Time (IAU 1982 model).   

double   

gal_gmst82   

 (   

    double dj1,   

    double dj2   

 ) ;   

On entry dj1 and dj2 contain the UT1 Julian Date in standard SOFA two-piece format. The 
routine returns the Greenwich Mean Sidereal Time in radians, in the range 0 to 2π. The 
algorithm is based on the IAU 1982 expression. This is always described as giving the 
GMST at 0 hours UT1. In fact, it gives the difference between the GMST and the UT, the 
steady 4-minutes-per-day drawing-ahead of ST with respect to UT. When whole days are 
ignored, the expression happens to equal the GMST at 0 hours UT1 each day. In this 
routine, the entire UT1 (the sum of the two arguments dj1 and dj2) is used directly as the 
argument for the standard formula, the constant term of which is adjusted by 12 hours to 
take account of the noon phasing of Julian Date. The UT1 is then added, but omitting 
whole days to conserve accuracy.   
 
References:   
 
Transactions of the International Astronomical Union, XVIII B, 67 (1983).   
 
Aoki et al., Astronomy & Astrophysics 105, 359-361 (1982).   
 

 g a l _ g s t 0 0 a             [0.1] 
 
Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions).   

double   

gal_gst00a   
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 (   

    double uta,   

    double utb,   

    double tta,   

    double ttb   

 ) ;   

On entry uta and utb contain the UT1 Julian Date, tta and ttb the Terrestrial Time (TT) 
Julian Date. The routine return the Greenwich Apparent Sidereal Time in radians, in the 
range 0 to 2π.  Both UT1 and TT are required, UT1 to predict the Earth rotation and TT to 
predict the effects of precession-nutation. If UT1 is used for both purposes, errors of order 
100 microarcseconds result. This GAST is compatible with the IAU 2000 resolutions and 
must be used only in conjunction with other IAU 2000 compatible components such as 
precession-nutation. The algorithm is from Capitaine et al. (2003) and IERS Conventions 
2003.   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ g s t 0 0 b             [0.1] 
  
Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions but using the 
truncated nutation model IAU 2000B).   

double   

gal_gst00b   

 (   

    double uta,   

    double utb   

 ) ;   

On entry uta and utb contain the UT1 Julian Date in standard SOFA two-piece format. 
The routine returns the Greenwich Apparent Sidereal Time in radians, in the range 0 to 
2π.  The result is compatible with the IAU 2000 resolutions, except that accuracy has 
been compromised for the sake of speed and convenience in two respects: (1) UT is used 
instead of TDB (or TT) to compute the precession component of GMST and the equation 
of the equinoxes. This results in errors of order 0.1 mas at present. (2) The IAU 2000B 
abridged nutation model (McCarthy & Luzum, 2001) is used, introducing errors of up to 1 
mas. This GAST is compatible with the IAU 2000 resolutions and must be used only in 
conjunction with other IAU 2000 compatible components such as precession-nutation.  
The algorithm is from Capitaine et al. (2003) and IERS Conventions 2003.   
 
References:   
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Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
  

 g a l _ g s t 0 6             [0.1] 
 
Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.   

double   

gal_gst06   

 (   

    double uta,   

    double utb,   

    double tta,   

    double ttb,   

    double rnpb[3][3]   

 ) ;   

On entry uta and utb contain the UT1 Julian Date, tta and ttb contain the Terrestrial Time 
(TT) Julian Date, rnpb contains the nutation x precession x bias matrix. The routine 
returns the Greenwich apparent sidereal time in radians, in the range 0 to 2π. Both UT1 
and TT are required, UT1 to predict the Earth rotation and TT to predict the effects of 
precession-nutation. If UT1 is used for both purposes, errors of order 100 
microarcseconds result. Although the routine uses the IAU 2006 series for s+XY/2, it is 
otherwise independent of the precession-nutation model and can in practice be used with 
any equinox-based NPB matrix.   
 
References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ g s t 0 6 a            [0.1]  
 
Greenwich apparent sidereal time (consistent with IAU 2000 and 2006 resolutions).   

double   

gal_gst06a   

 (   

    double uta,   

    double utb,   

    double tta,   
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    double ttb   

 ) ;   

On entry uta and utb contain the UT1 Julian Date, tta and ttb contain the Terrestrial Time 
(TT) Julian Date. The routine returns the Greenwich apparent sidereal time in radians, in 
the range 0 to 2π. All dates are in standard SOFA two-piece format. Both UT1 and TT are 
required, UT1 to predict the Earth rotation and TT to predict the effects of 
precession-nutation. If UT1 is used for both purposes, errors of order 100 
microarcseconds result. This GAST is compatible with the IAU 2000/2006 resolutions and 
must be used only in conjunction with IAU 2006 precession and IAU 2000A nutation.  
 
References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ g s t 9 4             [0.1] 
 
Greenwich Apparent Sidereal Time (consistent with IAU 1982/94 resolutions).   

double   

gal_gst94   

 (   

    double uta,   

    double utb   

 ) ;   

On entry uta and utb contain the UT1 Julian Date in standard SOFA two-piece format. 
The routine returns the Greenwich Apparent Sidereal Time in radians, in the range 0 to 
2π. The result is compatible with the IAU 1982 and 1994 resolutions, except that accuracy 
has been compromised for the sake of convenience in that UT is used instead of TDB (or 
TT) to compute the equation of the equinoxes. This GAST must be used only in 
conjunction with contemporaneous IAU standards such as 1976 precession, 1980 
obliquity and 1982 nutation. It is not compatible with the IAU 2000 resolutions.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992)   
 
IAU Resolution C7, Recommendation 3 (1994)   
 

 g a l _ n u m 0 0 a            [0.1]  
 
Form the matrix of nutation for a given date, IAU 2000A model.   

void   

gal_num00a   

 (   
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    double date1,   

    double date2,   

    double rmatn[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the 
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true 
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial 
triad of date. A faster, but slightly less accurate result (about 1 mas), can be obtained by 
using instead the gal_num00b routine.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
 

 g a l _ n u m 0 0 b             [0.1] 
 
Form the matrix of nutation for a given date, IAU 2000B model.   

void   

gal_num00b   

 (   

    double date1,   

    double date2,   

    double rmatn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the 
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true 
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial 
triad of date. This routine is faster, but slightly less accurate (about 1 mas), than the 
gal_num00a routine.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
 

 g a l _ n u m 0 6 a            [0.1]  
 
Form the matrix of nutation for a given date, IAU 2006/2000A model.   

void   

gal_num06a   

 (   
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    double date1,   

    double date2,   

    double rmatn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rmatn contains the nutation matrix. The matrix operates in the 
sense V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true 
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial 
triad of date.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ n u m a t             [0.1] 
 
Form the matrix of nutation.   

void   

gal_numat   

 (   

    double epsa,   

    double dpsi,   

    double deps,   

    double rmatn[3][3]   

 ) ;   

On entry epsa contains the mean obliquity of date, dpsi and deps contain the nutation. On 
return rmatn contains the nutation matrix. The supplied mean obliquity epsa, must be 
consistent with the precession-nutation models from which dpsi and deps were obtained.  
The caller is responsible for providing the nutation components; they are in longitude and 
obliquity, in radians and are with respect to the equinox and ecliptic of date. The matrix 
operates in the sense V(true) = rmatn * V(mean), where the p-vector V(true) is with 
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to the 
mean equatorial triad of date.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
 

 g a l _ n u t 0 0 a             [0.1] 
 
Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation with free core 
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nutation omitted).   

void   

gal_nut00a   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary). 
The nutation components in longitude and obliquity are in radians and with respect to the 
equinox and ecliptic of date. The obliquity at J2000 is assumed to be the Lieske et al. 
(1977) value of 84381.448 arcsec. Both the luni-solar and planetary nutations are 
included. The latter are due to direct planetary nutations and the perturbations of the lunar 
and terrestrial orbits.  The routine computes the MHB2000 nutation series with the 
associated corrections for planetary nutations. It is an implementation of the nutation part 
of the IAU 2000A precession-nutation model, formally adopted by the IAU General 
Assembly in 2000, namely MHB2000 (Mathews et al. 2002), but with the free core 
nutation (FCN) omitted.  The full MHB2000 model also contains contributions to the 
nutations in longitude and obliquity due to the free-excitation of the free-core-nutation 
during the period 1979-2000.  These FCN terms, which are time-dependent and 
unpredictable, are NOT included in this routine and, if required, must be independently 
computed. With the FCN corrections included, this routine delivers a pole which is at 
current epochs  accurate to a few hundred microarcseconds. The omission of FCN 
introduces further errors of about that size. This routine provides classical nutation. The 
MHB2000  algorithm, from which it is adapted, deals also with (i) the offsets between the 
GCRS and mean poles and (ii) the adjustments in longitude and obliquity due to the 
changed precession rates. These additional functions, namely frame bias and precession  
adjustments, are supported by the routines gal_bi00 and gal_pr00. The MHB2000 
algorithm also provides "total" nutations, comprising the arithmetic sum of the frame bias, 
precession adjustments, luni-solar nutation and planetary nutation. These total nutations 
can be used in combination with an existing IAU 1976 precession implementation, such 
as gal_pmat76, to deliver GCRS-to-true predictions of sub-mas accuracy at current 
epochs. However, there are three shortcomings in the MHB2000 model that must be 
taken into account if more accurate or definitive results are required (see Wallace 2002):   
 
(i) The MHB2000 total nutations are simply arithmetic sums, yet in reality the various 
components are successive Euler rotations. This slight lack of rigor leads to cross terms  
that exceed 1 mas after a century. The rigorous procedure is to form the GCRS-to-true 
rotation matrix by applying the bias, precession and nutation in that order.   
 
(ii) Although the precession adjustments are stated to be with respect to Lieske et al. 
(1977), the MHB2000 model does not specify which set of Euler angles are to be used 
and how the adjustments are to be applied. The most literal and straightforward 
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add 
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dpsipr to psi_A and depspr to both omega_A and eps_A.   
 
(iii) The MHB2000 model predates the determination by Chapront et al. (2002) of a 14.6 
mas displacement between the J2000 mean equinox and the origin of the ICRS frame. It 
should, however, be noted that neglecting this displacement when calculating star 
coordinates does not lead to a 14.6 mas change in right ascension, only a small 
second-order distortion in the pattern of the precession-nutation effect.   
 
For these reasons, the routines do not generate the "total nutations" directly, though they 
can of course easily be generated by calling gal_bi00, gal_pr00 and this routine and 
adding the results.   
 
References:   
 
Chapront, J., Chapront-Touze, M. & Francou, G. 2002, Astronomy & Astrophysics 387, 
700   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58, 
1-16   
 
Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, Journal Geophysical Research 107, B4.  
The MHB_2000 code itself was obtained on 9th September 2002 from 
ftp//maia.usno.navy.mil/conv2000/chapter5/IAU2000A.   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS Workshop 
5.1 (2002)   
 

 g a l _ n u t 0 0 b             [0.1] 
 
Nutation, IAU 2000B model.   

void   

gal_nut00b   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
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two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary). 
The nutation components in longitude and obliquity are in radians and with respect to the 
equinox and ecliptic of date. The obliquity at J2000 is assumed to be the Lieske et al. 
(1977) value of 84381.448 arcsec. (The errors that result from using this routine with the 
IAU 2006 value of 84381.406 arcsec can be neglected.) The nutation model consists only 
of luni-solar terms, but includes also a fixed offset which compensates for certain 
long-period  planetary terms. This routine is an implementation of the IAU 2000B 
abridged nutation model formally adopted by the IAU General Assembly in 2000. The 
routine computes the MHB_2000_SHORT luni-solar nutation series (Luzum 2001), but 
without the associated corrections for the precession rate adjustments and the offset 
between the GCRS and J2000 mean poles. The full IAU 2000A (MHB2000) nutation 
model contains nearly 1400  terms. The IAU 2000B model (McCarthy & Luzum 2003) 
contains only 77 terms, plus additional simplifications, yet still delivers results of 1 mas 
accuracy at present epochs.  This combination of accuracy and size makes the IAU 
2000B abridged nutation model  suitable for most practical applications. The routine 
delivers a pole accurate to 1 mas from 1900 to 2100 (usually better than 1 mas, very 
occasionally just outside 1 mas). The full IAU 2000A model, which is implemented in the 
routine gal_nut00a (q.v.), delivers considerably greater accuracy at current epochs; 
however, to realize this improved accuracy, corrections for the essentially unpredictable 
free-core-nutation (FCN) must also be included. The routine provides classical nutation. 
The MHB_2000_SHORT algorithm, from which it is adapted, deals also with (i) the offsets 
between the GCRS and mean poles and (ii) the adjustments in longitude and obliquity 
due to the changed precession rates. These additional functions, namely frame bias and 
precession adjustments, are supported by the routines gal_bi00 and gal_pr00. The 
MHB_2000_SHORT algorithm also provides "total" nutations, comprising the arithmetic 
sum of the frame bias, precession adjustments, and nutation (luni-solar + planetary).  
These total nutations can be used in combination with an existing IAU 1976 precession 
implementation, such as gal_pmat76, to deliver GCRS-to-true predictions of mas 
accuracy at current epochs. However, for symmetry with the gal_nut00a routine (q.v. for 
the reasons), the routines do not generate the "total nutations" directly. Should they be 
required, they could of course easily be generated by calling gal_bi00, gal_pr00 and this 
routine and adding the results. The IAU 2000B model includes "planetary bias" terms that 
are fixed in size but compensate for long-period nutations. The amplitudes  quoted in 
McCarthy & Luzum (2003), namely Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are 
optimized for the "total nutations" method described above. The Luzum (2001) values 
used in this implementation, namely -0.135 mas and +0.388 mas, are optimized for the 
"rigorous" method, where frame bias, precession and nutation are applied separately and 
in that order. During the interval 1995-2050, the implementation delivers a maximum error 
of 1.001 mas (not including FCN).   
 
References:   
 
Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions for the precession 
quantities based upon the IAU /1976/ system of astronomical constants", Astronomy & 
Astrophysics 58, 1-2, 1-16. (1977)   
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Luzum, B., private communication, 2001 (Fortran code MHB_2000_SHORT)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J., 
Astronomy & Astrophysics 282, 663-683 (1994)   
 

 g a l _ n u t 0 6 a             [0.1] 
 
IAU 2000A nutation with adjustments to match the IAU 2006 precession.   

void   

gal_nut06a   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return dpsi and deps contain the nutation (luni-solar + planetary). 
The nutation components in longitude and obliquity are in radians and with respect to the 
mean equinox and ecliptic of date, IAU 2006 precession model (Hilton et al. 2006, 
Capitaine et al. 2005). The routine first computes the IAU 2000A nutation, then applies 
adjustments for (i) the consequences of the change in obliquity from the IAU 1980 ecliptic 
to the IAU 2006 ecliptic and (ii) the secular variation in the Earth's dynamical flattening. 
This routine provides classical nutation, complementing the IAU 2000 frame bias and IAU 
2006 precession. It delivers a pole which is at current epochs accurate to a few tens of 
microarcseconds, apart from the free core nutation.   
 
References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ n u t 8 0             [0.1] 
 
Nutation, IAU 1980 model.   

void   

gal_nut80   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps   
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 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. on return dpsi contains the nutation in longitude (radians), and deps the 
nutation in obliquity (radians). The nutation components are with respect to the ecliptic of 
date.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222 (p111).   
 

 g a l _ n u t m 8 0             [0.1] 
 
Form the matrix of nutation for a given date, IAU 1980 model.   

void   

gal_nutm80   

 (   

    double date1,   

    double date2,   

    double rmatn[3][3]   

 ) ;   

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return rmatn contains the nutation matrix. The matrix operates in the sense 
V(true) = rmatn * V(mean), where the p-vector V(true) is with respect to the true  
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial 
triad of date.   
 

 g a l _ o b l 0 6             [0.1] 
 
Mean obliquity of the ecliptic, IAU 2006 precession model.   

double 
gal_obl06   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the obliquity of the ecliptic in radians. The result is 
the angle between the ecliptic and mean equator of date date1+date2.   
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
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 g a l _ o b l 8 0             [0.1] 
 
Mean obliquity of the ecliptic, IAU 1980 model.   

double   

gal_obl80   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. the routine returns the obliquity of the ecliptic in radians. The result is 
the angle between the ecliptic and mean equator of date date1+date2.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Expression 3.222-1 (p114).   
 

 g a l _ p 0 6 e              [0.1] 
 
Precession angles, IAU 2006, equinox based.   

void  

gal_p06e   

 (   

    double date1,   

    double date2,   

    double *eps0,   

    double *psia,   

    double *oma,   

    double *bpa,   

    double *bqa,   

    double *pia,   

    double *bpia,   

    double *epsa,   

    double *chia,   

    double *za,   

    double *zetaa,   

    double *thetaa,   

    double *pa,   

    double *gam,   

    double *phi,   

    double *psi   

 ) ;   
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On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. This routine returns the set of equinox based angles for the Capitaine et 
al. "P03" precession theory, adopted by the IAU in 2006. The angles are set out in Table 
1 of Hilton et al. (2006):   
    
 eps0    epsilon_0    obliquity at J2000   
 psia    psi_A        luni-solar precession   
 oma     omega_A      inclination of equator wrt. J2000 ecliptic   
 bpa     P_A          ecliptic pole x, J2000 ecliptic triad   
 bqa     Q_A          ecliptic pole -y, J2000 ecliptic triad   
 pia     pi_A         angle between moving and J2000 ecliptics   
 bpia    Pi_A         longitude of ascending node of the ecliptic   
 epsa    epsilon_A    obliquity of the ecliptic   
 chia    chi_A        planetary precession   
 za      z_A          equatorial precession: -3rd 323 Euler angle   
 zetaa   zeta_A       equatorial precession: -1st 323 Euler angle   
 theta  theta_A      equatorial precession: 2nd 323 Euler angle   
 pa      p_A          general precession   
 gam     gamma_J2000  J2000 right ascension difference of ecliptic poles   
 phi     phi_J2000    J2000 codeclination of ecliptic pole   
 psi     psi_J2000    longitude difference of equator poles, J2000   
 
The returned values are all radians. Hilton et al. (2006) Table 1 also contains angles that 
depend on models distinct from the P03 precession theory itself, namely the IAU 2000A 
frame bias and nutation. The quoted polynomials are used in other routines:   
 
 gal_xy06 contains the polynomial parts of the X and Y series.   
  
 gal_s06 contains the polynomial part of the s+XY/2 series.   
  

gal_pfw06 implements the series for the Fukushima-Williams angles that are with 
respect to the GCRS pole (i.e. the variants that include frame bias).   

 
The IAU resolution stipulated that the choice of parameterization was left to the user, and 
so an IAU compliant precession implementation can be constructed using various 
combinations of the angles returned by this routine.   
 
The parameterization used is the Fukushima-Williams angles referred directly to the 
GCRS pole. These are the final four arguments returned by this routine, but are more 
efficiently calculated by calling the routine gal_pfw06. GAL also supports the direct 
computation of the CIP GCRS X,Y by series, available by calling gal_xy06. The 
agreement between the different parameterizations is at the 1 microarcsecond level in the 
present era. When constructing a precession formulation that refers to the GCRS pole 
rather than the dynamical pole, it may (depending on the choice of angles) be necessary 
to introduce the frame bias explicitly.   
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References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 

 g a l _ p b 0 6             [0.1]  
 
This routine forms three Euler angles which implement general precession from epoch 
J2000.0, using the IAU 2006 model.  Frame bias (the offset between ICRS and mean 
J2000.0) is included.   

void   

gal_pb06   

 (   

    double date1,   

    double date2,   

    double *bzeta,   

    double *bz,   

    double *btheta   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables bzeta, bz, and btheta are set as follows: 
  
 bzeta  1st rotation: radians clockwise around z   
  bz        3rd rotation: radians clockwise around z   
 btheta   2nd rotation: radians counterclockwise around y   
  
The traditional accumulated precession angles zeta_A, z_A, theta_A cannot be obtained 
in the usual way, namely through polynomial expressions, because of the frame bias.  
The latter means that two of the angles undergo rapid changes near this date. They are  
instead the results of decomposing the precession-bias matrix obtained by using the 
Fukushima-Williams method, which does not suffer from the problem. The decomposition 
returns values which can be used in the conventional formulation and which include 
frame bias. The three angles are returned in the conventional order, which is not the same 
as the order of the corresponding Euler rotations. The precession-bias matrix is R_3(-z) x 
R_2(+theta) x R_3(-zeta). Should zeta_A, z_A, theta_A angles be required that do not 
contain frame bias, they are available by calling the routine gal_p06e.   
 

 g a l _ p f w 0 6             [0.1] 
 
Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).   

void   

gal_pfw06   

 (   

    double date1,   

    double date2,   
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    double *gamb,   

    double *phib,   

    double *psib,   

    double *epsa   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the routine sets the variables as follows: 
 
 gamb   F-W angle gamma_bar ( radians )   
 phib     F-W angle phi_bar ( radians )   
 psib    F-W angle psi_bar ( radians )   
 epsa   F-W angle epsilon_A ( radians )   
 
Naming the following points:   
    
 e   J2000 ecliptic pole,   
  p   GCRS pole,   
  E   mean ecliptic pole of date,   
 P   mean pole of date,   
  
the four Fukushima-Williams angles are as follows:   
 
 gamb  = gamma_bar  = epE   
 phib   = phi_bar   = pE   
 psib   = psi_bar   = pEP   
  epsa  = epsilon_A  = EP   
 
The matrix representing the combined effects of frame bias and precession is:   
 
 PxB = R_1(-epsa).R_3(-psib).R_1(phib).R_3(gamb)   
 
The matrix representing the combined effects of frame bias, precession and nutation is 
simply:   
 
 NxPxB = R_1(-epsa-dE).R_3(-psib-dP).R_1(phib).R_3(gamb)   
 
where dP and dE are the nutation components with respect to the ecliptic of date.   
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 

 g a l _ p m a t 0 0             [0.1] 
 
Precession matrix (including frame bias) from GCRS to a specified date, IAU 2000 model.   
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void   

gal_pmat00   

 (   

    double date1,   

    double date2,   

    double rbp[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rbp contains the bias-precession matrix. The matrix operates 
in the sense V(date) = rbp * V(J2000), where the p-vector V(J2000) is with respect to the 
Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with 
respect to the mean equatorial triad of the given date.   
 
References:   
 
IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly, 
Manchester, UK. Resolutions B1.3, B1.6. (2000)   
 

 g a l _ p m a t 0 6             [0.1] 
 
Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006 model.   

void   

gal_pmat06   

 (   

    double date1,   

    double date2,   

    double rbp[3][3]   

 ) ; 

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rbp contains the bias-precession matrix. The matrix operates 
in the sense V(date) = rbp * V(J2000), where the p-vector V(J2000) is with respect to the 
Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with 
respect to the mean equatorial triad of the given date.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
  

 g a l _ p m a t 7 6             [0.1] 
 
Precession matrix from J2000 to a specified date, IAU 1976 model.   

void   
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gal_pmat76   

 (   

    double date1,   

    double date2,   

    double rmatp[3][3]   

 ) ;   

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return rmatp contains the precession matrix, J2000 -> date1+date2. The 
matrix operates in the sense V(date) = rmatp * V(J2000), where the p-vector V(J2000) is 
with respect to the mean equatorial triad of epoch J2000 and the p-vector V(date) is with 
respect to the mean equatorial triad of the given date. Though the matrix method itself is 
rigorous, the precession angles are expressed through canonical polynomials which are  
valid only for a limited time span. In addition, the IAU 1976 precession rate is known to be 
imperfect. The absolute accuracy of the present formulation is better than 0.1 arcsec from 
1960CE to 2040CE, better than 1 arcsec from 1640CE to 2360CE, and remains below 3 
arcsec for the whole of the period 500BCE to 3000CE. The errors exceed 10 arcsec 
outside the range 1200BCE to 3900CE, exceed 100 arcsec outside 4200BCE to 5600CE 
and exceed 1000 arcsec outside 6800BCE to 8200CE.   
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.   
 
Kaplan, G.H., 1981. USNO circular no. 163, pA2.   
 

 g a l _ p n 0 0              [0.1] 
 
Precession-nutation, IAU 2000 model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   

gal_pn00   

 (   

    double date1,   

    double date2,   

    double dpsi,   

    double deps,   

    double *epsa,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3],   

    double rn[3][3],   

    double rbpn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, dpsi and deps contain the nutation. On return the variables are set as 
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follows: 
    
 epsa  mean obliquity  
 rb     frame bias matrix 
 rp    precession matrix 
 rbp   bias-precession matrix 
 rn     nutation matrix 
 rbpn   GCRS-to-true matrix 
 
The caller is responsible for providing the nutation components; they are in longitude and 
obliquity, in radians and are with respect to the equinox and ecliptic of date. For 
high-accuracy applications, free core nutation should be included as well as any other 
relevant corrections to the position of the CIP. The returned mean obliquity is consistent 
with the IAU 2000 precession-nutation models. The matrix rb transforms vectors from 
GCRS to J2000 mean equator and equinox by applying frame bias. The matrix rp 
transforms vectors from J2000 mean equator and equinox to mean equator and equinox 
of date by applying precession. The matrix rbp transforms vectors from GCRS to mean 
equator and equinox of date by applying frame bias then precession. It is the product rp x 
rb. The matrix rn transforms vectors from mean equator and equinox of date to true 
equator and equinox of date by applying the nutation (luni-solar + planetary). The matrix 
rbpn transforms vectors from GCRS to true equator and equinox of date. It is the product 
rn x rbp, applying frame bias, precession and nutation in that order.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)  
 

 g a l _ p n 0 0 a             [0.1] 
 
Precession-nutation, IAU 2000A model:  a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   

gal_pn00a   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps,   

    double *epsa,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3],   

    double rn[3][3],   

    double rbpn[3][3]   
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 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables are set as follows: 
 
 dpsi, deps   nutation  
 epsa      mean obliquity  
 rb     frame bias matrix  
 rp        precession matrix  
 rbp     bias-precession matrix 
 rn      nutation matrix  
 rbpn   GCRS-to-true matrix 
 
The nutation components (luni-solar + planetary, IAU 2000A) in longitude and obliquity 
are in radians and with respect to the equinox and ecliptic of date. Free core nutation is 
omitted; for the utmost accuracy, use the gal_pn00 routine, where the nutation  
components are caller-specified. For faster but slightly less accurate results, use the 
gal_pn00b routine. The mean obliquity is consistent with the IAU 2000 precession. The 
matrix rb transforms vectors from GCRS to J2000 mean equator and equinox by applying 
frame bias. The matrix rp transforms vectors from J2000 mean equator and equinox to 
mean equator and equinox of date by applying precession. The matrix rbp transforms 
vectors from GCRS to mean equator and equinox of date by applying frame bias then 
precession. It is the product rp x rb. The matrix rn transforms vectors from mean equator 
and equinox of date to true equator and equinox of date by applying the nutation 
(luni-solar + planetary). The matrix rbpn transforms vectors from GCRS to true equator 
and equinox of date. It is the product rn x rbp, applying frame bias, precession and 
nutation in that order. The X,Y,Z coordinates of the IAU 2000A Celestial Intermediate 
Pole are elements [0-2][2] of the matrix rbpn.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 

 g a l _ p n 0 0 b             [0.1] 
 
Precession-nutation, IAU 2000B model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   

gal_pn00b   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps,   
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    double *epsa,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3],   

    double rn[3][3],   

    double rbpn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. on return the variables are set as follows: 
 
 dpsi, deps   nutation  
 epsa       mean obliquity  
 rb        frame bias matrix 
 rp      bias-precession matrix  
 rbp    precession matrix 
 rn      nutation matrix  
 rbpn    GCRS-to-true matrix   
 
The nutation components (luni-solar + planetary, IAU 2000B) in longitude and obliquity 
are in radians and with respect to the equinox and ecliptic of date. For more accurate 
results, but at the cost of increased computation, use the gal_pn00a routine. For the 
utmost accuracy, use the gal_pn00 routine, where the nutation components are 
caller-specified. The mean obliquity is consistent with the IAU 2000 precession. The 
matrix rb transforms vectors from GCRS to J2000 mean equator and equinox by applying 
frame bias. The matrix rp transforms vectors from J2000 mean equator and equinox to 
mean equator and equinox of date by applying precession. The matrix rbp transforms 
vectors from GCRS to mean equator and equinox of date by applying frame bias then 
precession. It is the product rp x rb. The matrix rn transforms vectors from mean equator 
and equinox of date to true equator and equinox of date by applying the nutation  
(luni-solar + planetary). The matrix rbpn transforms vectors from GCRS to true equator 
and equinox of date. It is the product rn x rbp, applying frame bias, precession and 
nutation in that order. The X,Y,Z coordinates of the IAU 2000B Celestial Intermediate 
Pole are elements [0-2][2] of the matrix rbpn.   
 
References:   
   
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 

 g a l _ p n 0 6             [0.1]  
  
Precession-nutation, IAU 2006 model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   



General Astrodynamics Library – Reference Manual 

 

106 

 

gal_pn06   

 (   

    double date1,   

    double date2,   

    double dpsi,   

    double deps,   

    double *epsa,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3],   

    double rn[3][3],   

    double rbpn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, and dpsi and deps the nutation. On return the variables are set as 
follows: 
 
 epsa  mean obliquity 
 rb     frame bias matrix   
 rp     precession matrix  
 rbp   bias-precession matrix 
 rn     nutation matrix 
 rbpn   GCRS-to-true matrix 
 
The caller is responsible for providing the nutation components; they are in longitude and 
obliquity, in radians and are with respect to the equinox and ecliptic of date. For 
high-accuracy applications, free core nutation should be included as well as any other 
relevant corrections to the position of the CIP. The returned mean obliquity is consistent 
with the IAU 2006 precession. The matrix rb transforms vectors from GCRS to mean 
J2000 by applying frame bias. The matrix rp transforms vectors from mean J2000 to 
mean of date by applying precession. The matrix rbp transforms vectors from GCRS to 
mean of date by applying frame bias then precession. It is the product rp x rb. The matrix 
rn transforms vectors from mean of date to true of date by applying the nutation (luni-solar 
+ planetary). The matrix rbpn transforms vectors from GCRS to true of date CIP/equinox).  
It is the product rn x rbp, applying frame bias, precession and nutation in that order. The 
X,Y,Z coordinates of the IAU 2006/2000A Celestial Intermediate Pole are elements 
[0-2][2] of the matrix rbpn.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 

 g a l _ p n 0 6 a             [0.1] 
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Precession-nutation, IAU 2006/2000A models: a multi-purpose routine, supporting 
classical (equinox-based) use directly and CIO-based use indirectly.   

void   

gal_pn06a   

 (   

    double date1,   

    double date2,   

    double *dpsi,   

    double *deps,   

    double *epsa,   

    double rb[3][3],   

    double rp[3][3],   

    double rbp[3][3],   

    double rn[3][3],   

    double rbpn[3][3]   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables are set as follows: 
 
 dpsi, deps  nutation  
 epsa      mean obliquity  

rb        frame bias matrix  
rp       precession matrix  

 rbp     bias-precession matrix 
rn      nutation matrix 
rbpn    GCRS-to-true matrix  

 
The nutation components (luni-solar + planetary, IAU 2000A) in longitude and obliquity 
are in radians and with respect to the equinox and ecliptic of date. Free core nutation is 
omitted; for the utmost accuracy, use the gal_pn06 routine, where the nutation  
components are caller-specified. The mean obliquity is consistent with the IAU 2006 
precession. The matrix rb transforms vectors from GCRS to mean J2000 by applying 
frame bias. The matrix rp transforms vectors from mean J2000 to mean of date by 
applying precession. The matrix rbp transforms vectors from GCRS to mean of date by  
applying frame bias then precession. It is the product RP x RB. The matrix rn transforms 
vectors from mean of date to true of date by applying the nutation (luni-solar + planetary). 
The matrix rbpn transforms vectors from GCRS to true of date (CIP/equinox). It is the 
product rn x rbp, applying frame bias, precession and nutation in that order. The X,Y,Z 
coordinates of the IAU 2006/2000A Celestial Intermediate Pole are elements [0-2][2] of 
the matrix rbpn.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
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 g a l _ p n m 0 0 a             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), 
equinox-based, IAU 2000A model.   

void   

gal_pnm00a   

 (   

    double date1,   

    double date2,   

    double rbpn[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rbpn contains the classical NPB matrix. The matrix operates 
in the sense V(date) = rbpn * V(GCRS), where the p-vector V(date) is with respect to the 
true equatorial triad of date date1+date2 and the p-vector V(J2000) is with respect to the 
mean equatorial triad of the Geocentric Celestial Reference System (IAU, 2000). A faster, 
but slightly less accurate result (about 1 mas), can be obtained by using instead the 
gal_pnm00b routine.   
 
References:   
 
IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly, 
Manchester, UK.  Resolutions B1.3, B1.6. (2000)   
 

 g a l _ p n m 0 0 b             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), 
equinox-based, IAU 2000B model.   

void   

gal_pnm00b   

 (   

    double date1,   

    double date2,   

    double rbpn[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. on return rbpn the bias-precession-nutation matrix. The matrix operates 
in the sense V(date) = rbpn * V(GCRS), where the p-vector V(date) is with respect to the 
true equatorial triad of date date1+date2 and the p-vector V(J2000) is with respect to the 
mean equatorial triad of the Geocentric Celestial Reference System (IAU, 2000). This 
routine is faster, but slightly less accurate (about 1 mas), than the gal_pnm00a routine.   
 
References:   
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IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly, 
Manchester, UK. Resolutions B1.3, B1.6. (2000)   
 

 g a l _ p n m 0 6 a             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), IAU 2006 
precession and IAU 2000A nutation models.   

void   

gal_pnm06a   

 (   

    double date1,   

    double date2,   

    double rnpb[3][3]   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return rnpb contains bias-precession-nutation matrix. The matrix 
operates in the sense V(date) = rnpb * V(GCRS), where the p-vector V(date) is with 
respect to the true equatorial triad of date date1+date2 and the p-vector V(J2000) is with 
respect to the mean equatorial triad of the Geocentric Celestial Reference System (IAU, 
2000).   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 

 g a l _ p n m 8 0             [0.1] 
 
Form the matrix of precession/nutation for a given date, IAU 1976 precession model, IAU 
1980 nutation model.   

void   

gal_pnm80   

 (   

    double date1,   

    double date2,   

    double rmatpn[3][3]   

 ) ;    

On entry date1 and date2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return rmatpn contains the combined precession/nutation matrix. The matrix 
operates in the sense V(date) = rmatpn * V(J2000), where the p-vector V(date) is with 
respect to the true equatorial triad of date date1+date2 and the p-vector V(J2000) is with 
respect to the mean equatorial triad of epoch J2000.   
 
References:   
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Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.3 (p145).   
 

 g a l _ p o m 0 0             [0.1] 
 
Form the matrix of polar motion for a given date, IAU 2000.   

void   

gal_pom00   

 (   

    double xp,   

    double yp,   

    double sp,   

    double rpom[3][3]   

 ) ;   

On entry xp and yp contain the coordinates of the pole in radians and the TIO locator s' in 
radians. xp and yp are the "coordinates of the pole", in radians, which position the 
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS 
Conventions 2003). In a geocentric right-handed triad u,v,w, where the w-axis points at  
the north geographic pole, the v-axis points towards the origin of longitudes and the u axis 
completes the system, xp = +u and yp = -v. sp is the TIO locator s', in radians, which 
positions the Terrestrial Intermediate Origin on the equator. It is obtained from polar 
motion observations by numerical integration, and so is in essence unpredictable.  
However, it is dominated by a secular drift of about 47 microarcseconds per century, and 
so can be taken into account by using s' = -47*t, where t is centuries since J2000. The 
routine gal_sp00 implements this approximation. The matrix operates in the sense 
V(TRS) = rpom * V(CIP), meaning that it is the final rotation when computing the pointing 
direction to a celestial source.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ p r 0 0              [0.1] 
 
Precession-rate part of the IAU 2000 precession-nutation models (part of MHB2000).   

void   

gal_pr00   

 (   

    double date1,   

    double date2,   

    double *dpsipr,   

    double *depspr   

 ) ;   
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On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return dpsipr and deps contain the precession corrections. The 
precession adjustments are expressed as "nutation components", corrections in 
longitude and obliquity with respect to the J2000 equinox and ecliptic. Although the 
precession adjustments are stated to be with respect to Lieske et al. (1977), the 
MHB2000 model does not specify which set of Euler angles are to be used and how the 
adjustments are to  be applied. The most literal and straightforward procedure is to adopt 
the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add dpsipr to psi_A and 
depspr to both omega_A and eps_A (Wallace 2002). This is an implementation of one 
aspect of the IAU 2000A nutation model, formally adopted by the IAU General Assembly 
in 2000, namely MHB2000 (Mathews et al. 2002).   
 
References   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions for the precession 
quantities based upon the IAU (1976) System of Astronomical Constants", Astronomy & 
Astrophysics, 58, 1-16 (1977)   
 
Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New 
nutation series for non-rigid Earth and insights into the Earth's interior", Journal 
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th 
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.   
 
Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS Workshop 
5.1 (2002)   
 

 g a l _ p r e c 7 6            [0.1]  
 
IAU 1976 precession model. This routine forms the three Euler angles which implement 
general precession between two epochs, using the IAU 1976 model (as for the FK5 
catalog).   

void   

gal_prec76   

 (   

    double ep01,   

    double ep02,   

    double ep11,   

    double ep12,   

    double *zeta,   

    double *z,   

    double *theta   

 ) ;   

On entry ep01 and ep02 contain the TDB starting epoch, and ep11 and ep12 contain the 
TDB ending epoch. Both dates are Julian Dates in standard SOFA two-piece format. On 
return the variables are set as follows: 
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 zeta   1st rotation: radians clockwise around z   
 z       3rd rotation: radians clockwise around z   
 theta   2nd rotation: radians counterclockwise around y   
 
The accumulated precession angles zeta, z, theta are expressed through canonical 
polynomials which are valid only for a limited time span. In addition, the IAU 1976 
precession rate is known to be imperfect. The absolute accuracy of the present 
formulation is better than 0.1 arcsec from 1960CE to 2040CE, better than 1 arcsec from 
1640CE to 2360CE, and remains below 3 arcsec for the whole of the period 500BCE to 
3000CE. The errors exceed 10 arcsec outside the range 1200BCE to 3900CE, exceed 
100 arcsec outside 4200BCE to 5600CE and exceed 1000 arcsec 1000 arcsec outside 
6800BCE to 8200CE. The three angles are returned in the conventional order, which is 
not the same as the order of the corresponding Euler rotations. The precession matrix is 
R_3(-z) x R_2(+theta) x R_3(-zeta).   
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.   
 

 g a l _ s 0 0              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 2000A 
precession-nutation.   

double   

gal_s00   

 (   

    double date1,   

    double date2,   

    double x,   

    double y   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, x and y contain the CIP coordinates. The routine returns the CIO locator 
s in radians. The CIO locator s is the difference between the right ascensions of the same 
point in two systems: the two systems are the GCRS and the CIP,CIO, and the point is the 
ascending node of the CIP equator. The quantity s remains below 0.1 arcsecond 
throughout 1900CE-2100CE. The series used to compute s is in fact for s+xy/2, where x 
and y are the x and y components of the CIP unit vector; this series is more compact than 
a direct series for s would be. This routine requires x,y to be supplied by the caller, who is 
responsible for providing values that are consistent with the supplied date. The model is 
consistent with the IAU 2000A precession-nutation.   
 
References:   
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Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ s 0 0 a              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2000A precession-nutation model.   

double   

gal_s00a   

 (   

    double date1,   

    double date2   

 ) ;    

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the 
difference between the right ascensions of the same point in two systems. The two 
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP 
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout 
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are 
the x and y components of the CIP unit vector; this series is more compact than a direct 
series for s would be. This routine uses the full IAU 2000A nutation model when predicting 
the CIP position. Faster results, with no significant loss of accuracy, can be obtained via 
the routine gal_s00b, which uses instead the IAU 2000B truncated model.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ s 0 0 b              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2000B precession-nutation model.   
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double   

gal_s00b   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the 
difference between the right ascensions of the same point in two systems. The two 
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP 
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout 
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are 
the x and y components of the CIP unit vector; this series is more compact than a direct 
series for s would be. This routine uses the IAU 2000B truncated nutation model when 
predicting the CIP position. The routine gal_s00a uses instead the full IAU 2000A model, 
but with no significant increase in accuracy and at some cost in speed.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ s 0 6              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 
2006/2000A precession-nutation.   

double   

gal_s06   

 (   

    double date1,   

    double date2,   

    double x,   

    double y   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format, x and y contain CIP coordinates. The routine returns the CIO locator s 
in radians. The CIO locator s is the difference between the right ascensions of the same 
point in two systems:  the two systems are the GCRS and the CIP,CIO, and the point is 
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the ascending node of the CIP equator. The quantity s remains below 0.1 arcsecond 
throughout 1900CE - 2100CE. The series used to compute s is in fact for s+xy/2, where x 
and y are the x and y components of the CIP unit vector; this series is more compact than 
a direct series for s would be. This routine requires X,Y to be supplied by the caller, who is 
responsible for  providing values that are consistent with the supplied date. The model is 
consistent with the "P03" precession (Capitaine et al. 2003), adopted by IAU 2006 
Resolution 1, 2006, and the IAU 2000A nutation (with P03 adjustments).   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics 432, 355   
 
McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
  

 g a l _ s 0 6 a              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2006 precession and IAU 2000A nutation 
models.   

double   

gal_s06a   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the CIO locator s in radians. The CIO locator s is the 
difference between the right ascensions of the same point in two systems. The two 
systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP 
equator. The CIO locator s remains a small fraction of 1 arcsecond throughout 
1900CE-2100CE. The series used to compute s is in fact for s+XY/2, where X and Y are 
the x and y components of the CIP unit vector; this series is more compact than a direct 
series for s would be. This routine uses the full IAU 2000A nutation model when predicting 
the CIP position.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
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McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 

 g a l _ s p 0 0              [0.1] 
 
The TIO locator s', positioning the Terrestrial Intermediate Origin on the equator of the 
Celestial Intermediate Pole.   

double   

gal_sp00   

 (   

    double date1,   

    double date2   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. The routine returns the TIO locator s' in radians. The TIO locator s' is 
obtained from polar motion observations by numerical integration, and so is in essence 
unpredictable. However, it is dominated by a secular drift of about 47 microarcseconds 
per century, which is the approximation evaluated by this routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ x y 0 6              [0.1] 
 
X,Y coordinates of celestial intermediate pole from series based on IAU 2006 precession 
and IAU 2000A nutation.   

void   

gal_xy06   

 (   

    double date1,   

    double date2,   

    double *x,   

    double *y   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return x and y contain the CIP X,Y coordinates. The x,y coordinates 
are those of the unit vector towards the celestial intermediate pole. They represent the 
combined effects  of frame bias, precession and nutation. The fundamental arguments 
used are as adopted in IERS Conventions (2003) and are from Simon et al. (1994) and 
Souchay et al. (1999).  This is an alternative to the angles-based method, via the routine 
gal_fw2xy and as used in gal_xys06a for example. The two methods agree at the 1 
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microarcsecond level (at present), a negligible amount compared with the intrinsic 
accuracy of the models.  However, it would be unwise to mix the two methods 
(angles-based and series-based) in a single application.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics, 412, 567   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., 
Astronomy & Astrophysics, 1994, 282, 663   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
  

 g a l _ x y s 0 0 a             [0.1] 
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2000A precession-nutation model.   

void   

gal_xys00a   

 (   

    double date1,   

    double date2,   

    double *x,   

    double *y,   

    double *s   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables are set as follows: 
 
 x, y   Celestial Intermediate Pole  
 s     the CIO locator s 
  
The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in 
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. A faster, but slightly less accurate 
result (about 1 mas for x,y), can be obtained by using instead the gal_xys00b routine.   
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References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
  

 g a l _ x y s 0 0 b            [0.1]  
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2000B precession-nutation model.   

void   

gal_xys00b   

 (   

    double date1,   

    double date2,   

    double *x,   

    double *y,   

    double *s   

 ) ;   

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables are set as follows: 
 
 x, y  Celestial Intermediate Pole   
 s    the CIO locator s 
 
The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in 
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. This routine is faster, but slightly 
less accurate (about 1 mas in x,y), than the gal_xys00a routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004)   
 

 g a l _ x y s 0 6 a            [0.1]  
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2006 precession and IAU 2000A nutation models.   

void   

gal_xys06a   

 (   

    double date1,   

    double date2,   

    double *x,   
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    double *y,   

    double *s   

 ) ; 

On entry date1 and date2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return the variables are set as follows: 
 
 x, y   Celestial Intermediate Pole 
  s     the CIO locator s 
 
The Celestial Intermediate Pole coordinates are the x,y components of the unit vector in 
the Geocentric Celestial Reference System. The CIO locator s (in radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. Series-based solutions for 
generating X and Y are also available: see Capitaine & Wallace (2006) and gal_xy06.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
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Chapter 8 - Star Routines 

The routines detailed in this chapter are defined in the gal_star.h header file. 
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 g a l _ f k 5 2 h             [0.1] 
 
Transform FK5 (J2000) star data into the Hipparcos system.   

void   

gal_fk52h   

 (   

    double r5,   

    double d5,   

    double dr5,   

    double dd5,   

    double px5,   

    double rv5,   

    double *rh,   

    double *dh,   

    double *drh,   

    double *ddh,   

    double *pxh,   

    double *rvh   

 ) ;   

On entry the variables must be set as follows (all FK5, equinox J2000, epoch J2000):  
  
 r5    right ascension ( radians )   
 d5   declination ( radians )   
 dr5      proper motion in right ascension (dRA/dt, radians per Julian year)   
 dd5    proper motion in declination (dDec/dt, radians per Julian year)   
 px5   parallax ( arcseconds )   
 rv5    radial velocity (positive = receding)   
 
On return the variables are set as follows (all Hipparcos, epoch J2000):   
 
 rh     right ascension ( radians )   
 dh    declination ( radians )   
 drh    proper motion in right ascension (dRA/dt, radians per Julian year)   
 ddh   proper motion in declination (dDec/dt, radians per Julian year)   
 pxh   parallax ( arcseconds )   
 rvh     radial velocity (positive = receding)   
 
This routine transforms FK5 star positions and proper motions into the system of the 
Hipparcos catalogue. The proper motions in right ascension are dRA/dt rather than 
cos(Dec)*dRA/dt, and are per year rather than per century. The FK5 to Hipparcos 
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue 
are not taken into account. See also gal_h2fk5, gal_fk5hz, gal_hfk5z.   
 
References:   
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F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
 

 g a l _ f k 5 h i p             [0.1] 
 
FK5 to Hipparcos rotation and spin.   

void   

gal_fk5hip   

 (   

    double r5h[3][3],   

    double s5h[3]   

 ) ;   

On return r5h contains the r-matrix: FK5 rotation wrt Hipparcos, and s5h contains the 
r-vector: FK5 spin wrt Hipparcos. This routine models the FK5 to Hipparcos 
transformation as a pure rotation and spin; zonal errors in the FK5 catalogue are not 
taken into account.  The r-matrix r5h operates in the sense: P_Hipparcos = r5h x P_FK5 
where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is the equivalent 
Hipparcos p-vector. The r-vector s5h represents the time derivative of the FK5 to 
Hipparcos rotation. The units are radians per year (Julian, TDB).   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  

 g a l _ f k 5 h z             [0.1]  
 
Transform an FK5 (J2000) star position into the system of the Hipparcos catalogue, 
assuming zero Hipparcos proper motion.   

void   

gal_fk5hz   

 (   

    double r5,   

    double d5,   

    double date1,   

    double date2,   

    double *rh,   

    double *dh   

 ) ; 

On entry the variables must be set as follows: 
 
 r5      FK5 right ascension ( radians ), equinox J2000, at date   
 d5         FK5 declination ( radians ), equinox J2000, at date   
 date1,date2  TDB date in standard SOFA two-piece format 
 
On return the variables are set as follows:  
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 rh   Hipparcos right ascension ( radians )   
 dh   Hipparcos declination ( radians )   
 
This routine converts a star position from the FK5 system to the Hipparcos system, in 
such a way that the Hipparcos proper motion is zero. Because such a star has, in general, 
a non-zero proper motion in the FK5 system, the routine requires the date at which the 
position in the FK5 system was determined. The FK5 to Hipparcos transformation is 
modeled as a pure rotation and spin; zonal errors in the FK5 catalogue are not taken into 
account. It was the intention that Hipparcos should be a close approximation to an inertial 
frame, so that distant objects have zero proper motion; such objects have (in general)  
non-zero proper motion in FK5, and this routine returns those fictitious proper motions.  
The position returned by this routine is in the FK5 J2000 reference system but at date 
date1+date2. See also gal_fk52h, gal_h2fk5, gal_hfk5z.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  

 g a l _ h 2 f k 5             [0.1] 
 
Transform Hipparcos star data into the FK5 (J2000) system.   

void   

gal_h2fk5   

 (   

    double rh,   

    double dh,   

    double drh,   

    double ddh,   

    double pxh,   

    double rvh,   

    double *r5,   

    double *d5,   

    double *dr5,   

    double *dd5,   

    double *px5,   

    double *rv5   

 ) ;   

On entry the variables must be set as follows (all Hipparcos, epoch J2000):   
 
 rh    right ascension ( radians )   
 dh    declination ( radians )   
 drh   proper motion in right ascension ( dRA/dt, radians per Julian year )   
 ddh   proper motion in declination ( dDec/dt, radians per Julian year )   
 pxh   parallax ( arcseconds )   
 rvh    radial velocity (positive = receding)   
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On return the variables are set as follows (all FK5, equinox J2000, epoch J2000):   
 
 r5     right ascension ( radians )   
 d5     declination ( radians )   
 dr5   proper motion in right ascension ( dRA/dt, radians per Julian year )   
 dd5   proper motion in declination ( dDec/dt, radians per Julian year )   
 px5   parallax ( arcseconds )   
 rv5   radial velocity (positive = receding)   
  
This routine transforms Hipparcos star positions and proper motions into FK5 J2000.  
The proper motions in right ascension are dRA/dt rather than cos(Dec)*dRA/dt, and are 
per year rather than per century. The FK5 to Hipparcos transformation is modeled as a 
pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account. See 
also gal_fk52h, gal_fk5hz, gal_hfk5z.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  

 g a l _ h f k 5 z             [0.1] 
 
Transform a Hipparcos star position into FK5 J2000, assuming zero Hipparcos proper 
motion.   

void   

gal_hfk5z   

 (   

    double rh,   

    double dh,   

    double date1,   

    double date2,   

    double *r5,   

    double *d5,   

    double *dr5,   

    double *dd5   

 ) ;   

On entry the variables must be set as follows: 
  
rh      Hipparcos right ascension ( radians )   
dh     Hipparcos declination ( radians )   
date1,date2  TDB date in standard SOFA two-piece format   
 
On return the variables are set as follows (all FK5, equinox J2000, date date1+date2):  
  
 r5    right ascension ( radians )   
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 d5   declination ( radians )   
 dr5  FK5 right ascension proper motion ( radians per year )   
 dd5    declination proper motion ( radians per year )   
 
The proper motion in right ascension is dRA/dt rather than cos(Dec)*dRA/dt. The FK5 to 
Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the FK5 
catalogue are not taken into account. It was the intention that Hipparcos should be a close  
approximation to an inertial frame, so that distant objects have zero proper motion; such 
objects have (in general) non-zero proper motion in FK5, and this routine returns those  
fictitious proper motions. The position returned by this routine is in the FK5 J2000 
reference system but at date date1+date2. See also gal_fk52h, gal_h2fk5, gal_fk5zhz.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
 

 g a l _ p v s t a r            [0.1]  
 
Convert star position & velocity vector to catalog coordinates.   

int   

gal_pvstar   

 (   

    double pv[2][3],   

    double *ra,   

    double *dec,   

    double *pmr,   

    double *pmd,   

    double *px,   

    double *rv 

 ) ;    

On entry pv contains the pv-vector ( AU, AU per day ). On return the variables are set as 
follows: 
 
 ra    right ascension ( radians )   
 dec  declination ( radians )   
 pmr   right ascension proper motion ( radians per year )   
 pmd   declination proper motion ( radians per year )   
 px    parallax ( arcseconds )   
 rv     radial velocity ( kilometers per second, positive = receding )   
 
The routine returns one of the following status codes: 
 0   success  
  -1   superluminal speed   
  -2   null position vector   
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The specified pv-vector is the coordinate direction (and its rate of change) for the epoch at 
which the light leaving the star reached the solar-system Barycenter. The star data 
returned by this routine are "observables" for an imaginary observer at the solar-system 
Barycenter. Proper motion and radial velocity are, strictly, in terms of Barycentric 
Coordinate Time, TCB. For most practical applications, it is permissible to neglect the 
distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The result will, as 
a rule, be limited by the intrinsic accuracy of the proper-motion and radial-velocity data; 
moreover, the supplied pv-vector is likely to be merely an intermediate result (for example 
generated by the routine gal_starpv), so that a change of time unit will cancel out overall.   
In accordance with normal star-catalog conventions, the object's right ascension and 
declination are freed from the effects of secular aberration. The frame, which is aligned to 
the catalog equator and equinox, is Lorentzian and centered on the SSB. Summarizing, 
the specified pv-vector is for most stars almost identical to the result of applying the 
standard geometrical "space motion" transformation to the catalog data. The differences, 
which are the subject of the Stumpff paper cited below, are:   
 

(i) In stars with significant radial velocity and proper motion, the constantly changing 
light-time distorts the apparent proper motion. Note that this is a classical, not a 
relativistic, effect.   

 
 (ii) The transformation complies with special relativity.   
  
Care is needed with units. The star coordinates are in radians and the proper motions in 
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in 
kilometers per second, but the pv-vector result is in AU and AU per day. The proper 
motions are the rate of change of the right ascension and declination at the catalog epoch 
and are in radians per Julian year. The right ascension proper motion is in terms of 
coordinate angle, not true angle, and will thus be numerically larger at high declinations. 
Straight-line motion at constant speed in the inertial frame is assumed. If the speed is 
greater than or equal to the speed of light, the routine aborts with an error status. The 
inverse transformation is performed by the routine gal_starpv.   
 
References:   
 
Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).   
 

 g a l _ s t a r p m            [0.1]  
 
Star proper motion: update star catalog data for space motion.   

int   

gal_starpm   

 (   

    double ra1,   

    double dec1,   

    double pmr1,   

    double pmd1,   
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    double px1,   

    double rv1,   

    double ep1a,   

    double ep1b,   

    double ep2a,   

    double ep2b,   

    double *ra2,   

    double *dec2,   

    double *pmr2,   

    double *pmd2,   

    double *px2,   

    double *rv2 

 ) ;   

On entry the variables must be set as follows: 
 
 ra1   right ascension ( radians ), before   
 dec1    declination ( radians ), before   
 pmr1   right ascension proper motion ( radians per year ), before   
 pmd1   declination proper motion ( radians per year ), before   
 px1   parallax ( arcseconds ), before   
 rv1    radial velocity ( kilometers per second, +ve = receding ), before   
 ep1a    "before" epoch, part A  
 ep1b    "before" epoch, part B   
 ep2a   "after" epoch, part A  
 ep2b   "after" epoch, part B 
 
On return the variables are set as follows: 
 
 ra2    right ascension ( radians ), after   
 dec2  declination ( radians ), after   
 pmr2  right ascension proper motion ( radians per year ), after   
 pmd2   declination proper motion ( radians per year ), after   
 px2    parallax ( arcseconds ), after   
 rv2   radial velocity ( kilometers per second, +ve = receding ), after   
 
The routine returns the following status codes: 
 
 -1     system error (should not occur)   
 0     no warnings or errors   
 1      distance overridden  
 2   excessive velocity 
 4      solution didn't converge  
 else   binary logical OR of the above warnings 
 
The starting and ending TDB epochs ep1a+ep1b and ep2a+ep2b are Julian Dates in 
standard SOFA two-piece format. In accordance with normal star-catalog conventions, 
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the object's right ascension and declination are freed from the effects of secular 
aberration. The frame, which is aligned to the catalog equator and equinox, is Lorentzian 
and centered on the SSB. The proper motions are the rate of change of the right 
ascension and declination at the catalog epoch and are in radians per TDB Julian year.  
The parallax and radial velocity are in the same frame. Care is needed with units. The star 
coordinates are in radians and the proper motions in radians per Julian year, but the 
parallax is in arcseconds. The ra proper motion is in terms of coordinate angle, not true 
angle. If the catalog uses arcseconds for both ra and dec proper motions, the ra proper 
motion will need to be divided by cos(dec) before use. Straight-line motion at constant 
speed, in the inertial frame, is assumed. An extremely small (or zero or negative) parallax 
is interpreted to mean that the object is on the "celestial sphere", the radius of which is an 
arbitrary (large) value (see the gal_starpv routine for the value used). When the distance 
is overridden in this way, the status, initially zero, has 1 added to it. If the space velocity is 
a significant fraction of c (see the constant VMAX in the routine gal_starpv), it is arbitrarily 
set to zero. When this action occurs, 2 is added to the status. The relativistic adjustment 
carried out in the gal_starpv routine involves an iterative calculation. If the process fails to  
converge within a set number of iterations, 4 is added to the status.   
 

 g a l _ s t a r p v             [0.1] 
 
Convert star catalog coordinates to position & velocity vector.   

int   

gal_starpv   

 (   

    double ra,   

    double dec,   

    double pmr,   

    double pmd,   

    double px,   

    double rv,   

    double pv[2][3] ) ;   

On entry the variables must be set as follows: 
 
 ra    right ascension ( radians )   
 dec    declination ( radians )   
 pmr   right ascension proper motion ( radians per year )   
 pmd   declination proper motion ( radians per year )   
 px      parallax ( arcseconds )   
 rv     radial velocity ( kilometers per second, positive = receding )   
 
On return pv contains the pv-vector ( AU, AU per day ). 
 
The routine returns one of the following status codes: 
   
 0      no warnings   
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 1  distance overridden 
  2  excessive velocity  
  4  solution didn't converge  
  else   binary logical OR of the above   
 
The star data accepted by this routine are "observables" for an imaginary observer at the 
solar-system Barycenter. Proper motion and radial velocity are, strictly, in terms of 
Barycentric Coordinate Time, TCB. For most practical applications, it is permissible to 
neglect the distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The 
result will, as a rule, be limited by the intrinsic accuracy of the proper-motion and radial- 
velocity data; moreover, the pv-vector is likely to be merely an intermediate result, so that 
a change of time unit would cancel out overall. In accordance with normal star-catalog 
conventions, the object's right ascension and declination are freed from the effects of 
secular aberration. The frame, which is aligned to the catalog equator and equinox, is 
Lorentzian and centered on the SSB. The resulting position and velocity pv-vector is with 
respect to the same frame and, like the catalog coordinates, is freed from the effects of 
secular aberration. Should the "coordinate direction", where the object was located at the 
catalog epoch, be required, it may be obtained by calculating the magnitude of the 
position vector pv[0][0-2] dividing by the speed of light in AU per day to give the light-time, 
and then multiplying the space velocity pv[1][0-2] by this light-time and adding the result 
to pv[0][0-2]. Summarizing, the pv-vector returned is for most stars almost identical to the 
result of applying the standard geometrical "space motion" transformation. The 
differences, which are the subject of the Stumpff paper referenced below, are:   
 

In stars with significant radial velocity and proper motion, the constantly changing 
light-time distorts the apparent proper motion. Note that this is a classical, not a 
relativistic, effect.   

 
The transformation complies with special relativity.   

  
Care is needed with units. The star coordinates are in radians and the proper motions in 
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in 
kilometers per second, but the pv-vector result is in AU and AU per day. The ra proper 
motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for 
both ra and dec proper motions, the ra proper motion will need to be divided by cos(dec) 
before use. Straight-line motion at constant speed, in the inertial frame, is assumed. An 
extremely small (or zero or negative) parallax is interpreted to mean that the object is on 
the "celestial sphere", the radius of which is an arbitrary (large) value (see the constant 
PXMIN). When the distance is overridden in this way, the status, initially zero, has 1 
added to it. If the space velocity is a significant fraction of c (see the constant VMAX), it is 
arbitrarily set to zero. When this action occurs, 2 is added to the status. The relativistic 
adjustment involves an iterative calculation. If the process fails to converge within a set 
number (IMAX) of iterations, 4 is added to the status. The inverse transformation is 
performed by the routine gal_pvstar.   
 
References:   
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Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).   
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Chapter 9 - Ellipsoids 

The routines detailed in this chapter are defined in the gal_ellipsoids.h header file. 



General Astrodynamics Library – Reference Manual 

 

134 

 

 g a l _ e l l i p s o i d s . h           [0.2] 
 
This header file includes the header files of the routines that make up the ellipsoids 
sub-library, and defines the constants for the Ellipsoid Model identifiers.  

/* 

 * --------------------------------------------- 

 * Constants for the Ellipsoid Model Identifiers 

 * --------------------------------------------- 

 */ 

  

enum { 

  GAL_EMEA_DEL1800    =  0,  /* Delambre 1800                  */ 

  GAL_EMEA_AIRY1830   =  1,  /* Airy 1830                      */ 

  GAL_EMEA_EVER1830   =  2,  /* Everest 1830                   */ 

  GAL_EMEA_EVER1830BA =  3,  /* Everest 1830 Boni Alt          */ 

  GAL_EMEA_BESL1841   =  4,  /* Bessel 1841                    */ 

  GAL_EMEA_CL1866     =  5,  /* Clarke 1866                    */ 

  GAL_EMEA_CL1880     =  6,  /* Clarke 1880                    */ 

  GAL_EMEA_CLA1880M   =  7,  /* Clarke 1880 Modified           */ 

  GAL_EMEA_HEL1906    =  8,  /* Helmert 1906                   */ 

  GAL_EMEA_INTL1909   =  9,  /* International 1909             */ 

  GAL_EMEA_KRSV       = 10,  /* Krassovsky                     */ 

  GAL_EMEA_MERC1960   = 11,  /* Mercury 1960                   */ 

  GAL_EMEA_WGS1960    = 12,  /* World Geodetic System 1960     */ 

  GAL_EMEA_IAU1964    = 13,  /* IAU 1964                       */ 

  GAL_EMEA_AUSNAT1965 = 14,  /* Australian National 1965       */ 

  GAL_EMEA_WGS1966    = 15,  /* World Geodetic System 1966     */ 

  GAL_EMEA_MERC1968M  = 16,  /* Modified Mercury 1968          */ 

  GAL_EMEA_SA1969     = 17,  /* South American 1969            */ 

  GAL_EMEA_GRS1967    = 18,  /* Geodetic Reference System 1967 */ 

  GAL_EMEA_WGS1972    = 19,  /* World Geodetic System 1972     */ 

  GAL_EMEA_IAG1975    = 20,  /* IAG 1975                       */ 

  GAL_EMEA_IAU1976    = 21,  /* IAU 1976                       */ 

  GAL_EMEA_GRS1980    = 22,  /* Geodetic Reference System 1980 */ 

  GAL_EMEA_MERIT1983  = 23,  /* MERIT 1983                     */ 

  GAL_EMEA_WGS1984    = 24,  /* World Geodetic System 1984     */ 

  GAL_EMEA_IERS1989   = 25,  /* IERS 1989                      */ 

  GAL_EMEA_IERS2000   = 26,  /* IERS 2000                      */ 

} ; 

 
  



Chapter 9 - Ellipsoids 

135 

 

 g a l _ e m d e t a i l s            [0.2] 
 
This routine returns the full details of the requested ellipsoid model. 

int 

gal_emdetails   

  ( 

    const int em, 

    int *body, 

    char *name, 

    double *sma, 

    double *inf 

  ) ; 

On entry em contains the identifier code of the requested ellipsoid model. On return the 
variables are set as follows: 
 
 body  Solar System Body Identifier 
 name   Ellipsoid Model name 
 sma   Semi-major axis ( meters ) 
 inf    Inverse flattening factor  
 
The routine returns one of the following status codes: 
 

0   success 
1   invalid Ellipsoid Model Identifier   
 

The header file gal_ellipsoids.h defines the following constants for the valid values of em: 
  
 Identifier                    Ellipsoid Model 
 
 GAL_EMEA_DEL1800            Delambre 1800 
 GAL_EMEA_AIRY1830           Airy 1830 
 GAL_EMEA_EVER1830           Everest 1830 
 GAL_EMEA_EVER1830BA         Everest 1830 Boni Alt 
 GAL_EMEA_BESL1841           Bessel 1841 
 GAL_EMEA_CL1866             Clarke 1866 
 GAL_EMEA_CL1880            Clarke 1880 
 GAL_EMEA_CLA1880M           Clarke 1880 Modified 
 GAL_EMEA_HEL1906            Helmert 1906 
 GAL_EMEA_INTL1909           International 1909 
 GAL_EMEA_KRSV             Krassovsky 
 GAL_EMEA_MERC1960        Mercury 1960 
 GAL_EMEA_WGS1960            World Geodetic System 1960 
 GAL_EMEA_IAU1964            IAU 1964 
 GAL_EMEA_AUSNAT1965     Australian National 1965 
 GAL_EMEA_WGS1966            World Geodetic System 1966 
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 GAL_EMEA_MERC1968M      Modified Mercury 1968 
 GAL_EMEA_SA1969       South American 1969 
 GAL_EMEA_GRS1967    Geodetic Reference System 1967 
 GAL_EMEA_WGS1972     World Geodetic System 1972 
 GAL_EMEA_IAG1975    IAG 1975 
 GAL_EMEA_IAU1976         IAU 1976 
 GAL_EMEA_GRS1980   Geodetic Reference System 1980 
 GAL_EMEA_MERIT1983   MERIT 1983 
 GAL_EMEA_WGS1984   World Geodetic System 1984 
 GAL_EMEA_IERS1989     IERS 1989 
 GAL_EMEA_IERS2000           IERS 2000 
 
Where differences in values were found between references Seidelmann was selected. 
 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann, 
1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
 
McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
 

 g a l _ e m n a m e             [0.2] 
 
This routine returns the name of the requested ellipsoid model. 

char * 

gal_emname  

  ( 

    const int em, 

    char *name 

  ) ; 

On entry em contains the identifier code of the required ellipsoid model. On return name 
contains the model name. The header file gal_ellipsoids.h defines constants for the 
supported model identifiers. The routine returns a pointer to the string name or NULL if 
the specified ellipsoid model identifier is not supported. 
 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann, 
1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
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McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
 

 g a l _ e m p a r a m s            [0.2] 
 
This routine returns the parameters of the requested ellipsoid model. 

int 

gal_emparams   

  ( 

    const int em, 

    double *sma, 

    double *inf 

  ) ; 

On entry em contains the identifier code of the requested ellipsoid model. The header file 
gal_ellipsoids.h defines constants for the supported model identifiers. On return the 
variables are set as follows: 
 
 sma   Semi-major axis ( meters ) 
 inf    Inverse flattening factor  
 
The routine returns one of the following status codes: 
 

0   success 
1   invalid Ellipsoid Model Identifier   

 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth Seidelmann, 
1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
 
McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
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Chapter 10 - Gravity Models 

The routines detailed in this chapter are defined in the gal_gravity.h header file.
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 g a l _ g m . h          [0.3] 
 
This header file defines the gravity model structures, and constants for the gravity model 
identifiers and status codes. 

 
 

/* -------------------------------------------- 

 * Structure to store the gravity model details 

 * -------------------------------------------- 

 */ 

 

typedef struct { 

 

  int    body       ;  /* Solar System Body Identifier     */ 

  char   name[40]   ;  /* Gravity Model name               */ 

  double gm         ;  /* GM ( mu ) ( m^3 s^-2 )           */ 

  double sma        ;  /* Semi-Major Axis( meters )        */ 

  int    max_degree ;  /* Highest degree of coefficients   */ 

  int    max_order  ;  /* Highest order of coefficients    */ 

  int    normalized ;  /* 1 = Normalized, 0 = Unnormalized */ 

  double *terms     ;  /* Pointer to spherical terms       */ 

 

} gal_gm_t ;  

 

/* ------------------------------------------------------- 

 * Structure to store the derivative parameters for derivs 

 * ------------------------------------------------------- 

 */ 

 

typedef struct { 

  gal_gm_t *gm        ; /* Gravity Model     */ 

  int      max_degree ; /* Max degree to use */ 

  int      max_order  ; /* Max order to use  */ 

} gal_derivsp_t ; 

   

/* 

 * ------------------------------------------- 

 * Constants for the gravity model identifiers 

 * ------------------------------------------- 

 */ 

  

enum { 

 

/* 

 * Earth  

 */ 
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  GAL_GMEA_EGM96        = 0, 

  GAL_GMEA_JGM3         = 1, 

  GAL_GMEA_WGS72        = 2, 

  GAL_GMEA_WGS66        = 3, 

   

/* 

 * The Moon 

 */ 

  

  GAL_GMMO_GLGM1        = 4, 

  GAL_GMMO_GLGM2        = 5, 

   

/* 

 * Venus 

 */ 

  

  GAL_GMVE_MGNP180U     = 6, 

  GAL_GMVE_MGNP120PSAAP = 7, 

   

/*  

 * Mars 

 */ 

  

  GAL_GMMA_GMM2B        = 8, 

  GAL_GMMA_MGM1025      = 9, 

 

} ; 

 

/* 

 * ------------------------------------------------------------ 

 * Constants for gravity model coefficients normalization state 

 * ------------------------------------------------------------ 

 */ 

  

enum { 

  GAL_UNNORMALIZED = 0, 

  GAL_NORMALIZED   = 1, 

} ; 

 

g a l _ a c c h              [0.3] 
 
Computes the body fixed acceleration due to the harmonic gravity field of the central 
body. 

int 

gal_acch 

  ( 
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    double pbf[3], 

    gal_gm_t *gm, 

    int max_n,  

    int max_m, 

    double abf[3]  

  ) ; 

On entry the variables must be set as follows: 
 
 p    Position vector in body fixed frame 
 gm    Gravity Model 
 max_n   Maximum degree to use  
 max_m  Maximum order to use 
 
On return abf contains the body fixed acceleration vector. 
 
The routine returns one of the following status codes: 
 0   success 
 1   maximum degree or order exceeds limits of gravity model 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 61-68 
 

 g a l _ a c c p m            [0.1]  
 
Computes the perturbational acceleration due to a point mass 

void 

gal_accpm 

  ( 

    double ps[3], 

    double ppm[3], 

    double gm, 

    double a[3]  

  ) ; 

On entry the variables must be set as follows: 
 
 ps    Position vector of satellite 
 ppm   Position vector of point mass 
 gm    Gravitational coefficient of point mass 
 
On return a contains the acceleration vector (a=d^2r/dt^2). 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 69-70 
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 g a l _ c a n p v             [0.4] 
 
This routine converts a pv-vector from regular to canonical units. 

void 

gal_canpv 

  ( 

    double pv1[2][3], 

    double gm, 

    double re, 

    double pv2[2][3]  

  ) ; 

On entry pv1 contains the pv-vector to convert, gm contains the gravitational parameter, 
and re contains the mean radius of the reference orbit. On return pv2 contains the 
converted position and velocity vectors in canonical units. gm and re must be stated in 
consistent units, i.e. meters or kilometers based. 
 

 g a l _ g m a l l o c           [0.3] 
 
This routine creates a blank gravity model of given degree. 

gal_gm_t * 

gal_gmalloc 

  ( 

    int n 

  ) ;   

On entry n contains the required degree. The routine returns a pointer to gravity model 
structure or NULL if failure. 
 

 g a l _ g m c p y            [0.3]  
 
This routine allocates memory and populates it with all or a subset of a gravity model.  

gal_gm_t *   

gal_gmcpy 

  ( 

    gal_gm_t *gm1, 

    int maxn, 

    int maxm, 

    int norm 

  ) ; 

On entry the variables must be set as follows: 
 
 gm1   Pointer to source gravity model structure to copy 
  maxn   Maximum degree to be returned 
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 maxm  Maximum order to be returned 
  norm    1 = spherical terms are to be normalized 
    0 = spherical terms are to be unnormalized 
 
The routine returns a pointer to the newly allocated model. This function additionally 
allows the user to limit the maximum degree and order of the coefficients to be included, 
useful when the full accuracy of the model is not required. If a maximum degree or order is 
requested greater than that provided for the base model then the higher unknown 
coefficients are set to zero. If the routine is unable to allocate memory then NULL is 
returned. 
 

 g a l _ g m d e n o r m          [0.3] 
 
This routine un-normalizes a gravity model's coefficients 

gal_gm_t * 

gal_gmdenorm 

  ( 

    gal_gm_t *gm1, 

    gal_gm_t *gm2 

  ) ; 

On entry gm1 contains the source gravity model. On return gm2 contains the 
unnormalized terms. The routine returns a pointer to gm2. 
 

 g a l _ g m e g m 9 6 . h           [0.3] 
 
This file defines gal_gmegm96, the external variable structure for the EGM96 Earth 
gravity model. 

gal_gm_t gal_gmegm96 = { 
GAL_SSB_EA, 

"EGM96", 

3.986004415e+14, 

6.3781363e+06, 

360, 

360, 

1, 

(double *) &gal_gmegm96_terms 

} ; 

This header must only be included at the top level of the program. 
 
References: 
 
Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox 
C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis 
E.C., Rapp R.H., Olson T.R.; The Development of the Joint NASA GSFC and the National 
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Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; NASA Technical 
Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA, 1998 
 

 g a l _ g m f r e e            [0.3] 
 
This routine frees a gravity model previously allocated by gal_gmalloc or gal_gmcpy 

void 
gal_gmfree 

  ( 

    gal_gm_t *gm 

  ) ; 

On entry gm contains a pointer to the model to be deallocated. 
 

 g a l _ g m g e t             [0.3] 
 
This routine makes a copy of the selected gravity model. 

gal_gm_t * 

gal_gmget 

  ( 

    int gmi, 

    int maxn, 

    int maxm, 

    int norm 

  ) ;   

On entry the variables must be set as follows: 
 
 gmi   Identifier of the required gravity model  
 maxn   Maximum degree to return 
 maxm  Maximum order to return 
 norm   1 = spherical terms are to be normalized 
   0 = spherical terms are to be unnormalized 
 
The routine returns a pointer to new allocated copy of gravity model. If the identifier 
parameter is unknown or if the routine was unable to allocate memory then NULL is 
returned. 
 
The header file gal_gm.h defines the following constants for the gravity model identifiers: 
 
 GAL_GMEA_EGM96        Earth Gravity Model 1996      
 GAL_GMEA_JGM3        Joint Gravity Model 3       
 GAL_GMEA_WGS72     World Geodetic System 1972   
 GAL_GMEA_WGS66      World Geodetic System 1966 
 GAL_GMMO_GLGM1      Goddard Lunar Gravity Model-1     
 GAL_GMMO_GLGM2      Goddard Lunar Gravity Model-2        
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 GAL_GMVE_MGNP180U    Magellan MGNP180U Venus Gravity Model 
 GAL_GMVE_MGNP120PSAAP  Magellan MGNP120PSAAP Venus G. M. 
 GAL_GMMA_GMM2B      Goddard Mars Model 2B   
 GAL_GMMA_MGM1025     Improved Goddard Mars Model 2B       
 

 g a l _ g m g l g m 1 . h            [0.3] 
 
This file defines gal_glgm1, the external variable structure for the GLGM1 Lunar gravity 
model. 

gal_gm_t gal_gmglgm1 = { 

GAL_SSB_MO, 

"GLGM-1", 

4.9028026273352e+12, 

1.7380e+06, 

70, 

70, 

1, 

(double *) &gal_gmglgm1_terms 

} ; 

This model for the Lunar Gravity Field is derived from a tracking of Lunar Orbiters 1,2,3,4 
& 5, the Apollo-15 subsatellite, and Clementine: 361,000 observations from Clementine, 
and 300,000 observations from the other spacecraft. The field was derived using the 
1992 IAU Model for the Moon. Note that the reference for this model has typographical 
errors for two the quantities describing the angular librations.  
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A. 
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S Tjuflin, 
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992. 
 
Table II lists the IAU model for the orientation for the lunar pole and prime meridian. 
 
The quantities which read: 
  
  E3 = 260.008 - 13.012001*d 
  E5 = 357.529 -  0.985600*d 
 
should instead read: 
    
  E3 = 260.008 + 13.012001*d 
  E5 = 357.529 +  0.985600*d 
 
The Reference radius for this model is 1738.0 kilometers. 
 
The model gives the Planet GM in m3s-2, and the Spherical Harmonic Coefficients. All the 
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C and S terms are normalized. GM(1 sigma error) = .000946 kilometers3s-2 
 
References:   
 
Goddard Lunar Gravity Model-1 (GLGM-1): A 70th degree and order gravity model for the 
Moon, by F G Lemoine, D E Smith, and M T Zuber, P11A-9, EOS, Transactions of the 
American Geophysical Union Volume 75, No. 44, 1994. 
 

 g a l _ g m g l g m 2 . h            [0.3] 
 
This file defines gal_glgm2, the external variable structure for the GLGM2 Lunar gravity 
model. 

gal_gm_t gal_gmglgm2 = { 

GAL_SSB_MO, 

"GLGM-2", 

4.9028029535968e+12, 

1.7380e+06, 

70, 

70, 

1, 

(double *) &gal_gmglgm2_terms 

} ; 

The field was derived using the 1992 IAU Model for the Moon. Note that the reference for 
this model has typographical errors for two of the quantities describing the angular 
librations. 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A. 
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S Tjuflin, 
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992. 
 
Table II lists the IAU model for the orientation for the lunar pole and prime meridian. 
 
The quantities which read: 
  
  E3 = 260.008 - 13.012001*d 
  E5 = 357.529 -  0.985600*d 
 
should instead read: 
    
  E3 = 260.008 + 13.012001*d 
  E5 = 357.529 +  0.985600*d 
 
The Reference radius for this model is 1738.0 kilometers. 
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The model gives the Planet GM in m3s-2, and the Spherical Harmonic Coefficients. All the 
C and S terms are normalized. gm=4902.80295 ;dgm = .00224 
 
References:  
 
Journal Geophysical Research, GLGM-2, A 70th Degree and Order Lunar Gravity Model 
from Clementine and Historical Data, Submitted, November 1995. by F. G. Lemoine, D. 
E. Smith, M.T. Zuber, G. A. Neumann, and D. D. Rowlands. 
 
High Degree and Order Spherical Harmonic Models for the Moon from Clementine and 
Historic S-Band Doppler Data, 1995 XXI General Assembly, IUGG, Boulder, Colorado, 
July 12, 1995. by F. G. Lemoine, D. E. Smith, M. T. Zuber, and G. A. Neumann. 
 

 g a l _ g m g m m 2 b . h         [0.3]  
 
This file defines gal_gmgmm2b, the external variable structure for the GMM2B Mars 
gravity model. 

gal_gm_t gal_gmgmm2b = { 

GAL_SSB_MA, 

"GMM-2B", 

4.2828371901284e+13, 

3.3970e+06, 

80, 

80, 

1, 

(double *) &gal_gmgmm2b_terms 

} ; 

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no 
Mariner 9 or Viking data are included. Coordinate system is IAU 1991 (Davies et al., 
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992). The model was 
constructed from 955,115 observations, summarized in the table below. MGS data are 
limited to tracking from the Aerobraking Hiatus and Science Phasing Orbit (SPO) 
subphases of the Orbit Insertion phase of the mission and to February 1999 to                 
February 2000 after the orbit was circularized.                               
                                                                               
Time Periods   Arcs   Observations                   
 
Hiatus                2   24119                      
SPO-1            8   31001                      
SPO-2      16   157972                      
Feb-Mar 1999    9   76813                      
Apr 1999 - Feb 2000  47   665210                      
 
Total         955115                      
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Orbit reconstruction was improved using Mars Orbiter Laser Altimeter (MOLA) data on 5 
arcs between March and December 1999. Inter-arc and intra-arc crossovers at 21343 
points were included in the orbit solutions. The gravity model was derived using a Kaula 
type constraint: sqrt(2)*13*10**(-5)/L**2. The analysis and results were described by F.G. 
Lemoine, D.D. Rowlands, D.E. Smith, D.S. Chinn, G.A. Neumann, and M.T. Zuber at the 
Spring Meeting of the American Geophysical Union, May 30 - June 3, 2000, Washington. 
DC. Further improvements to the model are expected as additional MGS data are 
incorporated. This Mars gravity model was produced by F.G. Lemoine under the              
direction of D.E. Smith of the MGS Radio Science Team."                       
 
References: 
 
Kaula, W.M., Theory of Satellite Geodesy, Blaisdell, Waltham, MA, 1966 
 

 g a l _ g m j g m 3 . h            [0.3] 
 
This file defines gal_gmjgm3, the external variable structure for the JGM-3 Earth gravity 
model. 

gal_gm_t gal_gmjgm3 = { 

GAL_SSB_EA, 

"JGM-3", 

3.986004461e+14, 

6.3781363e+06, 

70, 

70, 

1, 

(double *) &gal_gmjgm3_terms 

} ; 

References:   
 
Tapley B., Watkins M., Ries J., Davis G., Eanes R., Poole S., Rim H., Schutz B., Shum C., 
Nerem R., Lerch F., Marshall J.A., Klosko S.M., Pavlis N., Williamson R.; The Joint 
Gravity Model 3; Journal of Geophysical Research, Vol. 101, No. B12, S. 28029-28049, 
1996 
  

 g a l _ g m m g m 1 0 2 5 . h          [0.3]  
 
This file defines gal_gmmgm1025, the external variable structure for the MGM1025 Mars 
gravity model. 

gal_gm_t gal_gmmgm1025 = { 

GAL_SSB_MA, 

"MGM1025", 

4.2828369773938997e+13, 

3.3970e+06, 
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80, 

80, 

1, 

(double *) &gal_gmmgm1025_terms 

} ; 

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no 
Mariner 9 or Viking data are included. The MGM1025 gravity model is an update to the 
GMM-2B gravity model. It was determined from 155 arcs of MGS tracking data in Hiatus, 
SPO, GCO and Mapping. MGM1025 includes the same Mapping and GCO data as were 
in GMM2B; in addition, it includes data from the first half of 2001 (through July 21, 2001) 
when the MGS orbit orientation angle with respect to the line-of-sight (LOS) was optimum 
for gravity measurements. It excludes data in the vicinity of solar conjunction from May 8 
to July 30 in 2000.                                               
 
      GMM2B  MGM1025                           
 
 Model Size              80x80        80x80                            
 Coordinate System     IAU 1991     IAU 2000                           
 
 Observations                                                        
  
 Hiatus                 24,119       24,119                           
 SPO-1                  31,001       31,014                           
 SPO-2                 157,972      136,667                           
 GCO                    76,813       80,795                           
 Mapping               665,210    1,352,661                           
 TOTAL                 955,155    1,625,276                           
 
 Number of Arcs                                                      
 Hiatus             2         2                           
 SPO-1              8            8                           
 SPO-2            16           14                           
 GCO              9            9                           
 Mapping           47          122                           
                                                                                
MGM1025 has improved correlation with topography compared with GMM-2B. The 
average correlation with MOLA derived topography (through degree 70) is 0.722 for 
GMM-2B and 0.756 for MGM1025. The new model has slightly greater power in the band 
from l=60 to 70. The average RMS of fit to the F2 (two-way) tracking data is 0.13 to 0.20 
millimeters per second with this model, excluding arcs in the vicinity of solar conjunction. 
The average RMS of fit for the one-way (F1) Doppler tracking with this model is 0.10 to 
0.15 millimeters per second. The one-way data contribute to solutions starting 
sporadically in February 2000 and more consistently in arcs starting in March of 2000. 
They are used solely to fill in what would otherwise be gaps in the two-way tracking 
Frequency biases are estimated for each pass of one-way data. The coordinate system 
for the model is IAU 2000 (Seidelman et al., Celestial Mechanics & Dynamical Astronomy, 
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82, 83-110, 2002), defined by the Mars Cartography Working Group. It includes updates 
to the orientation of the Mars Pole and rotation rate from a joint Pathfinder/Viking solution, 
and a re-determination of the location of the prime meridian (with respect to the crater 
Airy-0) from Mars Global Surveyor MOC and MOLA data. Pole right ascension (alpha) 
and declination (delta), prime meridian (Wo), and rotation rate (Wodot) in IAU 2000 are:                                    
 
 alpha   317.68143 deg  -0.1061 degrees per century                       
 delta   52.88650 deg   -0.0609 degrees per century                       
 Wo     176.630 deg                                             
 Wdot    350.89198266 deg/day                                    
                                                                                
This Mars gravity model was produced by F.G. Lemoine under the direction of D.E. Smith 
of the MGS Radio Science Team."                       
 
References: 
 
The analysis and results for MGM1025 were described by F.G. Lemoine, G.A. Neumann, 
D.S. Chinn, D.E. Smith, M.T. Zuber, D.D. Rowlands, D.P. Rubincam, and D.E. Pavlis in 
'Solution for Mars Geophysical Parameters from Mars Global Surveyor Tracking Data', 
American Geophysical Union Fall Meeting 2001 (EOS, Trans. AGU 82(47), Fall         
Meeting Supplement, Abstract P42A-0545, F721, 2001). The GMM2B model was 
described by Lemoine et al., 'An Improved Solution of the Gravity Field of Mars (GMM-2B) 
from Mars Global Surveyor', Journal Geophysical Research, 106(E10), 23359-23376, 
October  25, 2001.                         
 

 g a l _ g m m g n p 1 2 0 p . h          [0.3] 
 
This file defines gal_gmmgnp120p, the external variable structure for the 
MGNP120PSAAP Venus gravity model. 

gal_gm_t gal_gmmgnp120p = { 
GAL_SSB_VE, 

"MGNP120PSAAP", 

3.248585897260e+14, 

6.0510e+06, 

120, 

120, 

1, 

(double *) &gal_gmmgnp120p_terms 

} ; 

This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus 
gravity model is produced by the Magellan Gravity Science Team at JPL under the 
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution. 
 

 g a l _ g m m g n p 1 8 0 u . h          [0.3] 
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This file defines gal_gmmgnp180u, the external variable structure for the MGNP180U 
Venus gravity model. 

 
gal_gm_t gal_gmmgnp180u = { 

GAL_SSB_VE, 

"MGNP180U", 

3.248585920790e+14, 

6.0510e+06, 

180, 

180, 

1, 

(double *) &gal_gmmgnp180u_terms 

} ; 

 
This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus 
gravity model is produced by the Magellan Gravity Science Team at JPL under the 
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution. 
 

 g a l _ g m n o r m           [0.3] 
 
This routine normalizes a gravity model's coefficients 

gal_gm_t * 
gal_gmnorm 

  ( 

    gal_gm_t *gm1, 

    gal_gm_t *gm2 

  ) ; 

On entry gm1 contains the source gravity model. On return gm2 contains the normalized 
coefficients. The routine returns a pointer to gm2. 
 

 g a l _ g m u z h            [0.3] 
 
This routine calculates an un-normalized zonal harmonic 

double 

gal_gmuzh 

  ( 

    gal_gm_t *gm, 

    gal_facexp_t *facexp, 

    int harmonic 

  ) ; 

On entry the variables must be set as follows: 
 
 gm       Pointer to gravity model 
 facexp     Pointer to factorial exponent lookup table 
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 harmonic   Required harmonic 
 
The routine returns the required unnormalized zonal harmonic 
 

 g a l _ g m w g s 6 6 . h           [0.3] 
 
This file defines gal_gmwgs66, the external variable structure for the WGS66 Earth 
gravity model. 

gal_gm_t gal_gmwgs66 = { 

GAL_SSB_EA, 

"WGS-66", 

3.986008e+14, 

6.378145e+06, 

24, 

24, 

1, 

(double *) &gal_gmwgs66_terms 

} ; 

The value for GM is unknown, so the value for WGS72 is used instead. 
 

 g a l _ g m w g s 7 2 . h           [0.3] 
 
This file defines gal_gmwgs72, the external variable structure for the WGS72 Earth 
gravity model. 

 
gal_gm_t gal_gmwgs72 = { 

GAL_SSB_EA, 

"WGS-72", 

3.986008e+14, 

6.378135e+06, 

28, 

27, 

1, 

(double *) &gal_gmwgs72_terms 

} ; 

 

 g a l _ s t g e t              [0.3]   
 
This routine gets spherical terms C & S of degree n and order m from the given gravity 
model  

int 

gal_stget 

  ( 

    const int n, 
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    const int m, 

    gal_gm_t *gm, 

    double *c, 

    double *s 

  ) ;     

On entry n contains the required degree, and m the required order, gm is a pointer to the 
gravity model structure. On return c and s contain the C and S coefficients of degree n 
and order m. The routine returns one of the following status codes: 
  

0   success  
1   degree or order out of range 

 
Gravitational coefficients C, S are efficiently stored in a single array CS. The lower 
triangle matrix CS holds the non-sectorial C coefficients C[n][m] ( n != m ). Sectorial C 
coefficients C[n][n] are the diagonal elements of CS and the upper triangular matrix stores 
the S[n][m] ( m != 0 ) coefficients in columns, for the same degree n. Mapping of CS to C, 
S is achieved through C[n][m] = CS[n][m], S[n][m] = CS[m-1][n]. 
 

 g a l _ s t n f              [0.3]  
 
This function computes the spherical terms normalization factor. 

double 

gal_stnf 

  ( 

    gal_facexp_t *facexp, 

    const int n, 

    const int m 

  ) ;  

On entry facexp contains a pointer to the factorial exponent lookup table, n the required 
degree, and m the required order. The routine returns the normalization factor. 
  
References: 
 
Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section, 
Second Pressing Pages 519-520 
 

 g a l _ s t s e t             [0.3]    
 
This routine sets spherical terms C & S of degree N and order M in the given gravity 
model  

int 

gal_stset 

  ( 

    const int n, 



Chapter 10 – Gravity Models 

155 

 

    const int m, 

    const double c, 

    const double s, 

    gal_gm_t *gm 

  ) ;     

On entry n contains the required degree, m the required order, c and s contain the values 
to store in the gravity model. On return the spherical terms of the gravity model gm have 
been updated. The routine returns one of the following status codes:  
 
 0  success  
 1  degree or order out of range 
 
Gravitational coefficients C, S are efficiently stored in a single array CS. The lower 
triangle matrix CS holds the non-sectorial C coefficients C[n][m] ( n != m ). Sectorial 
Coefficients C[n][n] are the diagonal elements of CS and the upper triangular matrix 
stores the S[n][m] ( m != 0 ) coefficients in columns, for the same degree n. Mapping of CS 
to C, S is achieved through C[n][m] = CS[n][m], S[n][m] = CS[m-1][n]. 
  

 g a l _ s t u n f             [0.3]   
 
This function computes the spherical terms un-normalization factor. 

double 

gal_stunf 

  ( 

    gal_facexp_t *facexp, 

    const int n, 

    const int m 

  ) ;   

On entry facexp contains a pointer to the factorial exponent lookup table, n contains the 
required degree, and m the required order. The routine returns the un-normalization 
factor of degree n and order m. 
  
References: 
    
Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section, 
Second Pressing Pages 519-520 
 

 g a l _ t u            [0.4] 
 
This routine computes the canonical unit TU factor from the mean radius and gravitational 
parameter. 

double 

gal_tu 

  ( 
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    double gm, 

    double re  

  ) ;

On entry gm contains the gravitational parameter, and re the mean radius of the reference 
orbit. The routine returns the TU factor. gm and re must be stated in consistent units, i.e. 
meters or kilometers based. 
 

 g a l _ u n c a n p v          [0.4] 
 
This routine converts a pv-vector from canonical units to regular units 

void 

gal_uncanpv 

  ( 

    double pv1[2][3], 

    double gm, 

    double re, 

    double pv2[2][3]  

  ) ; 

On entry pv1 contains the position and velocity vectors in canonical units, gm contains the 
gravitational parameter, and re the mean radius of the reference orbit. On return pv2 
contains the position and velocity vectors in regular units. gm and re must be stated in 
consistent units, i.e. meters or kilometers based. 
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Chapter 11 - Reference Frames 

The routines detailed in this chapter are defined in the gal_frames.h header file. 
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 g a l _ c 2 r a d e c            [0.2]  
 
This routine converts a position and velocity vector in the GCRF reference frame to right 
ascension and declination.   

void   

gal_c2radec   

 (  

   double gcrf[2][3], 

   double *ra, 

   double *dec, 

   double *range, 

   double *radot, 

   double *decdot, 

   double *rangedot 

 ) ;   

On entry gcrf contains the GCRF position and velocity vector (m, meters per second). On 
return the variables are set as follows: 
 
 ra      Right Ascension ( radians ) 
 dec        Declination ( radians ) 
 range      Range ( meters )   
 radot       Right Ascension dot ( radians per second ) 
 decdot       Declination dot ( radians per second ) 
 rangedot   Range dot ( meters per second )   
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 248-250 
 

 g a l _ c 2 t p v 0 0 a           [0.2] 
 
This routine converts a position & velocity vector in the GCRF reference frame to the ITRF 
reference frame (IAU 2000A Resolutions).   

void   

gal_c2tpv00a   

 (  

   double gcrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 
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   double itrf[2][3] 

 ) ;   

On entry the variables must be set as follows: 
 
 gcrf    GCRF position & velocity vector ( meters, meters per second ) 
 utc1     UTC date part 1 
 utc2    UTC date part 2  
 dut1    UT1 - UTC ( seconds ) 
 lod     Excess length of day ( seconds ) 
 xp      x coordinate of the pole ( radians )  
 yp       y coordinate of the pole ( radians ) 
 
On return itrf contains the ITRF position & velocity vector (meters, meters per second). 
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
  

 g a l _ c 2 t p v 0 0 b           [0.2] 
 
This routine converts a position & velocity vector in the GCRF reference frame to the ITRF 
reference frame (IAU 2000B Resolutions).   

void   

gal_c2tpv00b   

 (  

   double gcrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 

   double itrf[2][3] 



General Astrodynamics Library – Reference Manual 

 

160 

 

 ) ;   

On entry the variables must be set as follows: 
 
 gcrf    GCRF position & velocity vector ( meters, meters per second ) 
 utc1     UTC date part 1 
 utc2    UTC date part 2  
 dut1    UT1 - UTC ( seconds ) 
 lod     Excess length of day ( seconds ) 
 xp      x coordinate of the pole ( radians )  
 yp       y coordinate of the pole ( radians ) 
 
On return itrf contains the ITRF position & velocity vector (meters, meters per second). 
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 

 g a l _ c 2 t p v 0 6 a           [0.2] 
 
This routine converts a position & velocity vector in the GCRF reference frame to the ITRF 
reference frame (IAU 2006A Resolutions).   

void   

gal_c2tpv06a   

 (  

   double gcrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 

   double itrf[2][3] 

 ) ;   
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 On entry the variables must be set as follows: 
 
 gcrf    GCRF position & velocity vector ( meters, meters per second ) 
 utc1     UTC date part 1 
 utc2    UTC date part 2  
 dut1    UT1 - UTC ( seconds ) 
 lod     Excess length of day ( seconds ) 
 xp      x coordinate of the pole ( radians )  
 yp       y coordinate of the pole ( radians ) 
 
On return itrf contains the ITRF position & velocity vector (meters, meters per second). 
The date utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 

 g a l _ i 2 t p v 0 0            [0.2]  
 
This routine converts a position & velocity vector in the CIRS reference frame to the ITRF 
reference frame (IAU 2000 Resolutions).   

void   

gal_i2tpv00   

 (  

   double cirs[2][3], 

   double tta, 

   double ttb, 

   double ut1a, 

   double ut1b, 

   double lod, 

   double xp, 

   double yp, 

   double itrf[2][3] 

 ) ;   
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On entry the variables must be set as follows: 
 
 cirs  CIRS position & velocity vector ( meters, meters per second ) 
 tta   TT date part 1  
 ttb      TT date part 2  
 ut1a     UT1 date part 1  
 ut1b    UT1 date part 2  
 lod    Excess length of day ( seconds ) 
 xp    x coordinate of the pole ( radians )  
 yp     y coordinate of the pole ( radians )  
 
Both dates are Julian Dates in standard SOFA two-piece format. On return itrf contains 
the ITRF position & velocity vector (meters, meters per second). xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 

 g a l _ l a t l o n 2 t             [0.2] 
 
This routine creates a position vector in the ITRF reference frame from given geodetic 
latitude and longitude.   

void   

gal_latlon2t   

 (  

   double lat, 

   double lon, 

   double height, 

   double re, 

   double invf, 

   double itrf[3] 

 ) ;   

On entry the variables are set as follows: 
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 lat      Latitude ( radians )   
 lon     Longitude ( radians )  
 height      Height above the reference spheroid ( meters )  
 re        Earth Equatorial Radius ( meters ) 
 invf      Inverse flattening factor   
 
On return itrf contains the ITRF position vector ( meters ). 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
 

 g a l _ l a t l o n 2 t _ i a u 7 6         [0.2] 
 
This routine creates a position vector in the ITRF reference frame from given geodetic 
latitude and longitude using IAU76 reference ellipsoid.   

gal_latlon2t_iau76   
 (  

   double lat, 

   double lon, 

   double height, 

   double itrf[3] 

 ) ;   

On entry the variables must be set as follows: 
 
 lat    Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
On return itrf contains the ITRF position vector ( meters ). 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
 

 g a l _ l a t l o n 2 t _ i e r s 0 0         [0.2] 
 
This routine creates a position vector in the ITRF reference frame from given geodetic 
latitude and longitude using IERS 2000 reference ellipsoid.   
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void   

gal_latlon2t_iers00   

 (  

   double lat, 

   double lon, 

   double height, 

   double itrf[3] 

 ) ;   

On entry the variables must be set as follows: 
 
 lat    Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
On return itrf contains the ITRF position vector ( meters ). 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
 

 g a l _ l a t l o n 2 t _ w g s 7 2         [0.2] 
 
This routine creates a position vector in the ITRF reference frame from given geodetic 
latitude and longitude using WGS72 reference ellipsoid.   

void   

gal_latlon2t_wgs72   

 (  

   double lat, 

   double lon, 

   double height, 

   double itrf[3] 

 ) ;   

On entry the variables must be set as follows: 
 
 lat    Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
On return itrf contains the ITRF position vector ( meters ). 
 
References: 
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Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
 

 g a l _ l a t l o n 2 t _ w g s 8 4         [0.2] 
 
This routine creates a position vector in the ITRF reference frame from given geodetic 
latitude and longitude using WGS84 reference ellipsoid.   

void   

gal_latlon2t_wgs84   

 (  

   double lat, 

   double lon, 

   double height, 

   double itrf[3] 

 ) ;   

On entry the variables must be set as follows: 
 
 lat    Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
On return itrf contains the ITRF position vector ( meters ). 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
 

 g a l _ t 2 a z e l            [0.2]  
 
This routine converts a pv-vector in the ITRF reference frame to azimuth, elevation, range 
& range-rate   

void   

gal_t2azel   

 (  

   double itrf[2][3], 

   double site[3], 

   double lat, 

   double lon, 
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   double *az, 

   double *el, 

   double *range, 

   double *rdot 

 ) ;   

On entry the variables must be set as follows: 
 
 itrf    ITRF position & velocity vector of target ( meters, meters per second ) 
 site   ITRF position vector of observer ( meters ) 
 lat    Latitude of observer ( radians )  
 lon    Longitude of observer ( radians ) 
 
On return the variables are set as follows: 
 
 az    Azimuth ( radians )  
 el   Elevation ( radians )  
 range  Range ( meters )  
 rdot   Range Rate ( meters, meters per second ) 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 252-257 
 

 g a l _ t 2 c p v 0 0 a           [0.2] 
 
This routine converts a position & velocity vector in the ITRF reference frame to the GCRF 
reference frame (IAU 2000A Resolutions).   

void   

gal_t2cpv00a   

 (  

   double itrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 

   double gcrf[2][3] 

 ) ;   

On entry the variables must be set as follows: 
 
 itrf   ITRF position & velocity vector ( meters, meters per second ) 
 utc1   UTC date part 1  
 utc2   UTC date part 2  
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 dut1  UT1 - UTC ( seconds ) 
 lod    Excess length of day ( seconds )  
 xp     x coordinate of the pole ( radians )  
 yp     y coordinate of the pole ( radians )  
 
On return gcrf contains the GCRF position & velocity vector (meters, meters per second). 
utc1+utc2 is a Julian Date in standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
  

 g a l _ t 2 c p v 0 0 b           [0.2] 
 
This routine converts a position & velocity vector in the ITRF reference frame to the GCRF 
reference frame (IAU 2000B Resolutions).   

void   

gal_t2cpv00b   

 (  

   double itrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 

   double gcrf[2][3] 

 ) ;   

On entry the variables must be set as follows: 
 
 itrf   ITRF position & velocity vector ( meters, meters per second ) 
 utc1    UTC date part 1  
 utc2   UTC date part 2  
 dut1  UT1 - UTC ( seconds ) 
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 lod    Excess length of day ( seconds )  
 xp    x coordinate of the pole ( radians )  
 yp     y coordinate of the pole ( radians )  
 
On return gcrf contains the GCRF position & velocity vector (meters, meters per second). 
The utc1+utc2 Julian Date in is standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
  

 g a l _ t 2 c p v 0 6 a           [0.2] 
 
This routine converts a position & velocity vector in the ITRF reference frame to the GCRF 
reference frame (IAU 2006A Resolutions).   

void   

gal_t2cpv06a   

 (  

   double itrf[2][3], 

   double utc1, 

   double utc2, 

   double dut1, 

   double lod, 

   double xp, 

   double yp, 

   double gcrf[2][3] 

 ) ; 

On entry the variables must be set as follows: 
 
 itrf   ITRF position & velocity vector ( meters, meters per second ) 
 utc1    UTC date part 1  
 utc2   UTC date part 2  
 dut1  UT1 - UTC ( seconds ) 
 lod    Excess length of day ( seconds )  

http://www.iau-sofa.rl.ac.uk/


Chapter 11 – Reference Frames 

169 

 

 xp    x coordinate of the pole ( radians )  
 yp     y coordinate of the pole ( radians )  
 
On return gcrf contains the GCRF position & velocity vector (meters, meters per second). 
The utc1+utc2 Julian Date in is standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 

 g a l _ t 2 i p v 0 0           [0.2] 
 
This routine converts a position & velocity vector in the ITRF reference frame to the CIRS 
reference frame (IAU 2000 Resolutions).   

 
void   

gal_t2ipv00   

 (  

   double itrf[2][3], 

   const double tta, 

   const double ttb, 

   const double ut1a, 

   const double ut1b, 

   const double lod, 

   const double xp, 

   const double yp, 

   double cirs[2][3] 

 ) ; 

 
On entry the variables must be set as follows: 
 
 itrf   ITRF position & velocity vector ( meters, meters per second ) 
 tta    TT date part 1  
 ttb    TT date part 2  
 dut1  UT1 - UTC ( seconds ) 

http://www.iau-sofa.rl.ac.uk/
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 lod    Excess length of day ( seconds )  
 xp    x coordinate of the pole ( radians )  
 yp     y coordinate of the pole ( radians )  
 
On return cirs contains the CIRS position & velocity vector (meters, meters per second). 
The tta+ttb Julian Date in is standard SOFA two-piece format. xp and yp are the 
"coordinates of the pole", in seconds, which position the Celestial Intermediate Pole in the 
International Terrestrial Reference System (see IERS Conventions 2003). In a geocentric 
right-handed triad u,v,w, where the w-axis points at the north geographic pole, the v-axis 
points towards the origin of longitudes and the u axis completes the system, xp = +u and 
yp = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review Board 
2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 

 g a l _ t 2 l a t l o n           [0.2]   
 
This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude.   

void   

gal_t2latlon   

 (  

   double itrf[3], 

   double re, 

   double invf, 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry the variables must be set as follows: 
 
 itrf    ITRF position vector ( meters ) 
 re    Earth Equatorial Radius ( meters ) 
 invf    Inverse flattening factor   
 
On return the variables are set as follows: 
 
 lat      Latitude ( radians )   

http://www.iau-sofa.rl.ac.uk/
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 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 177-178 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 1992, 
Pages 202-207 
 
The Astronomical Almanac 1997, Pages K11-K12 
  

 g a l _ t 2 l a t l o n _ i a u 7 6         [0.2] 
 
This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude using Fukushima's 1999 Method using the IAU76 reference ellipsoid. 

void   

gal_t2latlon_iau76   

 (  

   double itrf[3], 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry itrf contains the ITRF position vector( meters ). On return the variables are set as 
follows: 
 
 lat      Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal 
Geodesy (1999) 73: 603-610 
 

 g a l _ t 2 l a t l o n _ i e r s 0 0         [0.2] 
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This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude using Fukushima's 1999 Method using the IERS 2000 reference ellipsoid. 

void   

gal_t2latlon_iers00   

 (  

   double itrf[3], 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry itrf contains the ITRF position vector ( meters ). On return the variables are set 
as follows: 
 
 lat      Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal 
Geodesy (1999) 73: 603-610 
 

 g a l _ t 2 l a t l o n _ w g s 7 2        [0.2] 
 
This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude using Fukushima's 1999 Method using the WGS72 reference ellipsoid. 

void   

gal_t2latlon_wgs72   

 (  

   double itrf[3], 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry itrf contains the ITRF position vector ( meters ). On return the variables are set 
as follows: 
 
 lat      Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
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The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal 
Geodesy (1999) 73: 603-610 
  

 g a l _ t 2 l a t l o n _ w g s 8 4         [0.2] 
 
This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude using Fukushima's 1999 Method using the WGS84 reference ellipsoid. 

void   

gal_t2latlon_wgs84   

 (  

   double itrf[3], 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry itrf contains the ITRF position vector( meters ). On return the variables are set as 
follows: 
 
 lat      Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal 
Geodesy (1999) 73: 603-610 
 

 g a l _ t 2 l a t l o n f           [0.2] 
 
This routine converts a position vector in the ITRF reference frame to geodetic latitude 
and longitude using Fukushima's 1999 Method.   

void   

gal_t2latlonf   

 (  

   double itrf[3], 

   double re, 



General Astrodynamics Library – Reference Manual 

 

174 

 

   double invf, 

   double *lat, 

   double *lon, 

   double *height 

 ) ;   

On entry the variables must be set as follows: 
 
 itrf   ITRF position vector ( meters ) 
 re     Earth Equatorial Radius ( meters ) 
 invf     Inverse flattening factor  
 
On return the variables are set as follows: 
 
 lat      Latitude ( radians )   
 lon       Longitude ( radians )  
 height   Height above the reference spheroid ( meters )  
 
The height refers to a height above the reference spheroid and differs from the height 
above mean sea level (i.e. above ground) by the "undulation of the geoid" at that point. 
 
References: 
 
Fukushima, T., "Fast transform from geocentric to geodetic coordinates", Journal 
Geodesy (1999) 73: 603-610 
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Chapter 12 - SGP4 

The routines detailed in this chapter are defined in the gal_sgp4.h header file.
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 g a l _ s g p 4            [0.2] 
 
This routine is the SGP4 prediction model from Space Command. 

int  

gal_sgp4 

  ( 

    gal_sgp4_t *sgp4, 

    double epoch1, 

    double epoch2, 

    double pv[2][3] 

  ) ; 

On entry the variables must be set as follows: 
 
 sgp4    Initialized structure from gal_sgp4init call. 
 epoch1    UTC epoch part A   
 epoch2      UTC epoch part B  
 
On return the variables are set as follows: 
 
 sgp4    Common values for subsequent calls 
 pv        Geocentric position/velocity ( meters, meters per second )   
 
The routine returns one of the following status codes: 
 
 0  success 
 1 mean elements, eccentricity >= 1.0 or < -0.001 or semi-major-axis < 0.95 Earth 

radii 
 2 mean motion less than 0.0 
 3  pert elements, eccentricity < 0.0 or > 1.0 
 4  semi-latus rectum < 0.0 
 5  epoch elements are sub-orbital 
 6  satellite has decayed 
 
This is an updated and combined version of SGP4 and SDP4, which were originally 
published separately in Spacetrack Report #3. This version follows the methodology from 
the AIAA paper (2006) describing the history and development of the code. This routine is 
a translation from c++ to c of David Vallado's SGP4UNIT.sgp4 routine (2007 November 
16). The UTC epoch epoch1+epoch2 is a Julian Date in standard SOFA two-piece 
format. 
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
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Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
 

 g a l _ s g p 4 g m             [0.2] 
 
This routine gets the gravity model parameters required by SGP4 

void 
gal_sgp4gm 

  ( 

    gal_gm_t *gm, 

    double *tumin, 

    double *mu, 

    double *re, 

    double *xke, 

    double *j2, 

    double *j3, 

    double *j4, 

    double *j3oj2 

  ) ; 

On entry gm points to the gravity model structure. On return the variables are set as 
follows: 
 
 tumin   Minutes in one time unit 
 mu     Earth gravitational parameter 
 re      Radius of the Earth in kilometers 
 xke        Reciprocal of tumin 
 j2       Un-normalized second zonal harmonic value  
 j3      Un-normalized third  zonal harmonic value  
 j4     Un-normalized fourth zonal harmonic value 
 j3oj2   j3 divided by j2 
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
 
Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
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 g a l _ s g p 4 i n i t            [0.2]  
 
This routine initializes the variables for gal_sgp4. 

int  

gal_sgp4init 

  ( 

    gal_gm_t *gm, 

    gal_tle_t *tle, 

    gal_sgp4_t *sgp4 

  ) ;  

 
On entry gm points to the gravity model structure, and tle points to the two-line-elements 
parameters structure. On return sgp4 is initialized to its start state. The routine returns 
one of the following status codes: 
 
 0  success 
 1 mean elements, eccentricity >= 1.0 or < -0.001 or semi-major axis < 0.95 Earth 

radii 
 2 mean motion less than 0.0 
 3  pert elements, eccentricity < 0.0 or > 1.0 
 4  semi-latus rectum < 0.0 
 5  epoch elements are sub-orbital 
 6  satellite has decayed 
 
This routine is based on a translation from c++ to c of David Vallado's SGP4UNIT.sgp4init 
routine (2007 November 16).  
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
 
Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
  

 g a l _ s g p 4 t . h             [0.2] 
 
This header file defines the SGP4 data structure that is used to store interim results 
between successive calls to gal_sgp4.  

typedef struct { 
 

/* 
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 * Internal Control Variables 

 */ 

  

  int    error          ; 

  char   init           ; 

  char   method         ; 

 

/* 

 * TLE Parameters 

 */ 

  

  int    satnum         ;  /* NORAD Catalog Number                        */ 

  char   classification ;  /* Security Classification                     */ 

  char   intldesg[10]   ;  /* International Designator (COSPAR/WDC-A-R&S) */ 

  int    epochyr        ;  /* Epoch Year                                  */ 

  double epochdays      ;  /* Epoch Day of Year (plus Fraction)           */ 

  double epoch          ;  /* Epoch Date ( days since 1950-01-01 0h )     */  

  double ndot           ;  /* Mean motion derivative                      */ 

  double nddot          ;  /* Mean motion second derivative               */ 

  double bstar          ;  /* Bstar / Drag Term                           */ 

  int    ephtype        ;  /* Ephemeris Type                              */ 

  int    setnum         ;  /* Element set number                          */ 

  double inclo          ;  /* Inclination (rad)                           */ 

  double nodeo          ;  /* Right Ascension of Ascending Node (rad)     */ 

  double ecco           ;  /* Eccentricity                                */ 

  double argpo          ;  /* Argument of Perigee (rad)                   */ 

  double mo             ;  /* Mean Anomaly (rad)                          */ 

  double no             ;  /* Mean Motion ( rad/min )                     */ 

  int    revnum         ;  /* Epoch Revolution Number                     */ 

 

  double a              ;  

  double altp           ;  

  double alta           ;  

  double jdepoch1       ;  /* Julian Date of Epoch Part 1                 */ 

  double jdepoch2       ;  /* Julian Date of Epoch Part 2                 */ 

  double rcse           ;  

  int    epochtynumrev  ; 

 

/* 

 * Gravity Model Parameters 

 */ 

  

  double tumin          ;  /* Minutes in one time unit                    */ 

  double mu             ;  /* Earth gravitational parameter               */ 

  double radiusearthkm  ;  /* Radius of the earth in kilometers                   

*/ 

  double xke            ;  /* Reciprocal of tumin                         */ 

  double j2             ;  /* Un-normalized second zonal harmonic value   */ 

  double j3             ;  /* Un-normalized third  zonal harmonic value   */ 

  double j4             ;  /* Un-normalized fourth zonal harmonic value   */ 

  double j3oj2          ;  /* j3 divided by j2                            */ 

  double vkmpersec      ;   

   

/*  

 * Near Earth  

 */ 
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  int    isimp          ; 

  double aycof          ;  

  double con41          ;  

  double cc1            ;   

  double cc4            ;  

  double cc5            ;  

  double d2             ;  

  double d3             ;  

  double d4             ; 

  double delmo          ;  

  double eta            ;  

  double argpdot        ;  

  double omgcof         ;  

  double sinmao         ;  

  double t              ;  

  double t2cof          ;  

  double t3cof          ; 

  double t4cof          ;  

  double t5cof          ;  

  double x1mth2         ;  

  double x7thm1         ;  

  double mdot           ;  

  double nodedot        ;  

  double xlcof          ;  

  double xmcof          ; 

  double nodecf         ; 

 

/*  

 * Deep Space  

 */ 

  

  int    irez           ; 

  double d2201          ;  

  double d2211          ;  

  double d3210          ;  

  double d3222          ;  

  double d4410          ;  

  double d4422          ;  

  double d5220          ;  

  double d5232          ; 

  double d5421          ;  

  double d5433          ;  

  double dedt           ;  

  double del1           ;  

  double del2           ;  

  double del3           ;  

  double didt           ;  

  double dmdt           ; 

  double dnodt          ;  

  double domdt          ;  

  double e3             ;  

  double ee2            ;  

  double peo            ;  

  double pgho           ;  

  double pho            ;  

  double pinco          ; 

  double plo            ;  
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  double se2            ;  

  double se3            ;  

  double sgh2           ;  

  double sgh3           ;  

  double sgh4           ;  

  double sh2            ;  

  double sh3            ; 

  double si2            ;  

  double si3            ;  

  double sl2            ;  

  double sl3            ;  

  double sl4            ;  

  double gsto           ;  

  double xfact          ;  

  double xgh2           ; 

  double xgh3           ;  

  double xgh4           ;  

  double xh2            ;  

  double xh3            ;  

  double xi2            ;  

  double xi3            ;  

  double xl2            ;  

  double xl3            ; 

  double xl4            ;  

  double xlamo          ;  

  double zmol           ;  

  double zmos           ;  

  double atime          ;  

  double xli            ;  

  double xni            ; 

} gal_sgp4_t ; 

References: 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
 

 g a l _ t l e . h              [0.2] 
 
This header file defines the two-line element set structure 

typedef struct { 

  int    satnum         ;  /* NORAD Catalog Number                        */ 

  char   classification ;  /* Security Classification                     */ 

  char   intldesg[10]   ;  /* International Designator (COSPAR/WDC-A-R&S) */ 

  int    epochyr        ;  /* Epoch Year                                  */ 

  double epochdays      ;  /* Epoch Day of Year (plus Fraction)           */ 

  double ndot           ;  /* Mean motion derivative (rev/day /2)         */ 

  double nddot          ;  /* Mean motion second derivative (rev/day2 /6) */ 

  double bstar          ;  /* Bstar / Drag Term                           */ 

  int    ephtype        ;  /* Ephemeris Type                              */ 

  int    setnum         ;  /* Element set number                          */ 

  double inclo          ;  /* Inclination                                 */ 

  double nodeo          ;  /* Right Ascension of Ascending Node (deg)     */ 

  double ecco           ;  /* Eccentricity                                */ 
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  double argpo          ;  /* Argument of Perigee (deg)                   */ 

  double mo             ;  /* Mean Anomaly (deg)                          */ 

  double no             ;  /* Mean Motion (rev/day)                       */ 

  int    revnum         ;  /* Epoch Revolution Number                     */ 

} gal_tle_t ; 

 
References: 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
 

 g a l _ t l e c h k s u m            [0.2] 
 
This routine calculates the NORAD TLE checksum character 

char 

gal_tlechksum 

  ( 

    char *card 

  ) ; 

On entry card points to the string containing the line for which the checksum is required. 
The routine returns the checksum character. The NORAD checksum is modulo 10, 
letters, blanks, periods, plus signs = 0; minus signs = 1. 
 

 g a l _ t l e d e c             [0.2] 
 
This routine decodes the packed two line element cards into the tle structure 

int 

gal_tledec 

  ( 

    char *card1, 

    char *card2, 

    gal_tle_t *tle 

  ) ; 

On entry card1 and card2 point to the first and second TLE lines respectively. On return 
the structure pointed to by tle contains the decoded TLE parameters. The routine returns 
on of the following status codes: 
 

0   success 
 1  failure 

 
References: 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, Kelso, 
T.S., AIAA 2006-6753 
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Chapter 13 - ODE Integrators 

The routines detailed in this chapter are defined in the gal_odeint.h header file.   
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 g a l _ r k f              [0.3] 
 
This routine integrates an ordinary deferential equation using the Runge-Kutte-Fehlberg 
method. 

int  

gal_rkf 

  ( 

    double ystart[], 

    int nvar, 

    double x1, 

    double x2, 

    double eps, 

    double h1, 

    double hmin, 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int ( *rkfs ) ( double [], double [], int, double, double, double [], double 

[], void ( * ) ( double, double [], double [], int * ), int * ) , 

    int *derivsp 

  ) ; 

On entry the variables must be set as follows: 
 
 ystart  Starting y values 
 nvar    Number of equations to integrate 
 x1     Starting x value 
 x2     Ending x value 
 eps    Accuracy 
 h1     First guess step-size 
 hmin  Minimum step-size 
 derivs   User defined function for calculating the right hand side derivatives 
 rkfs     Required Runge-Kutte-Fehlberg stepper routine 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return ystart contains the ending y values. The routine returns one of the following 
status codes: 
 
 0   success 
 1   failed to allocate workspace memory 
 2   step size underflow 
 3   maximum steps exceeded 
 4   step size too small 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg October 1970 
 

 g a l _ r k f c k s 4 5            [0.3] 
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This routine takes a Runge-Kutte-Fehlberg-Cash-Karp 4(5) step 

int gal_rkfcks45 

  ( 

    double y[], 

    double dydx[], 

    int n, 

    double x, 

    double h, 

    double yout[], 

    double yerr[], 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int *derivsp 

  ) ; 

On entry the variables must be set as follows: 
 
 y    dependent variable vector 
 dydx    derivative of dependent variable vector 
 n       Number of equations to integrate 
 x      Independent variable value 
 h      Step size 

derivs   User defined function for calculating the right hand side derivatives 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 yout   Ending y values 
 yerr     Errors 
 
The routine returns one of the following status codes: 
 
 0   success 
 1   failed to allocate memory 
 
The parameters (but not the code) (Cash-Karp version) are from Numerical Recipes for 
RKF45. These values are taken from the c code and not from the table on page 717 which 
has different values (which don't work, but look like they almost do). The Cash-Karp 
values seem to make the routine a bit faster compared to the Fehlberg values. 

 

References: 
 
Numerical Recipes in C The Art of Scientific Computing Second Edition by William H. 
Press, Saul A. Teukolsky, William T. Vettering & Brian P. Flannery Pages 710 - 722 
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 g a l _ r k f q s            [0.3] 
 
This routine takes one "quality-controlled" Runge-Kutte-Fehlberg step 

int  

gal_rkfqs 

  ( 

    double y[], 

    double dydx[], 

    int n, 

    double *x, 

    double htry, 

    double eps, 

    double yscal[], 

    double *hdid, 

    double *hnext, 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int ( *rkfs ) ( double [], double [], int, double, double, double [], double 

[], void ( * ) ( double, double [], double [], int * ), int * ), 

    int *derivsp 

  ) ; 

On entry the variables are set as follows: 
 
 y    dependent variable vector 
 n    Number of equations to integrate 
 x    Independent variable value 
 htry   Step size to attempt 
 eps    Accuracy 

derivs  User defined function for calculating the right hand side derivatives 
  rkfs   Required Runge-Kutte-Fehlberg stepper routine 
  derivsp  Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 dydx  derivative of dependent variable vector 
 yscal  Used for error scaling 
 hdid   Step size accomplished 
 hnext  Estimated next step size 
 
The routine returns one of the following status codes: 
 

0   success 
 1   unable to allocate workspace memory 
 2  step size underflow 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
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 g a l _ r k f s 4 5          [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 4(5) step 

int  

gal_rkfs45 

  ( 

    double y[], 

    double dydx[], 

    int n, 

    double x, 

    double h, 

    double yout[], 

    double yerr[], 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int *derivsp 

  ) ; 

On entry the variables must be set as follows: 
 
 y    dependent variable vector 
 dydx    derivative of dependent variable vector 
 n       Number of equations to integrate 
 x      Independent variable value 
 h      Step size 

derivs   User defined function for calculating the right hand side derivatives 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 yout   Ending y values 
 yerr     Errors 
 
The routine returns one of the following status codes: 
 

0   success 
 1   failed to allocate memory 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 

 g a l _ r k f s 5 6          [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 5(6) step 
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int  

gal_rkfs56 

  ( 

    double y[], 

    double dydx[], 

    int n, 

    double x, 

    double h, 

    double yout[], 

    double yerr[], 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int *derivsp 

  ) ; 

 
On entry the variables must be set as follows: 
 
 y    dependent variable vector 
 dydx    derivative of dependent variable vector 
 n       Number of equations to integrate 
 x      Independent variable value 
 h      Step size 

derivs   User defined function for calculating the right hand side derivatives 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 yout   Ending y values 
 yerr     Errors 
 
The routine returns one of the following status codes: 
 
 0   success 
 1   failed to allocate memory 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 

 g a l _ r k f s 6 7         [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 6(7) step 

 
int  

gal_rkfs67 

  ( 
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    double y[], 

    double dydx[], 

    int n, 

    double x, 

    double h, 

    double yout[], 

    double yerr[], 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int *derivsp 

  ) ; 

On entry the variables must be set as follows: 
 
 y    dependent variable vector 
 dydx    derivative of dependent variable vector 
 n       Number of equations to integrate 
 x      Independent variable value 
 h      Step size 

derivs   User defined function for calculating the right hand side derivatives 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 yout   Ending y values 
 yerr     Errors 
 
The routine returns one of the following status codes: 
 
 0  success 

1  failed to allocate memory 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 

 g a l _ r k f s 7 8         [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 7(8) step 

int  

gal_rkfs78 

  ( 

    double y[], 

    double dydx[], 

    int n, 

    double x, 



General Astrodynamics Library – Reference Manual 

 

190 

 

    double h, 

    double yout[], 

    double yerr[], 

    void ( *derivs ) ( double, double [], double [], int * ), 

    int *derivsp 

  ) ; 

On entry the variables must be set as follows: 
 
 y    dependent variable vector 
 dydx    derivative of dependent variable vector 
 n       Number of equations to integrate 
 x      Independent variable value 
 h      Step size 

derivs   User defined function for calculating the right hand side derivatives 
 derivsp   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 yout   Ending y values 
 yerr     Errors 
 
The routine returns one of the following status codes: 
 
 0  success 
 1  failed to allocate memory 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
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Chapter 14 – Keplerian Propagation 

The routines detailed in this chapter are defined in the gal_kepler.h header file.
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 g a l _ k e p 2 p v           [0.4] 
 
This routine computes position and velocity from the classical orbital elements. 

void 

gal_kep2pv 

  ( 

    double gm, 

    double ecc,  

    double raan, 

    double argp, 

    double inc, 

    double p, 

    double v, 

    double truelon, 

    double u, 

    double lonper, 

    double pv[2][3] 

  ) ; 

On entry the variables must be set as follows, if any parameter is unknown then the 
constant GAL_UNDEFINED (defined in gal_const.h) should be passed as parameter: 
 

gm     Gravitational parameter 
ecc     Eccentricity 
raan    Longitude of the ascending mode ( radians )  
argp    Argument of Pericenter ( radians )  
inc     Inclination ( radians ) 
p      Semi-Latus Rectum ( meters ) 
v       True Anomaly ( radians ) 
truelon    True Longitude ( radians ) 
u         Argument of Latitude ( radians ) 
lonper     True Longitude of Periapsis ( radians ) 

 
On return pv contains the position and velocity vectors (meters, meters per second). 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 118-122 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32 
 
Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 1991, 
Pages 149-157 
 

 g a l _ p v 2 k e p           [0.4] 
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This routine computes the classical orbital elements from position and velocity. 

void 

gal_pv2kep 

  ( 

    double gm, 

    double pv[2][3], 

    double *sma, 

    double *ecc,  

    double *raan, 

    double *argp, 

    double *ma, 

    double *inc, 

    double *p, 

    double *v, 

    double *truelon, 

    double *u, 

    double *lonper 

  ) ; 

On entry gm contains the gravitational parameter, and pv the position and velocity vectors 
(meters, meters per second). On return the variables are set as follows, if any result 
cannot be calculated then GAL_UNDEFINED (defined in gal_const.h) is returned: 
  

sma    Semi-Major Axis ( meters ) 
ecc    Eccentricity 
raan    Longitude of the ascending mode ( radians )  
argp   Argument of Pericenter ( radians )  
ma     Mean Anomaly ( radians ) 
inc     Inclination ( radians ) 
p       Semi-Latus Rectum ( meters ) 
v       True Anomaly ( radians ) 
truelon    True Longitude ( radians ) 
u        Argument of Latitude ( radians ) 
lonper    True Longitude of Periapsis ( radians ) 

 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 118-122 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32 
 
Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 1991, 
Pages 149-157 
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 g a l _ p v t 2 p v           [0.4] 
 
This routine calculates position and velocity from starting position and velocity at given 
time using Universal variables. This routine is valid for all orbit types. 

void 

gal_pvt2pv 

  ( 

    double gm, 

    double pv0[2][3], 

    double ed0, 

    double ed1,  

    double tt0, 

    double tt1, 

    double pv[2][3] 

  ) ; 

 
On entry the variables are set as follows: 
 

gm   Gravitational coefficient 
pv0    Epoch Position & Velocity Vectors ( meters, meters per second ) 
ed0, ed1  Epoch date ( TT ) 
tt0, tt1    Required date ( TT )               

 
Both Julian Dates are in standard SOFA two-piece format. On return pv contains the 
position and velocity vectors (meters, meters per second). The iteration method is the 
Laguerre's method described in Chobotov page 58. It was selected as it converged faster 
than the Newton-Raphson method described by Vallado, and the choice of initial value is 
simpler. The calculations of sn and cn are from Vallado as they are simple to implement. 
 
References: 
 
Orbital Mechanics Third Edition, AIAA Education Series, Chobotov, Vladimir A. Ed., 
Pages 55-61 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 101-103 
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Chapter 15 - Ephemerides 

The routines detailed in this chapter are defined in the gal_ephemerides.h header file. 
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 g a l _ b e a p v 8 7          [0.4] 
 
Earth Barycentric position and velocity, with respect to the FK5 Reference Frame.   

void  
gal_beapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;    

On entry the variables must be set as follows: 
 

tt1   TT epoch part 1  
tt2    TT epoch part 2  
ref   Reference frame 

0 = dynamical equinox and ecliptic J2000. 
1 = FK5 (VSOP87) 
 

On return pv contains the position and velocity vectors ( AU, AU per day ). 
 

pv[0][0]  x      
pv[0][1]  y       
pv[0][2]  z       

 
pv[1][0]  xdot    
pv[1][1]  ydot    
pv[1][2]  zdot    

 
The vectors are Barycentric with respect to the FK5 Reference Frame. The time unit is 
one day in TT. The routine is a solution from the planetary theory VSOP87. The main 
version of VSOP87 is similar to the previous theory VSOP82. In the both cases the 
constants of integration have been determined by fitting to the numerical integration 
DE200 of the Jet Propulsion Laboratory. The differences between VSOP87 and VSOP82 
mainly improve the validity time-span for Mercury, Venus, Earth-Moon Barycenter and 
Mars with a precision of 1" for 4000 years before and after J2000. The same precision is 
ensured for Jupiter and Saturn over 2000 years and for Uranus and Neptune over 6000 
years before and after J2000. The size of the relative precision p0 of VSOP87 solutions is 
given hereunder. That means that the actual precision is close by p0*a0 au for the 
distances (a0 being the semi-major axis) and close by p0 radian for the other variables. 
By derivation with respect to time expressed in day (d), the precision of the velocities is 
close by p0*a0 au/d for the distances and close by p0 radian/d for the other variables. 
     

Body      a0 (au)       p0 (10-8) 
Mercury     0.3871    0.6 
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Venus    0.7233  2.5 
Earth     1.0000    2.5 
Mars      1.5237  10.0 
Jupiter    5.2026    35.0 
Saturn      9.5547   70.0 
Uranus     19.2181   8.0 
Neptune   30.1096   42.0 

   
References: 
 
Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309. 
 

 g a l _ b e b p v 8 7          [0.4] 
 
Earth-Moon Barycenter Barycentric position and velocity, with respect to the FK5 
Reference Frame.   

void  

gal_bebpv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ b j u p v 8 7          [0.4] 
 
Jupiter Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bjupv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ b m a p v 8 7          [0.4] 
 
Mars Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  
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gal_bmapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ b m e p v 8 7          [0.4] 
 
Mercury Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bmepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ b n e p v 8 7          [0.4] 
 
Neptune Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bnepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

 
See gal_beapv87 for details. 
 

 g a l _ b p l p v 8 7          [0.4] 
 
Pluto Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bplpv87   

 (   

    double tt1,   
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    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87, and gal_hplpv87 for details.  
 

 g a l _ b s a p v 8 7          [0.4] 
 
Saturn Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bsapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details.  
 

 g a l _ b s u p v 8 7          [0.4] 
 
Sun Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bsupv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ b u r p v 8 7          [0.4] 
 
Uranus Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_burpv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   
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See gal_beapv87 for details. 
 

 g a l _ b v e p v 8 7          [0.4] 
 
Venus Barycentric position and velocity, with respect to the FK5 Reference Frame.    

void  

gal_bvepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_beapv87 for details. 
 

 g a l _ e p v 0 0          [0.1]  
 
Earth position and velocity, heliocentric and Barycentric, with respect to the International 
Celestial Reference Frame.   

int   

gal_epv00   

 (   

    double epoch1,   

    double epoch2,   

    double pvh[2][3],   

    double pvb[2][3] 

 ) ;    

On entry epoch1+epoch2 contain the TDB Julian epoch date in standard SOFA two-piece 
format. On return pvh contains the heliocentric Earth position and velocity, and pvb the 
Barycentric Earth position and velocity ( AU, AU per day ). The routine returns one of the 
following status codes: 
 

0 success 
1 warning: date outside 1900-2100CE 

  
The vectors are with respect to the International Celestial Reference Frame. The time unit 
is one day in TDB. The routine is a SIMPLIFIED SOLUTION from the planetary theory  
VSOP2000 (X. Moisson, P. Bretagnon, 2001, Celestial Mechanics & Dynamical 
Astronomy, 80, 3/4, 205-213) and is an adaptation of original Fortran code supplied by P. 
Bretagnon (private comm., 2000). Comparisons over the time span 1900-2100 with this 
simplified solution and the JPL DE405 ephemeris give the following results:   
 
                        RMS max   
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Heliocentric:   
 

position error     3.7    11.2   kilometers   
velocity error     1.4   5.0    millimeters per second   

 
Barycentric:   

 
position error     4.6    13.4  kilometers   
velocity error     1.4   4.9    millimeters per second   

  

 g a l _ g m o p v 0 0          [0.3] 
 
Moon position and velocity, with respect to the Geocentric Celestial Reference Frame 
(GCRF).   

int   

gal_gmopv02   

 (   

    double epoch1,   

    double epoch2,  

    int icor,  

    double pv[2][3]  

 ) ;   

 
On entry the variables must be set as follows: 
 

epoch1 TDB epoch part A  
epoch2 TDB epoch part B  
icor    correction type 

0: the constants are fitted to LLR observations provided from 1970 to 
2001; it is the default value; 
1: the constants are fitted to DE405 ephemeris over one also 
additive corrections to the secular coefficients. 

 
On return pv contains the Geocentric Moon position & velocity ( meters, meters per 
second ). The routine returns one of the following status codes: 
 
 0  success 

1   warning: date outside 1940-2060 CE  
  

The epoch1+epoch2 TDB Julian Date is in standard SOFA two-piece format. The 
algorithm used is the Lunar Solution ELP/MPP02. 
  
References: 
 
Lunar Solution ELP version ELP/MPP02, Jean Chapront and Gerard Francou, 
Observatoire de Paris -SYRTE department - UMR 8630/CNRS, October 2002   
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 g a l _ g s u p v 0 0           [0.3] 
 
Sun position and velocity, with respect to the Geocentric Celestial Reference Frame 
(GCRF).   

int   

gal_gsupv00   

 (   

    double epoch1,   

    double epoch2,   

    double pv[2][3]  

 ) ;   

On entry epoch1+epoch2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return pv contains the geocentric Sun position & velocity ( meters, meters per 
second ). The routine returns one of the following status codes: 
 

0 success 
1 warning: date outside 1900-2100CE range 

 
References: 
 
IERS Technical Note 32, IERS Conventions 2003, Dennis D. McCarthy et al., Page 12    
 

 g a l _ h e a p v 8 7          [0.4] 
 
Earth heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_heapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

On entry the variables must be set as follows: 
 

tt1   TT epoch part 1  
tt2    TT epoch part 2  
ref   Reference frame 

0 dynamical equinox and ecliptic J2000. 
1  FK5 (VSOP87) 
 

On return pv contains the position and velocity vectors ( AU, AU per day ). 
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pv[0][0]  x      
pv[0][1]  y       
pv[0][2]  z       

 
pv[1][0]  xdot    
pv[1][1]  ydot    
pv[1][2]  zdot    

 
The vectors are heliocentric with respect to the FK5 Reference Frame. The time unit is 
one day in TT. The routine is a solution from the planetary theory VSOP87. The main 
version of VSOP87 is similar to the previous theory VSOP82. In the both cases the 
constants of integration have been determined by fitting to the numerical integration 
DE200 of the Jet Propulsion Laboratory. The differences between VSOP87 and VSOP82 
mainly improve the validity time-span for Mercury, Venus, Earth-Moon Barycenter and 
Mars with a precision of 1" for 4000 years before and after J2000. The same precision is 
ensured for Jupiter and Saturn over 2000 years and for Uranus and Neptune over 6000 
years before and after J2000. The size of the relative precision p0 of VSOP87 solutions is 
given hereunder. That means that the actual precision is close by p0*a0 au for the 
distances (a0 being the semi-major axis) and close by p0 radian for the other variables. 
By derivation with respect to time expressed in day (d), the precision of the velocities is 
close by p0*a0 au/d for the distances and close by p0 radian/d for the other variables. 
     

Body      a0 (au)       p0 (10 -8) 
Mercury     0.3871    0.6 
Venus    0.7233  2.5 
Earth     1.0000    2.5 
Mars      1.5237  10.0 
Jupiter    5.2026    35.0 
Saturn      9.5547   70.0 
Uranus     19.2181   8.0 
Neptune   30.1096   42.0 

   
References: 
 
Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309. 
 

 g a l _ h e b p v 8 7          [0.4] 
 
Earth-Moon Barycenter heliocentric position and velocity, with respect to the FK5 
Reference Frame.   

void  

gal_hebpv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  
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    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ h j u p v 8 7          [0.4] 
 
Jupiter heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hjupv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

 
See gal_heapv87 for details.  
 

 g a l _ h m a p v 8 7          [0.4] 
 
Mars heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hmapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ h m e p v 8 7          [0.4] 
 
Mercury heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hmepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details. 
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 g a l _ h n e p v 8 7          [0.4] 
 
Neptune heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hnepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ h p l p v 8 7          [0.4] 
 
Pluto heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hplpv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details. The tables of Pluto have been constructed by J. Chapront 
(BDL) with a method of approximation using frequency analysis as described in the 
paper: Representation of planetary ephemerides by frequency analysis. Application to 
the five outer planets. Astronomy & Astrophysics Supplement Series, 109, 191 (1995). 
 
This representation uses the result of numerical integration DE200 of Jet Propulsion 
Laboratory as a source : Standish E. M., 1990, The observational basis for JPL'DE200, 
the planetary ephemerides of the Astronomical Almanac. Astronomy & Astrophysics, 
233, 252. 
 
The interval of validity is 146120 days. Start : Jan 01 1700 0h JD2341972.5 End : Jan 24 
2100 0h JD2488092.5 The tables contain series which represent the heliocentric 
rectangular coordinates of Pluto as functions of time. The reference frame is defined with 
dynamical equinox and equator J2000 (DE200). The time scale is Barycentric Dynamical 
Time (TDB). 
 

 g a l _ h s a p v 8 7          [0.4] 
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Saturn heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hsapv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ h u r p v 8 7          [0.4] 
 
Uranus heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hurpv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ h v e p v 8 7          [0.4] 
 
Venus heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  

gal_hvepv87   

 (   

    double tt1,   

    double tt2,  

    int ref,  

    double pv[2][3] 

 ) ;   

See gal_heapv87 for details.  
 

 g a l _ p l a n 9 4           [0.1] 
 
Approximate heliocentric position and velocity of a nominated major planet: Mercury, 
Venus, Earth-Moon Barycenter, Mars, Jupiter, Saturn, Uranus or Neptune (but not the 
Earth itself).   

 



Chapter 15 - Ephemerides 

207 

 

int   

gal_plan94   

 (   

    double date1,   

    double date2,   

    int np,   

    double pv[2][3] 

 ) ;   

 
On entry date1+date2 contains the TDB Julian Date in standard SOFA two-piece format, 
np contains the number of the required planet (1=Mercury, 2=Venus, 3=EMB ... 
8=Neptune). On return pv contains the planet‘s heliocentric J2000 position and velocity 
vectors (AU, AU per day). The routine returns one of the following status codes: 
 

-1   illegal NP (outside 1-8)   
0   success   
+1   warning: date outside 1000-3000 CE   
+2   warning: solution failed to converge   

  
If an np value outside the range 1-8 is supplied, an error status (-1) is returned and the pv 
vector set to zeroes. For np=3 the result is for the Earth-Moon Barycenter. To obtain the 
heliocentric position and velocity of the Earth, use instead the routine gal_epv00. The 
reference frame is equatorial and is with respect to the mean equator and equinox of 
epoch J2000. The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M. 
Chapront-Touze, G. Francou and J. Laskar (Bureau des Longitudes, Paris, France).  
From comparisons with JPL ephemeris DE102, they quote the following maximum errors 
over the interval 1800-2050:   
    

L ( arcseconds )  B ( arcseconds )   R (kilometers)   
 

Mercury    4           1          300   
Venus      5          1          800   
EMB       6           1         1000   
Mars       17         1        7700   
Jupiter    71         5        76000   
Saturn     81         13       267000   
Uranus    86          7        712000   
Neptune    11         1        253000   

 
Over the interval 1000-3000, they report that the accuracy is no worse than 1.5 times that 
over 1800-2050. Outside 1000-3000 the accuracy declines.   
 
Comparisons of this routine with the JPL DE200 ephemeris give the following RMS errors 
over the interval 1960-2025:   
    

position (kilometers)      velocity (meters per second)  
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Mercury  334            0.437   
Venus      1060                 0.855   
EMB     2010              0.815   
Mars       7690             1.98   
Jupiter    71700             7.70   
Saturn     199000            19.4   
Uranus     564000            16.4   
Neptune   158000           14.4   

   
Comparisons against DE200 over the interval 1800-2100 gave the following maximum 
absolute differences. (The results using DE406 were essentially the same.)   
 

L    B     R   Rdot   
 

Mercury     7          1          500        0.7   
Venus      7          1          1100        0.9   
EMB      9         1         1300        1.0   
Mars     26        1         9000        2.5   
Jupiter   78        6       82000        8.2   
Saturn    87        14      263000     24.6   
Uranus   86        7       661000     27.4   
Neptune   11         2       248000     21.4   

    
References:   
 
Simon, J.L, Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., and Laskar, 
J., Astronomy & Astrophysics 282, 663 (1994).  
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Appendix A – GNU Free Documentation License 
Version 1.2, November 2002 

 

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

 

1. PREAMBLE  

The purpose of this License is to make a manual, textbook, or other functional and 
useful document "free" in the sense of freedom: to assure everyone the effective 
freedom to copy and redistribute it, with or without modifying it, either commercially 
or noncommercially. Secondarily, this License preserves for the author and 
publisher a way to get credit for their work, while not being considered responsible 
for modifications made by others.  

This License is a kind of "copyleft", which means that derivative works of the 
document must themselves be free in the same sense. It complements the GNU 
General Public License, which is a copyleft license designed for free software. We 
have designed this License in order to use it for manuals for free software, 
because free software needs free documentation: a free program should come 
with manuals providing the same freedoms that the software does.  But this 
License is not limited to software manuals; it can be used for any textual work, 
regardless of subject matter or whether it is published as a printed book.  We 
recommend this License principally for works whose purpose is instruction or 
reference.  

2. APPLICABILITY AND DEFINITIONS  

This License applies to any manual or other work, in any medium, that contains a 
notice placed by the copyright holder saying it can be distributed under the terms of 
this License. Such a notice grants a world-wide, royalty-free license, unlimited in 
duration, to use that work under the conditions stated herein. The "Document", 
below, refers to any such manual or work. Any member of the public is a licensee, 
and is addressed as "you". You accept the license if you copy, modify or distribute 
the work in a way requiring permission under copyright law.  

A "Modified Version" of the Document means any work containing the Document 
or a portion of it, either copied verbatim, or with modifications and/or translated into 
another language. A "Secondary Section" is a named appendix or a front-matter 
section of the Document that deals exclusively with the relationship of the 
publishers or authors of the Document to the Document's overall subject (or to 
related matters) and contains nothing that could fall directly within that overall 
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary 
Section may not explain any mathematics.) The relationship could be a matter of 
historical connection with the subject or with related matters, or of legal, 
commercial, philosophical, ethical or political position regarding them. The 
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"Invariant Sections" are certain Secondary Sections whose titles are designated, 
as being those of Invariant Sections, in the notice that says that the Document is 
released under this License. If a section does not fit the above definition of 
Secondary then it is not allowed to be designated as Invariant. The Document may 
contain zero Invariant Sections. If the Document does not identify any Invariant 
Sections then there are none. The "Cover Texts" are certain short passages of text 
that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says 
that the Document is released under this License. A Front-Cover Text may be at 
most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" 
copy of the Document means a machine-readable copy, represented in a format 
whose specification is available to the general public, that is suitable for revising 
the document straightforwardly with generic text editors or (for images composed 
of pixels) generic paint programs or (for drawings) some widely available drawing 
editor, and that is suitable for input to text formatters or for automatic translation to 
a variety of formats suitable for input to text formatters. A copy made in an 
otherwise Transparent file format whose markup, or absence of markup, has been 
arranged to thwart or discourage subsequent modification by readers is not 
Transparent. An image format is not Transparent if used for any substantial 
amount of text. A copy that is not "Transparent" is called "Opaque". Examples of 
suitable formats for Transparent copies include plain ASCII without markup, 
Texinfo input format, LaTeX input format, SGML or XML using a publicly available 
DTD, and standard-conforming simple HTML, PostScript or PDF designed for 
human modification. Examples of transparent image formats include PNG, XCF 
and JPG.  Opaque formats include proprietary formats that can be read and 
edited only by proprietary word processors, SGML or XML for which the DTD 
and/or processing tools are not generally available, and the machine-generated 
HTML, PostScript or PDF produced by some word processors for output purposes 
only. The "Title Page" means, for a printed book, the title page itself, plus such 
following pages as are needed to hold, legibly, the material this License requires to 
appear in the title page. For works in formats which do not have any title page as 
such, "Title Page" means the text near the most prominent appearance of the 
work's title, preceding the beginning of the body of the text. A section "Entitled 
XYZ" means a named subunit of the Document whose title either is precisely XYZ 
or contains XYZ in parentheses following text that translates XYZ in another 
language. (Here XYZ stands for a specific section name mentioned below, such as 
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve 
the Title" of such a section when you modify the Document means that it remains a 
section "Entitled XYZ" according to this definition. The Document may include 
Warranty Disclaimers next to the notice which states that this License applies to 
the Document. These Warranty Disclaimers are considered to be included by 
reference in this License, but only as regards disclaiming warranties: any other 
implication that these Warranty Disclaimers may have is void and has no effect on 
the meaning of this License.  

3. VERBATIM COPYING  

You may copy and distribute the Document in any medium, either commercially or 
noncommercially, provided that this License, the copyright notices, and the license 
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notice saying this License applies to the Document are reproduced in all copies, 
and that you add no other conditions whatsoever to those of this License. You may 
not use technical measures to obstruct or control the reading or further copying of 
the copies you make or distribute.  However, you may accept compensation in 
exchange for copies. If you distribute a large enough number of copies you must 
also follow the conditions in section 3. You may also lend copies, under the same 
conditions stated above, and you may publicly display copies.  

4. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed 
covers) of the Document, numbering more than 100, and the Document's license 
notice requires Cover Texts, you must enclose the copies in covers that carry, 
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, 
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly 
identify you as the publisher of these copies. The front cover must present the full 
title with all words of the title equally prominent and visible. You may add other 
material on the covers in addition. Copying with changes limited to the covers, as 
long as they preserve the title of the Document and satisfy these conditions, can be 
treated as verbatim copying in other respects. If the required texts for either cover 
are too voluminous to fit legibly, you should put the first ones listed (as many as fit 
reasonably) on the actual cover, and continue the rest onto adjacent pages. If you 
publish or distribute Opaque copies of the Document numbering more than 100, 
you must either include a machine-readable Transparent copy along with each 
Opaque copy, or state in or with each Opaque copy a computer-network location 
from which the general network-using public has access to download using 
public-standard network protocols a complete Transparent copy of the Document, 
free of added material. If you use the latter option, you must take reasonably 
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure 
that this Transparent copy will remain thus accessible at the stated location until at 
least one year after the last time you distribute an Opaque copy (directly or through 
your agents or retailers) of that edition to the public. It is requested, but not 
required, that you contact the authors of the Document well before redistributing 
any large number of copies, to give them a chance to provide you with an updated 
version of the Document.  

5. MODIFICATIONS  

You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified 
Version under precisely this License, with the Modified Version filling the role of the 
Document, thus licensing distribution and modification of the Modified Version to 
whoever possesses a copy of it. In addition, you must do these things in the 
Modified Version:  

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the 
Document, and from those of previous versions (which should, if there were any, 
be listed in the History section of the Document). You may use the same title as a 
previous version if the original publisher of that version gives permission.  
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B. List on the Title Page, as authors, one or more persons or entities responsible 
for authorship of the modifications in the Modified Version, together with at least 
five of the principal authors of the Document (all of its principal authors, if it has 
fewer than five), unless they release you from this requirement.  

C. State on the Title page the name of the publisher of the Modified Version, as the 
publisher. D. Preserve all the copyright notices of the Document.  

E. Add an appropriate copyright notice for your modifications adjacent to the other 
copyright notices.  

F. Include, immediately after the copyright notices, a license notice giving the 
public permission to use the Modified Version under the terms of this License, in 
the form shown in the Addendum below.  

G. Preserve in that license notice the full lists of Invariant Sections and required 
Cover Texts given in the Document's license notice.  

H. Include an unaltered copy of this License.  

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item 
stating at least the title, year, new authors, and publisher of the Modified Version 
as given on the Title Page. If there is no section Entitled "History" in the Document, 
create one stating the title, year, authors, and publisher of the Document as   
given on its Title Page, then add an item describing the Modified Version as stated 
in the previous sentence.  

J. Preserve the network location, if any, given in the Document for public access to 
a Transparent copy of the Document, and likewise the network locations given in 
the Document for previous versions it was based on. These may be placed in the 
"History" section. You may omit a network location for a work that was published at 
least four years before the Document itself, or if the original publisher of the version 
it refers to gives permission.  

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the 
Title of the section, and preserve in the section all the substance and tone of each 
of the contributor acknowledgements and/or dedications given therein.  

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in 
their titles. Section numbers or the equivalent are not considered part of the 
section titles.  

M. Delete any section Entitled "Endorsements". Such a section may not be 
included in the Modified Version.  

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in 
title with any Invariant Section.  

O. Preserve any Warranty Disclaimers. If the Modified Version includes new 
front-matter sections or appendices that qualify as Secondary Sections and 
contain no material copied from the Document, you may at your option designate 
some or all of these sections as invariant. To do this, add their titles to the list of 
Invariant Sections in the Modified Version's license notice. These titles must be 
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distinct from any other section titles. You may add a section Entitled 
"Endorsements", provided it contains nothing but endorsements of your Modified 
Version by various parties--for example, statements of peer review or that the text 
has been approved by an organization as the authoritative definition of a standard. 
You may add a passage of up to five words as a Front-Cover Text, and a passage 
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the 
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover 
Text may be added by (or through arrangements made by) any one entity. If the 
Document already includes a cover text for the same cover, previously added by 
you or by arrangement made by the same entity you are acting on behalf of, you 
may not add another; but you may replace the old one, on explicit permission from 
the previous publisher that added the old one. The author(s) and publisher(s) of 
the Document do not by this License give permission to use their names for 
publicity for or to assert or imply endorsement of any Modified Version.  

6. COMBINING DOCUMENTS  

You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified versions, 
provided that you include in the combination all of the Invariant Sections of all of 
the original documents, unmodified, and list them all as Invariant Sections of your 
combined work in its license notice, and that you preserve all their Warranty 
Disclaimers. The combined work need only contain one copy of this License, and 
multiple identical Invariant Sections may be replaced with a single copy. If there 
are multiple Invariant Sections with the same name but different contents, make 
the title of each such section unique by adding at the end of it, in parentheses, the 
name of the original author or publisher of that section if known, or else a unique 
number. Make the same adjustment to the section titles in the list of Invariant 
Sections in the license notice of the combined work. In the combination, you must 
combine any sections Entitled "History" in the various original documents, forming 
one section Entitled "History"; likewise combine any sections Entitled 
"Acknowledgements", and any sections Entitled "Dedications". You must delete all 
sections Entitled "Endorsements".  

7. COLLECTIONS OF DOCUMENTS  

You may make a collection consisting of the Document and other documents 
released under this License, and replace the individual copies of this License in the 
various documents with a single copy that is included in the collection, provided 
that you follow the rules of this License for verbatim copying of each of the 
documents in all other respects. You may extract a single document from such a 
collection, and distribute it individually under this License, provided you insert a 
copy of this License into the extracted document, and follow this License in all 
other respects regarding verbatim copying of that document.  

8. AGGREGATION WITH INDEPENDENT WORKS  

A compilation of the Document or its derivatives with other separate and 
independent documents or works, in or on a volume of a storage or distribution 
medium, is called an "aggregate" if the copyright resulting from the compilation is 
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not used to limit the legal rights of the compilation's users beyond what the 
individual works permit. When the Document is included in an aggregate, this 
License does not apply to the other works in the aggregate which are not 
themselves derivative works of the Document. If the Cover Text requirement of 
section 3 is applicable to these copies of the Document, then if the Document is 
less than one half of the entire aggregate, the Document's Cover Texts may be 
placed on covers that bracket the Document within the aggregate, or the electronic 
equivalent of covers if the Document is in electronic form. Otherwise they must 
appear on printed covers that bracket the whole aggregate.  

9. TRANSLATION  

Translation is considered a kind of modification, so you may distribute translations 
of the Document under the terms of section 4. Replacing Invariant Sections with 
translations requires special permission from their copyright holders, but you may 
include translations of some or all Invariant Sections in addition to the original 
versions of these Invariant Sections. You may include a translation of this License, 
and all the license notices in the Document, and any Warranty Disclaimers, 
provided that you also include the original English version of this License and the 
original versions of those notices and disclaimers. In case of a disagreement 
between the translation and the original version of this License or a notice or 
disclaimer, the original version will prevail. If a section in the Document is Entitled 
"Acknowledgements", "Dedications", or "History", the requirement (section 4) to 
Preserve its Title (section 1) will typically require changing the actual title.  

10.  TERMINATION  

You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License. Any other attempt to copy, modify, 
sublicense or distribute the Document is void, and will automatically terminate your 
rights under this License. However, parties who have received copies, or rights, 
from you under this License will not have their licenses terminated so long as such 
parties remain in full compliance.  

11.  FUTURE REVISIONS OF THIS LICENSE  

The Free Software Foundation may publish new, revised versions of the GNU Free 
Documentation License from time to time. Such new versions will be similar in 
spirit to the present version, but may differ in detail to address new problems or 
concerns.  See http://www.gnu.org/copyleft/. Each version of the License is given 
a distinguishing version number. If the Document specifies that a particular 
numbered version of this License "or any later version" applies to it, you have the 
option of following the terms and conditions either of that specified version or of 
any later version that has been published (not as a draft) by the Free Software 
Foundation. If the Document does not specify a version number of this License, 
you may choose any version ever published (not as a draft) by the Free Software 
Foundation.  

12. ADDENDUM:  
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How to use this License for your documents To use this License in a document you 
have written, include a copy of the License in the document and put the following 
copyright and license notices just after the title page: Copyright (c) YEAR YOUR 
NAME. Permission is granted to copy, distribute and/or modify this document    
under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation; with no Invariant Sections, no 
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in 
the section entitled "GNU Free Documentation License". If you have Invariant 
Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line 
with this: with the Invariant Sections being LIST THEIR TITLES, with the    
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you 
have Invariant Sections without Cover Texts, or some other combination of the 
three, merge those two alternatives to suit the situation. If your document contains 
nontrivial examples of program code, we recommend releasing these examples in 
parallel under your choice of free software license, such as the GNU General 
Public License, to permit their use in free software
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vector, cross product 20 

vector, dot product 15, 18 

vector, modulus 16, 18 

vector, subtraction 16, 19 

vector, zero 27 

vector-matrix, product 22 

vector-matrix, product 22 

vector-scalar, addition 17 

vector-scalar, product 25 

vector-scaler, product 24 

vector-transpose-matrix, product 26 

Venus 200, 206 

VSOP87 196 
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