
i

General Astrodynamics Library
Reference Manual

 Version 0.6

General Astrodynamics Library

ii

iii

General Astrodynamics Library

Reference Manual
Version 0.6

April 22, 2011

Email: vp9mu@amsat.org

Copyright © 2011 The GAL Team

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Cover photograph courtesy of NASA: Mercury from the Messenger spacecraft.

General Astrodynamics Library

iv

Contents

5

Preface ..7
Chapter 1 – Introduction ..9

What is new in version 0.6? ...10
Routines available in GAL ..11
Standards for Fundamental Astronomy Library (SOFA)..11
GAL is Free Software ...12
Obtaining GAL ...12
No Warranty ..12
Reporting Bugs..13
Compatibility with C++ ..13
Deprecated Functions...13
ANSI C Compliance ..13
Free Software Needs Free Documentation ..14
SOFA Julian Date Format ..15
Position & Velocity Vectors ..15
Status codes ..16
Using GAL with Appleʼs Xcode ..16

Chapter 2 – Status Routines ...17
Chapter 3 – Math Routines...29
Chapter 4 - File Manipulation ..69
Chapter 5 - Test Framework ...89
Chapter 6 - Date & Time...96
Chapter 7 – Reference Frames ...115
Chapter 8 - Star Routines ..219
Chapter 9 - Ellipsoids..231
Chapter 10 - Force Models...235
Chapter 11 – U S S T R A T C O M...263
Chapter 12 – Keplerian Propagation ...285
Chapter 13 - Ephemerides ...295
Chapter 13 – Astromomical Macros ..310
Appendix A – GNU Free Documentation License..311
Index ..318

General Astrodynamics Library

6

Preface

7

Preface
This manual documents the use of the General Astrodynamics Library, a numerical
library for C, C++, and Objective C (Cocoa) programmers. The GAL Project is an
attempt to gather a comprehensive set of astrodynamics routines in a single library and
in a consistent form.

The project started life as an extension to the GNU Scientific Library, however once the
authors discovered the IAUʼs SOFA Library it was decided to drop GSL and adopt
SOFA. Much of the core functionality of SOFA is directly applicable to Astrodynamics
applications. The main reason for dropping GSL compatibility was the GSL approach to
matrix and vector storage – an overly complicated scheme. The GAL implementations
of the SOFA routines do differ from the official IAU versions. This is mainly due to the
different mechanism for reporting error and warning codes.

Starting with version 0.6, GAL contains some routines derived from NAIF SPICE Toolkit.
The NAIF SPICE Toolkit is an excellent piece of work, and has been valuable in
providing many test cases for GAL. A lot of SPICE overlaps with the functionality of
GAL, and so only the value add routines have been included in GAL. SPICE is a
complete eco-system, more like an application than a library. This is not a complaint
merely an observation. GALʼs implementations of the SPICE routines are low level, and
without the extensive SPICE safety net, and associated overheads.

The test framework is central to GALʼs design, nearly all routines have a corresponding
test routine. The test framework allows routines to be upgraded as new techniques are
published, whilst ensuring that nothing gets broken in the process. Users of the library
may also use the test routines as examples of how to use the main routines.

The General Astrodynamics Library is free software. The term “free software” is
sometimes misunderstood – it has nothing to do with price. It is about freedom. It refers
to your freedom to run, copy, distribute, study, change and improve the software. With
the General Astrodynamics Library you have all those freedoms.

Paul Willmott
Somerset, Bermuda
March 8, 2010

General Astrodynamics Library

8

Chapter 1 – Introduction

9

Chapter 1 – Introduction

General Astrodynamics Library

10

The General Astrodynamics Library (GAL) is a collection of routines for numerical
computing. The routines have been written in C, and present a modern Applications
Programming Interface (API) for C, C++, and Objective C (Cocoa) programmers,
allowing wrappers to be written for very high level languages. The source code is
distributed under the GNU General Public License.

 What is new in version 0.6?

The GAL Team are sorry to announce that the interfaces for many routines have been
changed from prior versions of GAL. Many attempts were made to provide for
backwards compatibility between 0.6 and 0.5, but these attempts just created more
pain. So it was decided to bite the bullet and fix those areas of GAL that have become
strained since the release of version 0.1.
A major change has been the introduction of a status recording mechanism. This
mechanism replaces the simple integer return codes for a large number of routines. The
mechanism provides a more robust status (error and warning) reporting mechanism for
the user. This is particularly important now that routines are getting more complex, and
the routine calls deeper.
This change does mean that the GAL and corresponding SOFA routines now have
different parameters in many cases. Given this fact the opportunity has been taken to
make other SOFA derived routines more consistent with related but not SOFA derived
routines.
The implementation of gravity models have been changed from using global external
variables to use provider routines.
The header file gal_const.h has been removed, and itʼs functions split across several
new header files.
Version 0.6 sees the introduction of the following new features:

• JPL and IMCCE ephemerides
• NAIF SPICE SPK file support
• Osculating to Mean Keplerian element conversion
• US Strategic Command Satellite Catalog
• Gravity model import/export
• Earth orientation parameters import

Chapter 1 – Introduction

11

 Routines available in GAL
The library covers a wide range of topics in astrodynamics computing. Routines are
available for the following areas:

• Vector and Matrix Manipulation
• Dates and Times
• Ellipsoids
• Earth Orientation
• Reference Frames
• Ephemerides
• SGP4 Propagation
• ODE Integrators
• Force Models
• Gravity Models
• Classical Keplerian Propagators

The use of these routines is described in this manual. Each chapter provides detailed
definitions of the functions, including references to the articles upon which the
algorithms are based.
The header file gal.h will include all the header files for the complete library.

 Standards for Fundamental Astronomy Library (SOFA)
GAL is built upon an independent translation of the IAUʼs SOFA FORTRAN Library. The
majority of the routines included in release 0.1 of GAL are translations of SOFA
routines. These routines have not been verified by the IAU and are not supported by the
IAU or the SOFA Review Board. Any errors introduced by the translation process are
the responsibility of the GAL Team solely. That said, the GAL Team would like to thank
Patrick Wallace, past Chair of the SOFA Review Board, for making the SOFA test suite
available to the GAL Team, and for answering many questions and providing insight into
the thinking behind the FORTRAN SOFA implementations. Since the release of version
0.1 of GAL an authorized IAU SOFA C library has been written and released. The
results of GAL and the IAU C version have been compared, and shown that identical
results are computed. The entries in this document for the SOFA derived routines are
based upon the comments in the original SOFA Fortran code. SOFA derived routines
added from December 31, 2009 onwards are directly derived from the official C SOFA
versions and are not independent translations of the FORTRAN versions. They have
however been modified to confirm to GAL formatting standards, status recording
mechanism, and constant consistency with other routines. The individual header files
detail any other differences from the code upon which the routine was derived. The user
should also comply with the SOFA licence for these routines, this licence is included in
the file SOFA_LICENSE.TXT in the distribution.

General Astrodynamics Library

12

 GAL is Free Software
The subroutines in the General Astrodynamics Library are “free software”; this means
that everyone is free to use them, and to redistribute them in other free programs. The
library is not in the public domain; it is copyrighted and there are conditions on its
distribution. These conditions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of the software that they might get from you.
Specifically, we want to make sure that you have the right to share copies of programs
that you are given which use the General Astrodynamics Library, that you receive their
source code or else can get it if you want it, that you can change these programs or use
pieces of them in new free programs, and that you know you can do these things.
To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of any code which uses the
General Astrodynamics Library, you must give the recipients all the rights that you have
received. You must make sure that they, too, receive or can get the source code, both to
the library and the code which uses it. And you must tell them their rights. This means
that the library should not be redistributed in proprietary programs.
Also, for our own protection, we must make certain that everyone finds out that there is
no warranty for the General Astrodynamics Library. If these programs are modified by
someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.
The precise conditions for the distribution of software related to the General
Astrodynamics Library are found in the GNU General Public License.
Further information about this license is available from the GNU Project webpage
Frequently Asked Questions about the GNU GPL,

http://www.gnu.org/copyleft/gpl-faq.html

 Obtaining GAL
The source code for the library can be obtained in different ways, by copying it from a
friend, or downloading it from the internet.

http://www.homepage.mac.com/pclwillmott/GAL/index.html

 No Warranty
The software described in this manual has no warranty, it is provided “as is”. It is your
responsibility to validate the behavior of the routines and their accuracy using the
source code provided, or to purchase support and warranties from commercial
redistributors. Consult the GNU General Public license for further details (see GNU
General Public License).

Chapter 1 – Introduction

13

Not all routines in the GAL library have corresponding test routines. This is
usually due to the unavailability of independent third party test cases. Users
should take particular care when using routines that do not have test routines.
The GAL Team would greatly appreciate any worked examples that would fill
some of these gaps.

 Reporting Bugs
A list of known bugs can be found in the BUGS file included in the GAL distribution.
Details of compilation problems can be found in the INSTALL file. If you find a bug which
is not listed in these files, please report it to vp9mu@amsat.org. All bug reports should
include:

• The version number of GAL
• The hardware and operating system
• The compiler used, including version number and compilation options
• A description of the bug behavior
• A short program which exercises the bug, showing actual and expected results

It is useful if you can check whether the same problem occurs when the library is
compiled without optimization. Thank you. Any errors or omissions in this manual can
also be reported to the same address.

 Compatibility with C++
The library header files automatically define functions to have extern “C” linkage when
included in C++ programs. This allows the functions to be called directly from C++.

 Deprecated Functions
From time to time, it may be necessary for the definitions of some functions to be
altered or removed from the library. In these circumstances the functions will first be
declared deprecated and then removed from subsequent versions of the library.
Functions that are deprecated can be disabled in the current release by setting the
preprocessor definition GAL_DISABLE_DEPRECATED. This allows existing code to be
tested for forwards compatibility.

 ANSI C Compliance
The library is written in ANSI C and is intended to conform to the ANSI C standard
(C89). It should be portable to any system with a working ANSI C compiler. The library
does not rely on any non-ANSI extensions in the interface it exports to the user.
Programs you write using GAL can be ANSI compliant. To avoid namespace conflicts all
exported function names and variables have the prefix gal_, while exported macros
have the prefix GAL_.

General Astrodynamics Library

14

 Free Software Needs Free Documentation
The following article was written by Richard Stallman, founder of the GNU Project. The
biggest deficiency in the free software community today is not in the software - it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important
free software package does not come with a free manual and a free tutorial, that is a
major gap. We have many such gaps today. Consider Perl, for instance. The tutorial
manuals that people normally use are non-free. How did this come about? Because the
authors of those manuals published them with restrictive terms - no copying, no
modification, source files not available - which exclude them from the free software
world. That wasnʼt the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free. Free documentation, like free
software, is a matter of freedom, not price. The problem with the non-free manual is not
that publishers charge a price for printed copies - that in itself is fine. (The Free
Software Foundation sells printed copies of manuals, too.) The problem is the
restrictions on the use of the manual. Free manuals are available in source code form,
and give you permission to copy and modify. Non-free manuals do not allow this. The
criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be
permitted, so that the manual can accompany every copy of the program, both on-line
and on paper. Permission for modification of the technical content is crucial too. When
people modify the software, adding or changing features, if they are conscientious they
will change the manual too—so they can provide accurate and clear documentation for
the modified program. A manual that leaves you no choice but to write a new manual to
document a changed version of the program is not really available to our community.
Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original authorʼs copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These
kinds of restrictions are acceptable because they donʼt obstruct the communityʼs normal
use of the manual. However, it must be possible to modify all the technical content of
the manual, and then distribute the result in all the usual media, through all the usual
channels. Otherwise, the restrictions obstruct the use of the manual, it is not free, and
we need another manual to replace it. Please spread the word about this issue. Our
community continues to lose manuals to proprietary publishing. If we spread the word
that free software needs free reference manuals and free tutorials, perhaps the next
person who wants to contribute by writing documentation will realize, before it is too
late, that only free manuals contribute to the free software community. If you are writing
documentation, please insist on publishing it under the GNU Free Documentation
License or another free documentation license. Remember that this decision requires

Chapter 1 – Introduction

15

your approval - you donʼt have to let the publisher decide. Some commercial publishers
will use a free license if you insist, but they will not propose the option; it is up to you to
raise the issue and say firmly that this is what you want. If the publisher you are dealing
with refuses, please try other publishers. If youʼre not sure whether a proposed license
is free, write to licensing@gnu.org. You can encourage commercial publishers to sell
more free, copylefted manuals and tutorials by buying them, and particularly by buying
copies from the publishers that paid for their writing or for major improvements.
Meanwhile, try to avoid buying non-free documentation at all. Check the distribution
terms of a manual before you buy it, and insist that whoever seeks your business must
respect your freedom. Check the history of the book, and try reward the publishers that
have paid or pay the authors to work on it. The Free Software Foundation maintains a
list of free documentation published by other publishers:

http://www.fsf.org/doc/other-free-books.html

 SOFA Julian Date Format
GAL uses Julian Dates stored in standard SOFA two-piece format. The Julian Date is
apportioned in any convenient way between two arguments. For example, the Julian
Date 2450123.7 could be expressed in any of these ways, among others:

2450123.7 0.0 Julian Date method
2451545.0 -1421.3 J2000 method
2400000.5 50123.2 Modified Julian Date method
2450123.5 0.2 date & time method

The GAL routines are optimized assuming that the first date argument is of a greater
magnitude than the second argument. The routines will work with either ordering, but
greatest precision is obtained by using the recommended ordering.

 Position & Velocity Vectors
GAL stores position and velocity vectors in a single 2 by 3 array. This allows both
vectors to be passed to functions as a single entity. The combined position and velocity
vectorsʼ array is called a pv-vector.
 pv[0][0] x position
 pv[0][1] y position
 pv[0][2] z position

 pv[1][0] x velocity
 pv[1][1] y velocity
 pv[1][2] z velocity

A pv-vector may be split into individual p-vectors (1 by 3 array).

General Astrodynamics Library

16

 Status codes
As of version 0.6 GAL provides a unified and consistent mechanism for recording and
reporting errors and warnings to the routines that call the GAL routines. Prior to version
0.6 errors and warnings were reported via integer function return values. As routines
became more complex and deeper (i.e. layered calls to more and more GAL routines),
this mechanism broke down.
The mechanism introduced in version 0.6 is based upon linked lists encapsulated within
the GAL status structure. More details about this mechanism can be found in Chapter 2
– Status Routines.

 Using GAL with Appleʼs Xcode

By default GAL will be installed in the path /usr/local . Unfortunately this path is
invisible to the Finder on OS-X systems. However the library is still usable in Xcode
projects provided that a few steps are taken.
Inside the Xcode project that you wish to link with GAL, select “Edit Project Settings”
from the “Project” menu. Select the “Build” tab. Xcode stores separate configurations for
build and release so you have to do the following in both the build and release
configurations. Scroll down to the “Linking” section. Under “Other Linker Flags” enter
–lgal, this tells Xcode to link the project to the GAL library. Under “Header Search
Paths” enter /usr/local/include . Under “Library Search Paths” enter
/usr/local/lib . If you installed GAL anywhere apart from the default then change
the previous paths as necessary.
When GAL is installed it is compiled for the host machine processor. Xcode by default
compiles universal binaries, i.e. the same program can run on both Intel and PPC
machines. GAL cannot be linked to a program compiled as a universal binary. Again in
the Build tab near the top remove from “Valid Architectures” any references that do not
refer to the host machine processor. For modern Intel machines you should just select
“x86_64”.
Save the changes and that is it, GAL should link correctly now.

Chapter 2 – Status Routines

17

Chapter 2 – Status Routines

The routines detailed in this chapter are defined in the “gal_status.h” header file. The
header file “gal_status_t.h” defines the status structure types. These structures should
only be manipulated by the GAL status routines. Each status structure instance contains
two lists one for errors and one for warnings. Errors indicate that the called routine did
not complete successfully or that invalid parameters were passed to a routine. It is the
responsibility of the user to monitor these and take appropriate actions. Warnings are an
indication that the routines completed successfully but detected something that the user
may wish to investigate further. The status recording mechanism allows a routine to
report many errors and warnings back to the user, it also allows a routine to pass back
any errors and warnings set by a routine that is called by the routine. The status
structure also records the filename and the line number of when the error or warning
was registered. The routine gal_stsprn is useful for debugging.

For completeness the definitions of the structures are listed below:

/*
 * ---
 * Type definitions for Status recoding structures
 * ---
 */

#define GAL_STS_MAXFILENAME (256)

struct snode {
 int status ;
 int linenum ;
 char filename[GAL_STS_MAXFILENAME] ;
 struct snode *next ;
} ;

typedef struct snode gal_snode_t ;

typedef struct {
 int errc ;
 gal_snode_t *errors ;
 int warnc ;
 gal_snode_t *warnings ;
} gal_status_t ;

General Astrodynamics Library

18

Chapter 2 – Status Routines

19

The header file gal_status.h defines the following constants to represent the GAL error
and warning codes. The user should use these constants rather than the numeric
values as the numeric values may be changed in subsequent releases of GAL.

/*
 * --------------------------------
 * Constants for Error Status Codes
 * --------------------------------
 */

enum {

 GAL_SUCCESS = 0,
 GAL_FAILURE = 1,
 GAL_NOT_FOUND = 2,
 GAL_DISTANCE_OVERRIDEN = 3,
 GAL_EXCESSIVE_VELOCITY = 4,
 GAL_NO_CONVERGENCE = 5,
 GAL_BAD_YEAR = 6,
 GAL_BAD_MONTH = 7,
 GAL_BAD_DAY = 8,
 GAL_BAD_FRACTION = 9,
 GAL_ALLOC_FAILED = 10,
 GAL_INVALID_ID = 11,
 GAL_OUTSIDE_DATE_RANGE = 12,
 GAL_STEPSIZE_UNDERFLOW = 13,
 GAL_STEPSIZE_TOO_SMALL = 14,
 GAL_OUT_OF_RANGE = 15,
 GAL_NULL_VECTOR = 16,
 GAL_SYSTEM_ERROR = 17,
 GAL_INVALID_ECCENTRICITY = 18,
 GAL_INVALID_SMA = 19,
 GAL_INVALID_SEMI_LATUS_RECTUM = 20,
 GAL_EPOCH_SUB_ORBITAL = 21,
 GAL_SATELLITE_DECAYED = 22,
 GAL_NULL_POINTER = 23,
 GAL_INVALID_INDEX = 24,
 GAL_INVALID_ERROR_CODE = 25,
 GAL_INVALID_WARNING_CODE = 26,
 GAL_EXCESSIVE_FACTORIAL = 27,
 GAL_INVALID_FLATTENING = 28,
 GAL_ARITHMETIC_EXCEPTION = 29,
 GAL_INVALID_MEAN_MOTION = 30,
 GAL_MAX_STEPS_EXCEEDED = 31,
 GAL_NOT_GRAVITY_MODEL = 32,
 GAL_INVALID_DOUBLE = 33,
 GAL_INVALID_INTEGER = 34,

General Astrodynamics Library

20

 GAL_FILE_NOT_OPEN = 35,
 GAL_INVALID_DEGREE = 36,
 GAL_INVALID_ORDER = 37,
 GAL_INVALID_FORMAT = 38,
 GAL_INVALID_STRING = 39,
 GAL_UNEXPECTED_EOF = 40,
 GAL_DATES_NOT_CONTIGUOUS = 41,
 GAL_FILE_NOT_FOUND = 42,
 GAL_INVALID_DATA_TYPE_FORMAT = 43,
 GAL_INVALID_DATE_RANGE = 44,
 GAL_COEFFICIENTS_NOT_FOUND = 45,
 GAL_STSADD_BREAKPOINT = 46,
 GAL_OPEN_FILE_FAILED = 47,
 GAL_INVALID_COORDINATE = 48,
 GAL_CANNOT_INVERT_MATRIX = 49,
 GAL_UNKNOWN_SPK_TYPE = 50,
 GAL_INVALID_GM = 51,
 GAL_ZERO_POSITION = 52,
 GAL_ZERO_VELOCITY = 53,
 GAL_NON_CONIC_MOTION = 54,
 GAL_INVALID_SIZE = 55,
 GAL_INVALID_STEP_SIZE = 56,
 GAL_DIVIDE_BY_ZERO = 57,
 GAL_VECTORS_NOT_ORTHOGONAL = 58,

/*
 * ----------------------------------
 * Constants for Warning Status Codes
 * ----------------------------------
 */

 GAL_DUBIOUS_YEAR = 10000,
 GAL_NO_OCCULTATION = 10001,
 GAL_PARTIAL_OCCULTATION = 10002,
 GAL_TOTAL_OCCULTATION = 10003,
 GAL_NEVER_SETS = 10004,
 GAL_NEVER_RISES = 10005,
 GAL_NOT_0_TO_9 = 10006,
 GAL_MAX_DEGREE_SET = 10007,
 GAL_MAX_ORDER_SET = 10008,
 GAL_START_DATE_SET = 10009,
 GAL_END_DATE_SET = 10010,
 GAL_WARN_BAD_DAY = 10011

} ;

#define GAL_MAXSYMLEN 64

Chapter 2 – Status Routines

21

g a l _ e r r c [0.6]

Return the number of errors set in the error list of an initialized status structure instance.

int
gal_errc
(
 gal_status_t *status
) ;

This routine returns the count of the number of errors recorded in the status structure
instance.

Usage:
…
j = foo (a, b, status) ;
if (gal_errc (status)) {
/* handle error here */
}

g a l _ e r r g e t [0.6]

This routine returns the error code recorded at the specified index in the error list of an
initialized status structure instance.

int
gal_errget
(
 int n,
 gal_status_t *status
) ;

This routine returns the error code recorded at the specified index. The index of the first
entry is one (1).

g a l _ e r r i s s e t [0.6]

This routine checks if a specific error code is set.

int
gal_errisset
(
 int err,
 gal_status_t *status

General Astrodynamics Library

22

) ;

If the specified error code is set in the error list of the status structure instance then the
routine returns 1, if the code is not set then 0 is returned.

Usage:
…
j = foo (a, b, status) ;
if (gal_errisset (GAL_INVALID_DOUBLE, status)) {
/* handle invalid double error here */
}

g a l _ e r r s e t [0.6]

Set an error code in the error list of an initialized status structure instance.

void
gal_errset
(
 char *filename,
 int linenum,
 int err,
 gal_status_t *status
) ;

This routine sets an error code in the error list of an initialized status structure instance.
GAL error codes must be in the range 0-9999, user defined error codes must be in the
range 20000-29999.

The routine only records the filename and line number first occurrence of an error code.
The exception to this rule is for the GAL_STSADD_BREAKPOINT error code for which
the most recent filename and line number are stored.

Usage:

/* Alloc failed, set error code */
gal_errset (__FILE__, __LINE__, GAL_ALLOC_FAILED, status) ;

g a l _ s t s a d d [0.6]

Add the contents of one status structure instance to another instance.

void
gal_stsadd
(
 gal_status_t *status1,

Chapter 2 – Status Routines

23

 gal_status_t *status2
) ;

This routine adds all the error and warning codes recorded in the STATUS1 instance to
the error and warning lists in the structure instance STATUS2. Duplicates are
discarded. It is recommended that the error code GAL_STSADD_BREAKPOINT is
added to the returning status structure after the call to gal_stsadd. This enables the user
to trace the source of the error.

Usage:

int
foo_top
(
 int a,
 int b,
 gal_status_t *status
)

{

 gal_status_t *stat ;

 int i ;

/* Initialize status structure */

 gal_stsinit (status) ;

/* Create status structure for calls */

 if ((stat = gal_stsalloc ()) == NULL) {
 gal_errset (GAL_ALLOC_FAILED, status) ;
 return 0 ;
 }

/* Call a routine */

 i = foo (a, b, stat) ;

/* Add all errors reported by foo to status */

 if (gal_errc (stat)) {
 gal_stsadd (stat, status) ;
 gal_errset (__FILE__, __LINE,
 GAL_STSADD_BREAKPOINT, status) ;
 }

General Astrodynamics Library

24

/* Free private status structure */

 gal_stsfree (stat) ;

 return i ;

}

g a l _ s t s a l l o c [0.6]

Creates an empty status recording structure.

gal_status_t *
gal_stsalloc
(
) ;

This routine creates a new GAL status structure instance. The instance is initialized as
empty. Each routine that is passed a pointer to the structure as a parameter should
initialize the instance with a call to gal_stsinit.

The status instance must be de-allocated by using the gal_stsfree routine.

g a l _ s t s f r e e [0.6]

Free status structure created by gal_stsalloc.

void
gal_stsfree
(
 gal_status_t *status
) ;

This routine de-allocates the specified status structure instance. This routine must be
called instead of free as the status instance allocates the error and warning lists
dynamically which must also be de-allocated.

g a l _ s t s g e t s y m [0.6]

This routine gets a symbolic string for the specified error or warning code.

int
gal_stsgetsym
(

Chapter 2 – Status Routines

25

 int n,
 char *sym
) ;

This routine gets a symbolic string for the specified error or warning code N. The symbol
is the GAL constant name for the error or warning code. The routine returns
GAL_SUCCESS if it found the specified error or warning code, and GAL_NOT_FOUND
otherwise. Also see the routine gal_stsprn.

g a l _ s t s i n i t [0.6]

This routine initializes a previously created status structure instance.

void
gal_stsinit
(
 gal_status_t *status
) ;

This routine initializes a status structure instance previously created with gal_stsalloc. If
the instance contains any error or warning codes then they are removed.

g a l _ s t s p r n [0.6]

This routine writes the contents of the error and warning lists of a status structure
instance to the selected file.

int
gal_stsprn
(
 FILE *file,
 gal_status_t *status
) ;

This routine writes the contents of the error and warning lists to the selected file. The file
must be open for writing on entry to the routine, and closed after the call to gal_stsprn
completes. The errors are written first in symbolic form (see gal_stsgetsym) , followed
by the warnings again in symbolic form. If no errors or warnings are recorded in the
status structure instance then nothing is written. This routine is intended as a debugging
tool, and when used as such stderr would be the logical choice for the file.

g a l _ w a r n c [0.6]

Return number of warnings set in the warning list of an initialized status structure
instance.

General Astrodynamics Library

26

int
gal_warnc
(
 gal_status_t *status
) ;

This routine returns the count of the number of warnings recorded in the status structure
instance.

g a l _ w a r n g e t [0.6]

This routine returns the warning code recorded at the specified index in the warning list
of an initialized status structure instance.

int
gal_warnget
(
 int n,
 gal_status_t *status
) ;

This routine returns warning code recorded at the specified index. The index of the first
entry is one (1).

g a l _ w a r n i s s e t [0.6]

This routine checks if a specific warning code is set.

int
gal_warnisset
(
 int warn,
 gal_status_t *status
) ;

If the specified warning code is set in the warning list of the status structure instance
then the routine returns 1, if the code is not set then 0 is returned.

g a l _ w a r n s e t [0.6]

Set an warning code in the warning list of an initialized status structure instance.

void
gal_warnset
(

Chapter 2 – Status Routines

27

 int warn,
 gal_status_t *status
) ;

This routine sets a warning code in the warning list of an initialized status structure
instance. GAL warning codes must be in the range 10000-19999, user defined warning
codes must be in the range 30000-39999.

General Astrodynamics Library

28

Chapter 3 – Math Routines

29

Chapter 3 – Math Routines

The routines detailed in this chapter are defined in the gal_math.h header file.

The header file gal_math_macros.h (included by gal_math.h) defines the following
constants and commonly used macros:

/*
 * -------------------
 * Numerical Constants
 * -------------------
 */

#define GAL_PI (3.141592653589793238462643) /* Pi */
#define GAL_2PI (6.283185307179586476925287) /* 2 * Pi */
#define GAL_R2H (3.819718634205488058453210) /* Radians to hours */
#define GAL_R2D (57.29577951308232087679815) /* Radians to degrees */
#define GAL_R2S (13750.98708313975701043156) /* Radians to seconds */
#define GAL_R2AS (206264.8062470963551564734) /* Radians to arc seconds */
#define GAL_H2R (0.2617993877991494365385536) /* Hours to radians */
#define GAL_D2R (1.745329251994329576923691e-2) /* Degrees to radians */
#define GAL_S2R (7.272205216643039903848712e-5) /* Seconds to radians */
#define GAL_AS2R (4.848136811095359935899141e-6) /* Arc seconds to radians */
#define GAL_TURNAS (1296000.0) /* Arc seconds in a full circle */
#define GAL_U2R (GAL_AS2R / 1e7) /* Units of 0.1 microarcsecond to radians */
#define GAL_MAS2R (GAL_AS2R / 1e3) /* Milliarcseconds to radians
*/

/*
 * Macro to simulate the FORTRAN SIGN function
 */

#define GAL_SIGN(a, b) fabs (a) * (((b) >= 0.0) ? 1.0 : -1.0)

/*
 * Macro for Maximum value
 */

#define GAL_MAX(a, b) (a) >= (b) ? (a) : (b)

/*
 * Macro for Minimum value
 */

#define GAL_MIN(a, b) (a) <= (b) ? (a) : (b)

/*
 * Macro for Even check
 */

#define GAL_EVEN(a) ((a) % 2 == 0)

General Astrodynamics Library

30

/*
 * Macro for Odd check
 */

#define GAL_ODD(a) ((a) % 2 != 0)

/*
 * Macro for DNNT
 */

#define GAL_DNNT(x) ((int) ((x) >= 0.0 ? floor ((x) + 0.5) : -floor (0.5 - (x)))
)

/*
 * Macro for BRCKTD
 */

#define GAL_BRCKTD(number, end1, end2) \
((end1) < (end2)) ? \
 GAL_MAX ((end1), GAL_MIN ((end2), (number))) \
: \
 GAL_MAX ((end2), GAL_MIN ((end1), (number)))

/*
 * Constant for undefined results
 */

#define GAL_UNDEFINED DBL_MAX

Chapter 3 – Math Routines

31

g a l _ a 2 a f [0.1]

Decompose angle in radians into degrees, arc-minutes, arc-seconds, and fraction.

void
gal_a2af
(
 int ndp,
 double angle,
 char *sign,
 int idmsf[4]
) ;

On entry NDP specifies the required resolution, and is interpreted as follows:

 NDP resolution

 : ...0000 00 00
 -7 1000 00 00
 -6 100 00 00
 -5 10 00 00
 -4 1 00 00
 -3 0 10 00
 -2 0 01 00
 -1 0 00 10
 0 0 00 01
 1 0 00 00.1
 2 0 00 00.01
 3 0 00 00.001
 : 0 00 00.000...

The largest positive useful value for NDP is determined by the size of angle, the format
of double precision floating-point numbers on the target platform, and the risk of
overflowing IDMSF[3]. On a typical platform, for angles up to 2π, the available floating-
point precision might correspond to NDP equals 12. However, the practical limit is
typically NDP equals 9, set by the capacity of a 32-bit IDMSF[3]. ANGLE is the angle in
radians. On return SIGN contains '+' or '-', and IDMSF contains degrees, arc-minutes,
arc-seconds, and fraction. The absolute value of ANGLE may exceed 2π. In cases
where it does not, it is up to the caller to test for and handle the case where ANGLE is
very nearly 2π and rounds up to 360 degrees, by testing for IDMSF[0] equals 360 and
setting IDMSF[0-3] to zero.

g a l _ a 2 t f [0.1]

General Astrodynamics Library

32

Decompose angle in radians into hours, minutes, seconds, and fraction.

void
gal_a2tf
(
 int ndp,
 double angle,
 char *sign,
 int ihmsf[4]
) ;

On entry NDP specifies required resolution, and is interpreted as follows:

 NDP resolution

 : ...0000 00 00
 -7 1000 00 00
 -6 100 00 00
 -5 10 00 00
 -4 1 00 00
 -3 0 10 00
 -2 0 01 00
 -1 0 00 10
 0 0 00 01
 1 0 00 00.1
 2 0 00 00.01
 3 0 00 00.001
 : 0 00 00.000...

ANGLE is the angle in radians. On return SIGN contains '+' or '-', and IHMSF contains
hours, minutes, seconds, and fraction. The largest useful value for NDP is determined
by the size of angle, the format of double floating-point numbers on the target platform,
and the risk of overflowing IHMSF[3]. On a typical platform, for angle up to 2π, the
available floating-point precision might correspond to NDP equals 12. However, the
practical limit is typically NDP equals 9, set by the capacity of a 32-bit IHMSF[3]. The
absolute value of ANGLE may exceed 2π. In cases where it does not, it is up to the
caller to test for and handle the case where ANGLE is very nearly 2π and rounds up to
24 hours, by testing for IHMSF[0] equals 24 and setting IHMSF[0-3] to zero.

g a l _ a n p [0.1]

Normalize angle into the range 0 <= a < 2π.

double
gal_anp
(

Chapter 3 – Math Routines

33

 double a
) ;

On entry A is the angle in radians. The routine returns the normalized angle.

g a l _ a n p m [0.1]

Normalize angle into the range -π <= A < +π.

double
gal_anpm
(
 double a
) ;

A is the angle in radians.

 g a l _ c 2 s [0.1]

p-vector to spherical coordinates.

void
gal_c2s
(
 double p[3],
 double *theta,
 double *phi
) ;

On return THETA and PHI contain the longitude and latitude angles in radians
respectively. P can have any magnitude; only its direction is used. If P is null, zero
THETA and PHI are returned. At either pole, zero THETA is returned.

 g a l _ c h b i n t [0.6]

Given the coefficients for the Chebyshev expansion of a polynomial, this returns the
value and derivative of the polynomial evaluated at the input X.

void
gal_chbint
(
 double *cp,
 int degp,
 double *x2s,
 double x,
 double *p,

General Astrodynamics Library

34

 double *dpdx
) ;

 On entry:

 *CP Pointer DEGP+1 Chebyshev polynomial coefficients.
 DEGP Degree of polynomial.
 *X2S Transformation parameters of polynomial.
 X Value for which the polynomial is to be evaluated

Returned:

 *P Value of the polynomial at X.
 *DPDX Derivative of the polynomial at X.

References:

 "The Chebyshev Polynomials" by Theodore J. Rivlin

 "CRC Handbook of Tables for Mathematics"

 g a l _ c h b v a l [0.6]

Given the coefficients for the Chebyshev expansion of a polynomial, this returns the
value of the polynomial evaluated at the input X.

void
gal_chbval
(
 double *cp,
 int degp,
 double *x2s,
 double x,
 double *p
) ;

 On entry:

 *CP Pointer DEGP+1 Chebyshev polynomial coefficients.
 DEGP Degree of polynomial.
 *X2S Transformation parameters of polynomial.
 X Value for which the polynomial is to be evaluated

Returned:

Chapter 3 – Math Routines

35

 *P Value of the polynomial at X.

References:

 "The Chebyshev Polynomials" by Theodore J. Rivlin

 "CRC Handbook of Tables for Mathematics"

 g a l _ c p [0.1]

Copy a P vector.

void
gal_cp
(
 double p[3],
 double c[3]
) ;

On return C contains a duplicate of P.

 g a l _ c p v [0.1]

Copy a PV vector

void
gal_cpv
(
 double pv[2][3],
 double c[2][3]
) ;

On return C contains a duplicate of PV.

 g a l _ c r [0.1]

Copy an R matrix.

void
gal_cr
(
 double r[3][3],
 double c[3][3]
) ;

General Astrodynamics Library

36

On return C contains a duplicate of R.

 g a l _ d 2 t f [0.1]

Decompose days to hours, minutes, seconds, and fraction.

void
gal_d2tf
(
 int ndp,
 double days,
 char *sign,
 int ihmsf[4]
) ;

On entry NDP contains the resolution, and DAYS contain the interval in days. On return
SIGN contains ʻ+ʼ or ʻ-ʻ, and IHMSF contain the hours, minutes, seconds, and fraction.
NDP is interpreted as follows:

 NDP resolution

 : ...0000 00 00
 -7 1000 00 00
 -6 100 00 00
 -5 10 00 00
 -4 1 00 00
 -3 0 10 00
 -2 0 01 00
 -1 0 00 10
 0 0 00 01
 1 0 00 00.1
 2 0 00 00.01
 3 0 00 00.001
 : 0 00 00.000...

The largest positive useful value for NDP is determined by the size of DAYS, the format
of double floating-point numbers on the target platform, and the risk of overflowing
IHMSF[3]. On a typical platform, for DAYS up to 1.0, the available floating-point
precision might correspond to NDP equals 12. However, the practical limit is typically
NDP equals 9, set by the capacity of a 32-bit IHMSF[3]. The absolute value of days may
exceed 1.0. In cases where it does not, it is up to the caller to test for and handle the
case where days is very nearly 1.0 and rounds up to 24 hours, by testing for IHMSF[0]
equals 24 and setting IHMSF[0-3] to zero.

Chapter 3 – Math Routines

37

g a l _ f a c e x p _ a l l o c [0.3]

This routine computes the factorial exponent lookup table required by the gal_factorial
routine.

gal_facexp_t *
gal_facexp_alloc
(
 int max_factorial,
 gal_status_t *status
) ;

Returns a pointer to the factorial exponent lookup table if successful, returns NULL
otherwise. MAX_FACTORIAL determines the maximum factorial for which exponents
are determined. If an error occurs then the applicable error code is set.

 g a l _ f a c e x p _ f r e e [0.3]

Free factorial exponent lookup table.

void
gal_facexp_free
(
 gal_facexp_t *facexp
) ;

This routine frees a factorial exponent lookup table previously allocated by the
gal_facexp_alloc routine. On entry the pointer FACEXP contains a pointer to a table
previously allocated by gal_facexp_alloc.

 g a l _ f a c t o r i a l [0.3]

Computes the factorial N!, or the value of N! / M!, or N! x M!.

void
gal_factorial
(
 gal_facexp_t *facexp,
 int n,
 int m,
 int s,
 long double *f,
 gal_status_t *status
) ;

If the requested factorial is beyond the range of the lookup table then the error code

General Astrodynamics Library

38

GAL_OUT_OF_RANGE is set. If the requested factorial is greater than 1754!, then the
error code GAL_EXCESSIVE_FACTORIAL is set. The pointer FACEXP points to a
lookup table allocated by gal_facexp_alloc. Parameters N and M must be greater than
or equal to zero. On return when S equals 0, F contains N!, when S equals -1, f contains
N! divided by M!, and when S equals +1, F contains the product of N! and M!. On
compilers that define long double to be the same precision as double the maximum
factorial or result that can be returned is 170!, otherwise it is 1754!.

References:

Calculation of Factorials, M. L. Charnow and Jesse L. Maury, Jr., NASA TM X-55733
GSFC X-542-66-460, September 1966

 g a l _ h r m e s p [0.6]

Evaluate, at a specified point, an Hermite interpolating polynomial for a specified set of
coordinate pairs whose abscissas are equally spaced.

void
gal_hrmesp
(
 int n,
 double first,
 double step,
 double *yvals,
 double x,
 double *work,
 double *f,
 double *df,
 gal_status_t *status
) ;

Given:

 N Number of points defining the polynomial.
 FIRST First abscissa value.
 STEP Step size.
 *YVALS Ordinate and derivative values.
 X Point at which to interpolate the polynomial.
 *WORK Work space array.

Returned:

 *F Interpolated function value at X.
 *DF Interpolated function's derivative at X.

Chapter 3 – Math Routines

39

 *STATUS Pointer to status structure

 g a l _ h r m i n t [0.6]

Evaluate, at a specified point, an Hermite interpolating polynomial for a specified set of
coordinate pairs whose abscissas are unequally spaced.

void
gal_hrmint
(
 int n,
 double *xvals,
 double *yvals,
 double x,
 double *work,
 double *f,
 double *df,
 gal_status_t *status
) ;

 Given:

 N Number of points defining the polynomial.
 *XVALS Abscissa values.
 *YVALS Ordinate and derivative values.
 X Point at which to interpolate the polynomial.
 *WORK Work space array.

Returned:

 *F Interpolated function value at X.
 *DF Interpolated function's derivative at X.
 *STATUS Pointer to status structure

 g a l _ i r [0.1]

Initialize an r-matrix to the identity matrix.

void
gal_ir
(
 double r[3][3]
) ;

On return R contains an identity matrix.

General Astrodynamics Library

40

 g a l _ l g r e s p [0.6]

Evaluate a Lagrange interpolating polynomial for a specified set of coordinate pairs
whose first components are equally spaced, at a specified abcissisa value.

double
gal_lgresp
(
 int n,
 double first,
 double step,
 double *yvals,
 double *work,
 double x,
 gal_status_t *status
) ;

 Given:

 N Number of points defining the polynomial.
 FIRST First abscissa value.
 STEP Step size.
 *YVALS Ordinate and derivative values.
 X Point at which to interpolate the polynomial.
 *WORK Work space array.

Returned:

 *STATUS Pointer to status structure
 GAL_LGRESP Result

 g a l _ l g r i n t [0.6]

Evaluate a Lagrange interpolating polynomial for a specified set of coordinate pairs, at a
specified abcissisa value.

double
gal_lgrint
(
 int n,
 double *xvals,
 double *yvals,
 double *work,
 double x,

Chapter 3 – Math Routines

41

 gal_status_t *status
) ;

 Given:

 N Number of points defining the polynomial.
 *XVALS Abscissa values.
 *YVALS Ordinate values.
 X Point at which to interpolate the polynomial.
 *WORK Work space array.

Returned:

 *STATUS Pointer to status structure
 GAL_LGRINT Result

 g a l _ l s t l e d [0.6]

Given a number X and an array of non-decreasing numbers, find the index of the largest
array element less than or equal to X.

int
gal_lstled
(
 double x,
 int n,
 double *array
) ;

Given:

 X value to search against
 N number of elements in array
 *ARRAY array to search

Returned:

 GAL_LSTLED Index of element found, -1 if not found

An array of double precision numbers is given. The array ARRAY[I] (0 <= I < N) forms a
non-decreasing sequence of numbers. Given a real number X, there will be a last one of
these numbers that is less than or equal to X. This routine finds the index LSTLED such
that ARRAY[LSTLED] is that number. If X is not greater than ARRAY[0], LSTLED will be
set to -1.

General Astrodynamics Library

42

 g a l _ l s t l t d [0.6]

Given a number X and an array of non-decreasing numbers, find the index of the largest
array element less than X.

int
gal_lstltd
(
 double x,
 int n,
 double *array
) ;

Given:

 X value to search against
 N number of elements in array
 *ARRAY array to search

Returned:

 GAL_LSTLTD Index of element found, -1 if not found

An array of double precision numbers is given. The array ARRAY[I] (0 <= I < N) forms a
non-decreasing sequence of numbers. Given a real number X, there will be a last one of
these numbers that is less than X. This routine finds the index LSTLTD such that
ARRAY[LSTLTD] is that number. If X is not greater than ARRAY[0], LSTLTD will be set
to -1.

 g a l _ m i n v 6 [0.6]

6 x 6 matrix inversion.

void
gal_minv6
(
 double m[6][6],
 double r[6][6],
 gal_status_t *status
) ;

On return R contains the inversion of matrix M.

 g a l _ p 2 p v [0.1]

Chapter 3 – Math Routines

43

Extend a p-vector to a pv-vector by appending a zero velocity.

void
gal_p2pv
(
 double p[3],
 double pv[2][3]
) ;

On return PV[0][0-2] contains P[0-2], and PV[1][0-2] contains zero.

 g a l _ p 2 s [0.1]

p-vector to spherical polar coordinates.

void
gal_p2s
(
 double p[3],
 double *theta,
 double *phi,
 double *r
) ;

On return THETA and PHI contain the longitude and latitude angles in radians
respectively, and R contains the radial distance. If P is null, zero THETA, PHI and R are
returned. At either pole, zero THETA is returned.

 g a l _ p a p [0.1]

Position-angle from two p-vectors.

double
gal_pap
(
 double a[3],
 double b[3]
) ;

Given A the direction of the reference point, and B the direction of the point whose
position angle is required, the function returns the position angle of B with respect to A
in radians. The result is the position angle, in radians, of direction B with respect to
direction A. It is in the range -π to +π. The sense is such that if B is a small distance
"north" of A the position angle is approximately zero, and if B is a small distance "east"
of A the position angle is approximately + π/2. A and B need not be unit vectors. Zero is
returned if the two directions are the same or if either vector is null. If A is at a pole, the

General Astrodynamics Library

44

result is ill-defined.

 g a l _ p a s [0.1]

Position-angle from spherical coordinates.

double
gal_pas
(
 double al,
 double ap,
 double bl,
 double bp
) ;

Given AL the longitude of point A (e.g. right ascension), AP the latitude of point A (e.g.
declination), BL the longitude of point B, and BP the latitude of point B. All angles in
radians. The result is the bearing (position angle), in radians, of point B with respect to
point A. It is in the range -π to +π. The sense is such that if B is a small distance "east" of
point A, the bearing is approximately + π/2. Zero is returned if the two points are
coincident.

 g a l _ p d p [0.1]

p-vector dot product.

double
gal_pdp
(
 double a[3],
 double b[3]
) ;

Returns the dot product of vectors A and B.

 g a l _ p m [0.1]

Modulus of p-vector.

double
gal_pm
(
 double p[3]
) ;

Chapter 3 – Math Routines

45

Returns the modulus of the p-vector P.

 g a l _ p m p [0.1]

p-vector subtraction.

void
gal_pmp
(
 double a[3],
 double b[3],
 double amb[3]
) ;

On return p-vector AMB contains p-vector A minus p-vector B.

 g a l _ p n [0.1]

Convert a p-vector into modulus and unit vector.

void
gal_pn
(
 double p[3],
 double *r,
 double u[3]
) ;

On return the p-vector U contains the unit vector of p-vector P, and R contains the
modulus of p-vector P. If P is null, the result is null. Otherwise the result is a unit vector.

 g a l _ p p p [0.1]

p-vector addition.

void
gal_ppp
(
 double a[3],
 double b[3],
 double apb[3]
) ;

On return p-vector APB contains the sum of p-vectors A and B.

General Astrodynamics Library

46

 g a l _ p p s p [0.1]

p-vector plus scaled p-vector.

void
gal_ppsp
(
 double a[3],
 double s,
 double b[3],
 double apsb[3]
) ;

On return p-vector APSB contains the sum of p-vector A and the product of scalar S and
p-vector B.

 g a l _ p v 2 p [0.1]

Discard velocity component of a pv-vector.

void
gal_pv2p
(
 double pv[2][3],
 double p[3]
) ;

On return the p-vector P contains a copy of the position vector portion of pv-vector PV.

 g a l _ p v 2 s [0.1]

Convert position/velocity from Cartesian to spherical coordinates.

void
gal_pv2s
(
 double pv[2][3],
 double *theta,
 double *phi,
 double *r,
 double *td,
 double *pd,
 double *rd
) ;

On return THETA contains the longitude angle, PHI contains the latitude angle, R

Chapter 3 – Math Routines

47

contains the radial distance, TD contains the rate of change of THETA, PD contains the
rate of change of PHI, and RD contains the rate of change of R. All angles are in
radians. If the position part of PV is null, THETA, PHI, TD and PD are indeterminate.
This is handled by extrapolating the position through unit time by using the velocity part
of PV. This moves the origin without changing the direction of the velocity component. If
the position and velocity components of PV are both null, zeroes are returned for all six
results. If the position is a pole, THETA, TD and PD are indeterminate. In such cases
zeroes are returned for THETA, TD and PD.

 g a l _ p v d p v [0.1]

Dot product of two pv-vectors.

void
gal_pvdpv
(
 double a[2][3],
 double b[2][3],
 double adb[2]
) ;

On return pv-vector ADB contains the dot product of pv-vectors A and B. If the position
and velocity components of the two pv-vectors are (AP, AV) and (BP, BV), the result, A .
B, is the pair of numbers (AP . BP, AP . BV + AV . BP). The two numbers are the dot-
product of the two p-vectors and its derivative.

 g a l _ p v m [0.1]

Modulus of pv-vector.

void
gal_pvm
(
 double pv[2][3],
 double *r,
 double *s
) ;

On return R and S contain the modulus of the position and velocity components of the
pv-vector PV respectively.

 g a l _ p v m p v [0.1]

Subtract one pv-vector from another.

General Astrodynamics Library

48

void
gal_pvmpv
(
 double a[2][3],
 double b[2][3],
 double amb[2][3]
) ;

On return the pv-vector AMB contains pv-vector A minus pv-vector B.

 g a l _ p v p p v [0.1]

Add one pv-vector to another.

void
gal_pvppv
(
 double a[2][3],
 double b[2][3],
 double apb[2][3]
) ;

On return the pv-vector APB contains the sum of pv-vectors A and B.

 g a l _ p v u [0.1]

Update a pv-vector.

void
gal_pvu
(
 double dt,
 double pv[2][3],
 double upv[2][3]
) ;

"Update" means refer the position component of the vector to a new epoch DT time
units from the existing epoch. The time units of DT must match those of the velocity.
The velocity component is unchanged.

 g a l _ p v u p [0.1]

Update a pv-vector, discarding the velocity component.

void
gal_pvup

Chapter 3 – Math Routines

49

(
 double dt,
 double pv[2][3],
 double p[3]
) ;

"Update" means refer the position component of the vector to a new epoch DT time
units from the existing epoch. The time units of DT must match those of the velocity.

 g a l _ p v x p v [0.1]

Cross product of two pv-vectors.

void
gal_pvxpv
(
 double a[2][3],
 double b[2][3],
 double axb[2][3]
) ;

On return the pv-vector AXB contains the cross product of pv-vectors A and B. If the
position and velocity components of the two pv-vectors are (AP, AV) and (BP, BV), the
result, A x B, is the pair of vectors (AP x BP, AP x BV + AV x BP). The two vectors are
the cross-product of the two p-vectors and its derivative.

 g a l _ p x p [0.1]

p-vector cross product.

void
gal_pxp
(
 double a[3],
 double b[3],
 double axb[3]
) ;

On return the p-vector AXB contains the cross product of p-vectors A and B.

 g a l _ r i n t [0.6]

Round double to nearest integer value.

double
gal_rint

General Astrodynamics Library

50

(
 double d
) ;

This routine returns the double D rounded to the nearest integer value .

 g a l _ r k f [0.3]

This routine integrates an ordinary deferential equation using the Runge-Kutte-Fehlberg
method.

void gal_rkf
(
 double ystart[],
 int nvar,
 double x1,
 double x2,
 double eps,
 double h1,
 double hmin,
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 void (*rkfs) (double [], double [], int, double, double,
double [], double [], void (*) (double, double [], double [],
int *, gal_status_t *), int *, gal_status_t *) ,
 int *derivsp,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 YSTART Starting y values
 NVAR Number of equations to integrate
 X1 Starting X value
 X2 Ending X value
 EPS Accuracy
 H1 First guess step-size
 HMIN Minimum step-size
 DERIVS User defined function for calculating the right hand side derivatives
 RKFS Required Runge-Kutte-Fehlberg stepper routine
 DERIVSP Pointer to parameters structure for DERIVS routine

On return YSTART contains the ending Y values. If an error occurs then the applicable
error code is set in STATUS.

References:

Chapter 3 – Math Routines

51

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg October 1970

 g a l _ r k f c k s 4 5 [0.3]

This routine takes a Runge-Kutte-Fehlberg-Cash-Karp 4(5) step

void
gal_rkfcks45
(
 double y[],
 double dydx[],
 int n,
 double x,
 double h,
 double yout[],
 double yerr[],
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 Y Dependent variable vector
 DYDX Derivative of dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 H Step size

DERIVS User defined function for calculating the right hand side derivatives
 DERIVSP Pointer to parameters structure for DERIVS routine

On return the variables are set as follows:

 YOUT Ending Y values
 YERR Errors

If an error occurs then the applicable error code is set in STATUS.

The parameters (but not the code) (Cash-Karp version) are from “Numerical Recipes”
for RKF45. These values are taken from the c code and not from the table on page 717
which has different values. The Cash-Karp values seem to make the routine a bit faster
compared to the Fehlberg values.

General Astrodynamics Library

52

References:

Numerical Recipes in C The Art of Scientific Computing Second Edition by William H.
Press, Saul A. Teukolsky, William T. Vettering & Brian P. Flannery Pages 710 - 722

 g a l _ r k f q s [0.3]

This routine takes one "quality-controlled" Runge-Kutte-Fehlberg step

void
gal_rkfqs
(
 double y[],
 double dydx[],
 int n,
 double *x,
 double htry,
 double eps,
 double yscal[],
 double *hdid,
 double *hnext,
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 void (*rkfs) (double [], double [], int, double, double,
double [], double [], void (*) (double, double [], double [],
int *, gal_status_t *), int *, gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

On entry the variables are set as follows:

 Y Dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 HTRY Step size to attempt
 EPS Accuracy

DERIVS User defined function for calculating the right hand side derivatives
 RKFS Required Runge-Kutte-Fehlberg stepper routine
 DERIVSP Pointer to parameters structure for derivs routine

On return the variables are set as follows:

 DYDX Derivative of dependent variable vector

Chapter 3 – Math Routines

53

 YSCAL Used for error scaling
 HDID Step size accomplished
 HNEXT Estimated next step size

If an error occurs then the applicable error code is set in STATUS.

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 4 5 [0.3]

This routine takes a Runge-Kutte-Fehlberg 4(5) step

void
gal_rkfs45
(
 double y[],
 double dydx[],
 int n,
 double x,
 double h,
 double yout[],
 double yerr[],
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 Y Dependent variable vector
 DYDX Derivative of dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 H Step size

DERIVS User defined function for calculating the right hand side derivatives
 DERIVSP Pointer to parameters structure for DERIVS routine

On return the variables are set as follows:

 YOUT Ending Y values
 YERR Errors

General Astrodynamics Library

54

If an error occurs then the applicable error code is set in STATUS.

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 5 6 [0.3]

This routine takes a Runge-Kutte-Fehlberg 5(6) step

void
gal_rkfs56
(
 double y[],
 double dydx[],
 int n,
 double x,
 double h,
 double yout[],
 double yerr[],
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 Y Dependent variable vector
 DYDX Derivative of dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 H Step size

DERIVS User defined function for calculating the right hand side derivatives
 DERIVSP Pointer to parameters structure for DERIVS routine

On return the variables are set as follows:

 YOUT Ending Y values
 YERR Errors

If an error occurs then the applicable error code is set in STATUS.

Chapter 3 – Math Routines

55

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 6 7 [0.3]

This routine takes a Runge-Kutte-Fehlberg 6(7) step

void
gal_rkfs67
(
 double y[],
 double dydx[],
 int n,
 double x,
 double h,
 double yout[],
 double yerr[],
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 Y Dependent variable vector
 DYDX Derivative of dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 H Step size

DERIVS User defined function for calculating the right hand side derivatives
 DERIVSP Pointer to parameters structure for DERIVS routine

On return the variables are set as follows:

 YOUT Ending Y values
 YERR Errors

If an error occurs then the applicable error code is set in STATUS.

References:

General Astrodynamics Library

56

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

 g a l _ r k f s 7 8 [0.3]

This routine takes a Runge-Kutte-Fehlberg 7(8) step

void
gal_rkfs78
(
 double y[],
 double dydx[],
 int n,
 double x,
 double h,
 double yout[],
 double yerr[],
 void (*derivs) (double, double [], double [], int *,
gal_status_t *),
 int *derivsp,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 Y Dependent variable vector
 DYDX Derivative of dependent variable vector
 N Number of equations to integrate
 X Independent variable value
 H Step size

DERIVS User defined function for calculating the right hand side derivatives
 DERIVSP Pointer to parameters structure for DERIVS routine

On return the variables are set as follows:

 YOUT Ending Y values
 YERR Errors

If an error occurs then the applicable error code is set in STATUS.

References:

NASA Technical Report TR R-352, Some Experimental Results Concerning The Error
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970

Chapter 3 – Math Routines

57

 g a l _ r m 2 v [0.1]

Express an r-matrix as an r-vector.

void
gal_rm2v
(
 double r[3][3],
 double w[3]
) ;

On return W contains the rotation vector. A rotation matrix describes a rotation through
some angle about some arbitrary axis called the Euler axis. The "rotation vector"
returned by this routine has the same direction as the Euler axis, and its magnitude is
the angle in radians. The magnitude and direction can be separated by means of the
routine gal_pn. If R is null, so is the result. If R is not a rotation matrix the result is
undefined. R must be proper (i.e. have a positive determinant) and real orthogonal
(inverse equals transpose). The reference frame rotates clockwise as seen looking
along the rotation vector from the origin.

 g a l _ r v 2 m [0.1]

Form the r-matrix corresponding to a given r-vector.

void
gal_rv2m
(
 double w[3],
 double r[3][3]
) ;

On return the r-matrix R contains the rotation matrix. A rotation matrix describes a
rotation through some angle about some arbitrary axis called the Euler axis. The
rotation vector supplied to this routine has the same direction as the Euler axis, and its
magnitude is the angle in radians. If W is null, the unit matrix is returned. The reference
frame rotates clockwise as seen looking along the rotation vector from the origin.

 g a l _ r x [0.1]

Rotate an r-matrix about the X-axis.

void
gal_rx
(
 double phi,

General Astrodynamics Library

58

 double r[3][3]
) ;

On return the r-matrix R has been rotated by the angle PHI about the X axis. The angle
PHI is in radians. Sign convention: the matrix can be used to rotate the reference frame
of a vector. Calling this routine with positive phi incorporates in the matrix an additional
rotation, about the X-axis, anticlockwise as seen looking towards the origin from positive
X.

 g a l _ r x p [0.1]

Multiply a p-vector by an r-matrix.

void
gal_rxp
(
 double r[3][3],
 double p[3],
 double rp[3]
) ;

On return the p-vector RP contains the product of the r-matrix R and the p-vector P.

 g a l _ r x p v [0.1]

Multiply a pv-vector by an r-matrix.

void
gal_rxpv
(
 double r[3][3],
 double pv[2][3],
 double rpv[2][3]
) ;

On return the pv-vector RPV contains the product of the r-matrix R and the pv-vector
PV.

 g a l _ r x r [0.1]

Multiply two r-matrices.

void
gal_rxr
(

Chapter 3 – Math Routines

59

 double a[3][3],
 double b[3][3],
 double atb[3][3]
) ;

On return the r-matrix ATB contains the product of the r-matrix A and the r-matrix B.

 g a l _ r y [0.1]

Rotate an r-matrix about the y-axis.

void
gal_ry
(
 double theta,
 double r[3][3]
) ;

On return the r-matrix R has been rotated by the angle THETA about the y-axis. The
angle THETA is in radians. Sign convention: the matrix can be used to rotate the
reference frame of a vector. Calling this routine with positive theta incorporates in the
matrix an additional rotation, about the y-axis, anticlockwise as seen looking towards the
origin from positive y.

 g a l _ r z [0.1]

Rotate an r-matrix about the z-axis.

void
gal_rz
(
 double psi,
 double r[3][3]
) ;

On return the r-matrix R has been rotated by the angle PSI about the z-axis. The angle
PSI is in radians. Sign convention: the matrix can be used to rotate the reference frame
of a vector. Calling this routine with positive psi incorporates in the matrix an additional
rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive
z.

 g a l _ s 2 c [0.1]

Convert spherical coordinates to Cartesian.

General Astrodynamics Library

60

void
gal_s2c
(
 double theta,
 double phi,
 double c[3]
) ;

On return the p-vector C contains the direction cosines, given THETA the longitude
angle, and PHI the latitude angle. All angles in radians.

g a l _ s 2 p [0.1]

Convert spherical polar coordinates to p-vector.

void
gal_s2p
(
 double theta,
 double phi,
 double r,
 double p[3]
) ;

On return the p-vector P contains the polar coordinates given THETA the longitude
angle, PHI the latitude angle, and R the radial distance. The angles are both in radians.

g a l _ s 2 p v [0.1]

Convert position/velocity from spherical to Cartesian coordinates.

void
gal_s2pv
(
 double theta,
 double phi,
 double r,
 double td,
 double pd,
 double rd,
 double pv[2][3]
) ;

On return the pv-vector PV contains the position and velocity in Cartesian coordinates
given THETA the longitude angle, PHI the latitude angle, R the radial distance, TD the
rate of change of THETA, PD the rate of change of PHI, and RD the rate of change of R.

Chapter 3 – Math Routines

61

g a l _ s 2 x p v [0.1]

Multiply a pv-vector by two scalars.

void
gal_s2xpv
(
 double s1,
 double s2,
 double pv[2][3],
 double spv[2][3]
) ;

On return the position component of pv-vector SPV contains the product of the scalar
S1 and the position component of pv-vector PV, and the velocity component of pv-
vector SPV contains the product of scalar S2 and the velocity component of pv-vector
PV.

g a l _ s e p p [0.1]

Angular separation between two p-vectors.

double
gal_sepp
(
 double a[3],
 double b[3]
) ;

The routine returns the angular separation between the p-vectors A and B in radians
(always positive). If either vector is null, a zero result is returned. The angular separation
is most simply formulated in terms of scalar product. However, this gives poor accuracy
for angles near zero and π. The algorithm uses both cross product and dot product, to
deliver full accuracy whatever the size of the angle.

g a l _ s e p s [0.1]

Angular separation between two sets of spherical coordinates.

double
gal_seps
(
 double al,
 double ap,

General Astrodynamics Library

62

 double bl,
 double bp
) ;

Returns the angular separation between first longitude and latitude (AL, AP) and the
second longitude and latitude (BL, BP). All angles in radians.

g a l _ s x p [0.1]

Multiply a p-vector by a scalar.

void
gal_sxp
(
 double s,
 double p[3],
 double sp[3]
) ;

On return the p-vector SP contains the product of the scalar S and the p-vector P.

g a l _ s x p v [0.1]

Multiply a pv-vector by a scalar.

void
gal_sxpv
(
 double s,
 double pv[2][3],
 double spv[2][3]
) ;

On return the pv-vector SPV contains the product of the scalar S and the pv-vector PV.

g a l _ t r [0.1]

Transpose an r-matrix.

void
gal_tr
(
 double r[3][3],
 double rt[3][3]
) ;

Chapter 3 – Math Routines

63

On return the r-matrix RT contains the transpose of the r-matrix R.

g a l _ t r x p [0.1]

Multiply a p-vector by the transpose of an r-matrix.

void
gal_trxp
(
 double r[3][3],
 double p[3],
 double trp[3]
) ;

On return the p-vector TRP contains the product of the transpose of the r-matrix R and
the p-vector P.

g a l _ t r x p v [0.1]

Multiply a pv-vector by the transpose of an r-matrix.

void
gal_trxpv
(
 double r[3][3],
 double pv[2][3],
 double trpv[2][3]
) ;

On return the pv-vector TRPV contains the product of the transpose of the r-matrix R
and the pv-vector PV.

 g a l _ v l c o m [0.6]

Compute a vector linear combination of two p-vectors.

void
gal_vlcom
(
 double a,
 double v1[3],
 double b,
 double v2[3],
 double sum[3]
) ;

General Astrodynamics Library

64

Given:

A Coefficient of V1
 V1 Vector in 3-space
 B Coefficient of V2
 V2 Vector in 3-space

Returned:

 SUM Linear Vector Combination A*V1 + B*V2

 g a l _ v l c o m 3 [0.6]

Compute a vector linear combination of three p-vectors.

void
gal_vlcom3
(
 double a,
 double v1[3],
 double b,
 double v2[3],
 double c,
 double v3[3],
 double sum[3]
) ;

Given:

A Coefficient of V1
 V1 Vector in 3-space
 B Coefficient of V2
 V2 Vector in 3-space
 C Coefficient of V3
 V3 Vector in 3-space

Returned:

 SUM Linear Vector Combination A*V1 + B*V2 + C*V3

 g a l _ v p r o j [0.6]

Find the projection of one p-vector onto another p-vector.

void

Chapter 3 – Math Routines

65

gal_vproj
(
 double a[3],
 double b[3],
 double p[3]
) ;

Given:

A The vector to be projected.

 B The vector onto which A is to be projected.

Returned:

P The projection of A onto B.

 g a l _ v r o t v [0.6]

Rotate a vector about a specified axis vector by a specified angle and return the rotated
vector

void
gal_vrotv
(
 double v[3],
 double axis[3],
 double theta,
 double r[3]
) ;

Given:

 V Vector to be rotated.
 AXIS Axis of the rotation.
 THETA Angle of rotation (radians).

Returned:

 R Result of rotating V about AXIS by THETA.

 g a l _ x p o s e g [0.6]

Transpose a matrix of arbitrary size (in place, the matrix need not be square).

void

General Astrodynamics Library

66

gal_xposeg
(
 double *matrix,
 int nrow,
 int ncol,
 double *xposem
) ;

Given:

 *MATRIX Matrix to be transposed
 NROW number of rows
 NCOL number of columns

Returned:

 *XPOSEM Transposed matrix (can overwrite MATRIX)

 g a l _ z p [0.1]

Zero a p-vector.

void
gal_zp
(
 double p[3]
) ;

On return the all elements of the p-vector P are set to zero.

 g a l _ z p v [0.1]

Zero a pv-vector.

void
gal_zpv
(
 double pv[2][3]
) ;

On return all the elements of the pv-vector PV are set to zero.

 g a l _ z r [0.1]

Initialize an r-matrix to the null matrix.

Chapter 3 – Math Routines

67

void
gal_zr
(
 double r[3][3]
) ;

On return all elements of the r-matrix R are set to zero.

General Astrodynamics Library

68

Chapter 4 – File Manipulation

69

Chapter 4 - File Manipulation

The routines detailed in this chapter are defined in the gal_pstrings.h header file. The
gal_pstrings sub-library was originally simply a set string manipulation routines.
However, starting with version 0.6 of GAL the scope has been extended to file
manipulation. Due to a lack on consensus on a better name for the expanded sub-
library, the pstrings name has been retained.

The pstrings sub-library provides the low level support for NAIF DAF files. Double
Precision Array File, DAF, is an architecture for files that stores arrays of double
precision data. The NAIF SPICE SPK, CK, and binary PCK files use the DAF
architecture. DAF files may be stored in big or little endian format, the GAL routines will
convert the endian format automatically as necessary to match the machineʼs native
endian format.

The header file gal_daf_t.h defines the following types used by the DAF support
routines:

/*
 * DAF summary structure definition
 */

struct sum_t
{
 char *aname ; /* Array name */
 int istart ; /* Start address (index) */
 int iend ; /* End address (index) */
 int count ; /* Number of elements in array */
 int *icon ; /* Integer summary constants */
 double *dcon ; /* Double summary constants */
 struct sum_t *next ; /* Pointer to next summary record */
 struct sum_t *previous ; /* Pointer to previous summary record */
} ;

typedef struct sum_t gal_dafsum_t ;

/*
 * DAF workspace structure definition
 */

typedef struct {
 FILE *fp ; /* File pointer */
 char idw[9] ; /* Identification word */
 char *reserved ; /* Pointer to reserved blocks (maybe text) */
 int rsize ; /* Size of reserved blocks in bytes */

General Astrodynamics Library

70

 int nd ; /* Number of doubles in summary */
 int ni ; /* Number of integers in summary */
 int nc ; /* Number of summary block in bytes */
 int ss ; /* Length of summary block in words (dbl) */
 int maxs ; /* Maximum number of summaries per block */
 char inam[61] ; /* Internal name of array file */
 int fsb ; /* First summary block */
 int lsb ; /* Last summary bock */
 int nfb ; /* Next free block */
 int swapbytes ; /* 1 if endian format different from machine */
 gal_dafsum_t *fsum ; /* Pointer to first summary structure */
 gal_dafsum_t *lsum ; /* Pointer to last summary structure */
} gal_daf_t ;

Chapter 4 – File Manipulation

71

g a l _ c e n t e r [0.1]

Center string in field.

char *
gal_center
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies the source string S2 to S1, then centers the trimmed string in a field
of length L. Returns a pointer to the start of the target string. The target string S1 must
be at least the same length as the source string S2.

 g a l _ d a f c l o s e [0.6]

Close an open NAIF DAF file.

void
gal_dafclose
(
 gal_daf_t *daf
) ;

Given:

 *DAF Pointer to DAF structure

The routine gal_dafclose must be used to close the DAF file and deallocate memory.

 g a l _ d a f o p e n [0.6]

Open a NAIF DAF file and create linked list lookup mechanism.

gal_daf_t *
gal_dafopen
(
 char *filename,
 gal_status_t *status
) ;

Given:

General Astrodynamics Library

72

 *FILENAME Pointer to filename

Returned:

 *STATUS Pointer to status structure
 *GAL_DAFOPEN Pointer to DAF instance

The routine gal_dafclose must be used to close the DAF file and deallocate memory.
This routine handles files on both big and little endian format. Any changes in format
are transparent to the user. The data structure returned is defined and described in the
gal_daf_t.h header file. This also describes the structure of the double linked list that
can be used to locate the required array within the file. The structure of the reserved
blocks is application specific and may contain text or data. For this reason no endian
format change is done for these blocks.

References:

Reference for the low-level file structure known as Double Precision Array File, which
is used to implement the high-level SPICE SPK and CK kernels. Last revised on
2008 JAN 17 by B. V. Semenov.

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html

 g a l _ d a f r e a d [0.6]

Read a block from an array in a NAIF DAF file.

int
gal_dafread
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 int address,
 int num,
 double *block,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to the DAF structure
 *SUM Pointer to summary for required array
 ADDRESS Index of first element required in array
 NUM Maximum number of elements to return

Chapter 4 – File Manipulation

73

Returned:

 *BLOCK Array to hold required elements
 *STATUS Pointer to status structure
 GAL_DAFREAD Number of elements returned

The index number follows the C language convention, the first element of an array has
an index value of zero. This routine handles files on both big and little endian format.
Any changes in format are transparent to the user.

References:

Reference for the low-level file structure known as Double Precision Array File, which
is used to implement the high-level SPICE SPK and CK kernels. Last revised on
2008 JAN 17 by B. V. Semenov.

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html

 g a l _ d a f s e e k [0.6]

Seek for a particular word in a NAIF DAF file.

void
gal_dafseek
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 int address,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to the DAF structure
 *SUM Pointer to summary for required array
 ADDRESS Index of first element required in array

Returned:

 *STATUS Pointer to status structure

The index number follows the C language convention, the first element of an array has
an index value of zero.

General Astrodynamics Library

74

References:

Reference for the low-level file structure known as Double Precision Array File, which
is used to implement the high-level SPICE SPK and CK kernels. Last revised on
2008 JAN 17 by B. V. Semenov.

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html

 g a l _ d e l e t e [0.1]

Delete characters from string.

char *
gal_delete
(
 char *s,
 int n,
 int l
) ;

This routine deletes a sequence of characters of length L, starting a position N. A
pointer to the start of the target string S is returned.

 g a l _ e n d i a n [0.6]

Determine the endian format of the machine.

int
gal_endian
(
) ;

If the machine is big-endian then the routine returns the constant GAL_ENDIAN_BIG,
otherwise it returns the constant GAL_ENDIAN_LITTLE

 g a l _ f s c a n [0.6]

This routine unpacks a data record using a FORTRAN style format definition.

void
gal_fscan
(
 char *form,
 char *source,
 gal_status_t *status,

Chapter 4 – File Manipulation

75

 ...
);

On entry FORMAT contains the format definition, SOURCE the data string. If the format
contains errors then the error code GAL_INVALID_FORMAT is set. On return the
decoded data is stored in the variables pointed to by the parameters that follow the
STATUS parameter. The FORMAT string follows the FORTRAN conventions (but not
precisely or comprehensively:

In means integer in field of size n

Dn.d means double in field of size n with implied d decimal places.

En.d means double in exponent form in field of size n with implied d decimal places for
mantissa. The routine will also process D exponents in the same way.

Gn.d if the string contains an 'E' exponent then means the same as En.d, otherwise it
means that same as Dn.d

An means a character string of length n

Xn means skip n characters

C means character

Nothing else is allowed in the format definition. Where the data contains a decimal point
in a different place than the format, then the data takes precedence over the format.
Spaces in numeric values are assumed to mean zero. The destination variables must
only be double, integer, or character array. Any character arrays must be large enough
to hold the string and the string terminator character.

 g a l _ i n s e r t [0.1]

Insert sub-string into string.

char *
gal_insert
(
 char *s1,
 char *s2,
 int n
) ;

This routine inserts the sub-string S2 into string S1 at the specified character position N.
Returns a pointer to the start of the target string.

General Astrodynamics Library

76

 g a l _ i n s t r [0.1]

Find sub-string in string.

int
gal_instr
(
 char *s1,
 char *s2
) ;

This routine finds the first occurrence of the sub-string S2 in the string S1. It returns the
position of the first character of the sub-string in S1. If the sub-string cannot be found
then -1 is returned.

 g a l _ j u s t l [0.1]

Left justify string.

char *
gal_justl
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies the source string S2 to S1, then trims white-space from the
beginning and end of the string. If the resultant string length is less than L then spaces
are added on the right hand side to bring the string to length L. If the resultant string
length is greater than L then the left-most L characters of the resultant string are
returned in S1.

 g a l _ j u s t r [0.1]

Right justify string.

char *
gal_justr
(
 char *s1,
 char *s2,
 int l
) ;

Chapter 4 – File Manipulation

77

This routine copies the source string S2 to S1, then trims white-space from the
beginning and end of the string. If the resultant string length is less than L then spaces
are added on the left hand side to bring the string to length L. If the resultant string
length is greater than L then the right-most L characters of the resultant string are
returned in S1. The target string S1 must be at least the same length as the source.

 g a l _ l c a s e [0.6]

Convert string to lower case.

char *
gal_lcase
(
 char *s1,
 char *s2
) ;

This routine copies the source string S2 to S1, then converts all upper case characters
to lower case. The target string S1 must be at least the same length as the source.

 g a l _ l e f t s t r [0.1]

Copy sub-string from left of string.

char *
gal_leftstr
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies the left-most L characters from S2 to S1. If the length of S2 is less
than or equal to L then S2 is copied to S1 unchanged. The target string S1 must be at
least the same length as the source string S2.

 g a l _ m i d s t r [0.1]

Copy sub-string from middle of string.

char *
gal_midstr
(
 char *s1,
 char *s2,

General Astrodynamics Library

78

 int n,
 int l
) ;

This routine copies the L characters from S2 to S1 starting at character position N in S2.
If there are less than L characters remaining in the string S2 from position N onwards
then all the available characters are returned.

 g a l _ p a d l [0.1]

Pad string with spaces on left.

char *
gal_padl
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies a maximum of L characters from the right side of S2 to S1. If the
length of S2 is less than L then the left hand side is padded with spaces up to the
required length. The target string S1 must be at least the same length as the source
string S2.

 g a l _ p a d r [0.1]

Pad string with spaces on right.

char *
gal_padr
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies a maximum of L characters from the left side of S2 to S1. If the
length of S2 is less than L then the right hand side is padded with spaces up to the
required length L. The target string S1 must be at least the same length as the source
string S2.

 g a l _ r e p l a c e [0.1]

Find and replace sub-string in string.

Chapter 4 – File Manipulation

79

char *
gal_replace
(
 char *s1,
 char *s2,
 char *s3,
 char *s4
) ;

This routine copies the source string S2 to the target string S1. Then replaces all
occurrences of the sub-string S3 in S1 with sub-string S4.

 g a l _ r i g h t s t r [0.1]

Copy right sub-string from string.

char *
gal_rightstr
(
 char *s1,
 char *s2,
 int l
) ;

This routine copies the right-most L characters from S2 to S1. If the length of S2 is less
than or equal to L then S2 is copied to S1 unchanged. The target string S1 must be at
least the same length as the source string S2.

 g a l _ s b o d [0.6]

Swap byte order of double variable.

void
gal_sbod
(
 double *d
) ;

This routine swaps the byte ordering of the double variable D, i.e. change from big
endian to little endian format and vice versa.

 g a l _ s b o d a [0.6]

Swap byte order of an array of double variables.

General Astrodynamics Library

80

void
gal_sboda
(
 double *d,
 int n
) ;

This routine swaps the byte ordering of a double variable array D, i.e. change from big
endian to little endian format and vice versa. On entry N contains the number of
elements in the array

 g a l _ s b o i [0.6]

Swap byte order of integer variable.

void
gal_sboi
(
 int *i
) ;

This routine swaps the byte ordering of the integer variable I, i.e. change from big
endian to little endian format and vice versa.

 g a l _ s b o i a [0.6]

Swap byte order of an array of integer variables.

void
gal_sboia
(
 int *i,
 int n
) ;

This routine swaps the byte ordering of a double variable array I, i.e. change from big
endian to little endian format and vice versa. On entry N contains the number of
elements in the array

 g a l _ s g f c o n [0.6]

Given the descriptor for a generic segment in a DAF file associated with DAF, fetch
from the constants partition of the segment the double precision numbers from FIRST to
LAST.

void

Chapter 4 – File Manipulation

81

gal_sgfcon
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 int first,
 int last,
 double *values,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to open DAF work space
 *SUM Pointer to selected DAF segment summary
 FIRST Index of the first value to fetch from the constants section of the

generic segment
 LAST Index of the last value to fetch from the constants section of the

generic segment

Returned:

 *VALUES Array of constant values obtained from the constants section of the

 generic segment
 *STATUS Pointer to status structure

References:

The NAIF Web site providing SPICE data for various missions, additional SPICE
utilities and documentation can be found here:

http://naif.jpl.nasa.gov

 g a l _ s g f p k t [0.6]

Given the descriptor for a generic segment in a DAF file associated with HANDLE, fetch
the data packets indexed from FIRST to LAST from the packet partition of the generic
segment.

void
gal_sgfpkt
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 int first,
 int last,
 double *values,

General Astrodynamics Library

82

 int *ends,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to open DAF work space
 *SUM Pointer to selected DAF segment summar
 FIRST The index of the first data packet to fetch
 LAST The index of the last data packet to fetch

Returned:

 *VALUES The data packets that have been fetched
 *ENDS An array of pointers to the ends of the packets
 *STATUS Pointer to status structure

References:

The NAIF Web site providing SPICE data for various missions, additional SPICE
utilities and documentation can be found here:

http://naif.jpl.nasa.gov

 g a l _ s g f r v i [0.6]

Given the handle of a DAF and the descriptor associated with a generic DAF segment
in the file, find the reference value associated with the value X and it's index.

void
gal_sgfrvi
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 double x,
 double *value,
 int *indx,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to open DAF work space

 *SUM Pointer to selected DAF segment summary

 X Value for which the associated reference value and reference index

Chapter 4 – File Manipulation

83

is requested.

Returned:

 VALUE Reference value associated with the input value X

 INDX Index of VALUE within the set of reference values for the generic

segment. This value may be used to obtain a particular packet of
data from the generic segment.

 *STATUS Pointer to status structure. If the value is not found then the error

code GAL_NOT_FOUND is set.

References:

The NAIF Web site providing SPICE data for various missions, additional SPICE
utilities and documentation can be found here:

http://naif.jpl.nasa.gov

 g a l _ s g m e t a [0.6]

Obtain the value of a specified generic segment meta data item.

void
gal_sgmeta
(
 gal_daf_t *daf,
 gal_dafsum_t *sum,
 int mnemon,
 int *value,
 gal_status_t *status
) ;

Given:

 *DAF Pointer to open DAF work space

 *SUM Pointer to selected DAF segment summary

 MNEMON Mnemonic used to represent the desired piece of meta data.

Returned:

 VALUE Value of the meta data item associated with the mnemonic

MNEMON that is in the generic segment specified by DAF and

General Astrodynamics Library

84

SUM.

 *STATUS Pointer to status structure

References:

The NAIF Web site providing SPICE data for various missions, additional SPICE
utilities and documentation can be found here:

http://naif.jpl.nasa.gov

 g a l _ s i s d [0.6]

Check that string could represent a double value.

char *
gal_sisd
(
 char *source,
 gal_status_t *status
) ;

If the string does not contain a valid representation of a double value then the error code
GAL_INVALID_DOUBLE is set. On return all white space is trimmed from both ends of
the source string. On return any 'D', 'd', or 'E' characters in the source string are
replaced with 'e'. In the event of an internal error NULL is returned. This routine only
checks for valid characters. It does not check for number components that are out of
sequence, e.g. "6-7e89+e99" would pass the test.

 g a l _ s i s i [0.6]

Check that string could represent an integer value.

char *
gal_sisi
(
 char *source,
 gal_status_t *status
) ;

If the string does not contain a valid representation of a integer value then the error
code GAL_INVALID_INTEGER is set. On return all white space is trimmed from both
ends of the source string. In the event of an internal error NULL is returned.

 g a l _ s s e e k [0.6]

Chapter 4 – File Manipulation

85

This routine seeks for the specified string in a text file then skips the specified number of
lines.

void
gal_sseek
(
 FILE *fp,
 char *token,
 int skip,
 gal_status_t *status
) ;

Given:

 *FP Pointer to an open text file
 *TOKEN Token string to find
 SKIP Number of lines to skip

If the specified token string is not found in the file then the error code
GAL_NOT_FOUND is set. If the file pointer does not point to an open file then the error
code GAL_FILE_NOT_OPEN is set. If the end of file is reached before all the requested
number of lines are skipped then the error code GAL_UNEXPECTED_EOF is set. The
routine starts searching from the current file position. The maximum line length is 2048.

 g a l _ s t r n [0.1]

Fill string with character.

char *
gal_strn
(
 char *s,
 char c,
 int l
) ;

This routine fills the target string with L characters of value C.

 g a l _ t r i m [0.1]

Trim white-space from left and right of string.

char *
gal_trim
(

General Astrodynamics Library

86

 char *s1,
 char *s2
) ;

This routine copies S2 to S1, then deletes any leading or trailing white-space characters
at the beginning or end of S1. The target string S1 must be at least the same length as
the source string S2.

 g a l _ t r i m l [0.1]

Trim white-space from left side of string.

char *
gal_triml
(
 char *s1,
 char *s2
) ;

This routine copies S2 to S1, then deletes any leading white-space characters at the
beginning of S1. The target string S1 must be at least the same length as the source
string S2.

 g a l _ t r i m r [0.1]

Trim white-space from right of string.

char *
gal_trimr
(
 char *s1,
 char *s2
) ;

This routine copies S2 to S1, then deletes any trailing white-space characters at the end
of S1. The target string S1 must be at least the same length as the source string S2.

 g a l _ u c a s e [0.1]

Force string to upper-case.

char *
gal_ucase
(
 char *s1,
 char *s2

Chapter 4 – File Manipulation

87

) ;

This routine copies S2 to S1, then forces all lower case characters in S1 to upper case.
The target string S1 must be at least the same length as the source string S2.

General Astrodynamics Library

88

Chapter 5 – Test Framework

89

Chapter 5 - Test Framework
The routines detailed in this chapter are defined in the gal_test.h header file. The test
framework is central to the GAL development methodology. These routines are the
primitives upon which the test framework is constructed. The following is an extract from
the test program for the pstrings sub-library, this illustrates the structure of a test
program, note the inclusion of the “gal_test_common.h” header file.

#include "gal_test_common.h"
#include "gal_test.h"
#include "gal_instr_test.h"
#include "gal_insert_test.h"
#include "gal_delete_test.h"
#include "gal_leftstr_test.h"
#include "gal_rightstr_test.h"
#include "gal_midstr_test.h"
#include "gal_trimr_test.h"
#include "gal_triml_test.h"
#include "gal_trim_test.h"
#include "gal_strn_test.h"
#include "gal_padr_test.h"
#include "gal_padl_test.h"
#include "gal_justr_test.h"
#include "gal_justl_test.h"
#include "gal_center_test.h"
#include "gal_replace_test.h"
#include "gal_ucase_test.h"
#include "gal_sisd_test.h"
#include "gal_sisi_test.h"
#include "gal_fscan_test.h"
#include "gal_dafopen_test.h"

int
main
(
)

{

/*
 * -
 */

General Astrodynamics Library

90

 gal_test_start ("P Strings", 0) ;

 gal_sisd_test () ;
 gal_sisi_test () ;
 gal_instr_test () ;
 gal_insert_test () ;
 gal_delete_test () ;
 gal_leftstr_test () ;
 gal_rightstr_test () ;
 gal_midstr_test () ;
 gal_trimr_test () ;
 gal_triml_test () ;
 gal_trim_test () ;
 gal_strn_test () ;
 gal_padr_test () ;
 gal_padl_test () ;
 gal_justr_test () ;
 gal_justl_test () ;
 gal_center_test () ;
 gal_replace_test () ;
 gal_ucase_test () ;
 gal_fscan_test () ;
 gal_dafopen_test () ;

 return gal_test_stop () ;

/*
 * Finished.
 */

}

Chapter 5 – Test Framework

91

g a l _ t e s t _ s t a r t [0.1]

Start test run.

void
gal_test_start
(
 char *libname,
 int verbose
) ;

This starts a test run and resets the various statistics. On entry LIBNAME contains the
name of the sub-library under test. If VERBOSE is set to 1 then both success and failure
messages are output by the test routines, and when set to 0 then only failure messages
are output. On return the external variables GAL_TPASS, GAL_TFAIL, and
GAL_TFUNC are set to zero. The external variable GAL_TVERB is set to the value of
the parameter VERBOSE. The library name is copied to the external variable gal_tlibn
to be used later by gal_test_stop.

 g a l _ t e s t _ s t o p [0.1]

Stop test run and print statistics.

int
gal_test_stop
(
) ;

This stops a test run and prints the statistics. If no tests failed during the run then 0 is
returned, otherwise 1 is returned.

 g a l _ v c v [0.1]

Validate character result.

void
gal_vcv
(
 char cval,
 char cvalok,
 char *func,
 char *test
) ;

General Astrodynamics Library

92

This routine validates a character result. On entry CVAL contains the value computed
by the routine under test, CVALOK contains the correct value, FUNC contains the name
of the routine under test, and TEST contains the name of the individual test. The
external variables GAL_TPASS and GAL_TFAIL are incremented depending upon the
outcome of the test. If the external variable GAL_TVERB is set to 1 then both test
success and test failure messages are sent to the standard output. If set to 0 then only
test failure messages are sent to the standard output.

 g a l _ v d v [0.1]

Validate a double precision result.

void
gal_vdv
(
 double dval,
 double dvalok,
 double dtol,
 char *func,
 char *test
) ;

This routine validates a double precision result. On entry DVAL contains the value
computed by the routine under test, DVALOK contains the correct value, DTOL the
tolerance, FUNC contains the name of the routine under test, and TEST contains the
name of the individual test. The external variables GAL_TPASS and GAL_TFAIL are
incremented depending upon the outcome of the test. If the external variable
GAL_TVERB is set to 1 then both test success and test failure messages are sent to the
standard output. If set to 0 then only test failure messages are sent to the standard
output.

 g a l _ v i v [0.1]

Validate an integer result.

void
gal_viv
(
 int ival,
 int ivalok,
 char *func,
 char *test
) ;

This routine validates an integer result. On entry IVAL contains the value computed by

Chapter 5 – Test Framework

93

the routine under test, IVALOK contains the correct value, FUNC contains the name of
the routine under test, and TEST contains the name of the individual test. The external
variables GAL_TPASS and GAL_TFAIL are incremented depending upon the outcome
of the test. If the external variable GAL_TVERB is set to 1 then both test success and
test failure messages are sent to the standard output. If set to 0 then only test failure
messages are sent to the standard output.

 g a l _ v l d v [0.1]

Validate long double precision result.

void
gal_vldv
(
 long double dval,
 long double dvalok,
 double dtol,
 char *func,
 char *test
) ;

This routine validates a long double precision result. On entry DVAL contains the value
computed by the routine under test, DVALOK contains the correct value, DTOL contains
the tolerance, FUNC contains the name of the routine under test, and TEST contains
the name of the individual test. The external variables GAL_TPASS and GAL_TFAIL are
incremented depending upon the outcome of the test. If the external variable
GAL_TVERB is set to 1 then both test success and test failure messages are sent to the
standard output. If set to 0 then only test failure messages are sent to the standard
output.

 g a l _ v s v [0.1]

Validate string result.

void
gal_vsv
(
 char *sval,
 char *svalok,
 char *func,
 char *test
) ;

This routine validates a string result. On entry SVAL points to the value computed by the
routine under test, SVALOK contains the correct value, FUNC contains the name of the

General Astrodynamics Library

94

routine under test, and TEST contains the name of the individual test. The external
variables GAL_TPASS and GAL_TFAIL are incremented depending upon the outcome
of the test. If the external variable GAL_TVERB is set to 1 then both test success and
test failure messages are sent to the standard output. If set to 0 then only test failure
messages are sent to the standard output.

Chapter 5 – Test Framework

95

General Astrodynamics Library

96

Chapter 6 - Date & Time
The GAL date and time routines are largely based upon the IAUʼs SOFA date & time
support. In GAL releases prior to 0.6 additional routines were included for those areas
not handled by SOFA, with the December 2010 release of SOFA many of those gaps
have been filled. Additionally the December 2010 release of SOFA added an additional
nuance to the SOFA date format has been added specifically to handle the leap second
in UTC dates. GAL now implements the new SOFA date format, and new GAL
interpretations of the new SOFA routines. Where there is an existing GAL routine
functionally equivalent to a new SOFA routine, the existing GAL routine has been
retained but the code updated, if necessary, to match the SOFA implementation. In
these cases the notes have been updated to detail the SOFA routine that it is equivalent
to. The IAU has published a very good cookbook that both explains the different time
scales and shows how to use the date and time routines. As GAL parallels SOFA
closely here, the cookbook is recommended reading for all users of GAL. It can be
downloaded from here for free:

 http://www.iausofa.org/cookbooks.html

The routines detailed in this chapter are defined in the gal_datetime.h header file. The
gal_date_macros.h header file defines the following constants:

/*
 * ---------------------
 * Date & Time Constants
 * ---------------------
 */

#define GAL_DJM (365250.0) /* Days per Julian millennium */

#define GAL_DJC (36525.0) /* Days per Julian century */

#define GAL_DJY (365.25) /* Days per Julian year */

#define GAL_D2S (86400.0) /* Days to Seconds, same as SOFA's DAYSEC */

#define GAL_D2M (1440.0) /* Days to Minutes */

#define GAL_D2H (24.0) /* Days to Hours */

#define GAL_J2000 (2451545.0) /* Reference epoch (J2000.0), Julian date */

#define GAL_MJD0 (2400000.5) /* Julian Date of Modified Julian Date zero */
 /* Same as SOFA's DJM0 */

#define GAL_MJ2000 (51544.5) /* Reference epoch (J2000.0), Modified Julian Date */
 /* Same as SOFA's DJM00 */

#define GAL_DTY (365.242198781) /* Length of tropical year B1900 (days) */

#define GAL_DJM77 (43144.0) /* 1977 Jan 1.0 as MJD */

Chapter 6 – Date & Time

97

#define GAL_TTMTAI (32.184) /* TT minus TAI (s) */

#define GAL_ELG (6.969290134e-10) /* L_G = 1 - d(TT)/d(TCG) */
 /* This is SOFA's December 2010 value */

#define GAL_ELB (1.550519768e-8) /* L_B = 1 - d(TDB)/d(TCB) */
 /* This is SOFA's December 2010 value */

#define TDB0 (-6.55e-5) /* TDB (s) at TAI 1977/1/1.0 */
 /* This is SOFA's December 2010 value */

General Astrodynamics Library

98

g a l _ c a l 2 j d [0.1]

Gregorian Calendar to Julian Date.

void
gal_cal2jd
(
 int iy,
 int im,
 int id,
 double *djm0,
 double *djm,
 gal_status_t *status
) ;

On entry IY contains the year, IM the month, and ID the day in the Gregorian calendar.
On return DJM0 contains the Modified Julian Date zero-point of 2400000.5, and DJM
contains the Modified Julian Date for 0 hours. If an invalid year and/or month are
specified then the error code GAL_BAD_YEAR and/or GAL_MONTH are set and the
routine sets DJM0 and DJM to zero. If an invalid day is specified then the error code
GAL_BAD_DAY is set, however the date is computed and returned in DJM0 and DJM.
The algorithm used is valid from -4800 March 1, but this implementation rejects dates
before -4799 January 1. The Julian Date is returned in the standard SOFA two-piece
format, which is designed to preserve time resolution. The Julian Date is available as a
single number by adding DJM0 and DJM. In early eras the conversion is from the
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the
Gregorian Calendar, nor is the CE/BCE numbering convention observed.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ d a t [0.1]

Calculate difference between International Atomic Time (TAI) and Coordinated
Universal Time (UTC): TAI - UTC

void
gal_dat
(
 int iy,
 int im,
 int id,

Chapter 6 – Date & Time

99

 double fd,
 double *deltat,
 gal_status_t *status
) ;

This routine for a given Coordinated Universal Time (UTC) date, calculates delta(AT) =
TAI-UTC. On entry IY, IM, ID, and FD contain the UTC year, month, day, and fractional
part of day. On return DELTAT contains International Atomic Time (TAI) minus
Coordinated Universal Time (UTC) in seconds. UTC began at 1960 January 1.0 (JD
2436934.5) and it is improper to call the routine with an earlier date. If this is attempted,
zero is returned and the error code GAL_OUTSIDE_DATE_RANGE is set. Because
leap seconds cannot, in principle, be predicted in advance, a reliable check for dates
beyond the valid range is impossible. To guard against gross errors, a year five or more
after the release year of this routine (see parameter IYV) is considered dubious. In this
case a warning code GAL_DUBIOUS_YEAR is set but the result is computed in the
normal way. If an invalid year, month, day or fraction of a day are specified then any of
the following error codes are set: GAL_BAD_YEAR, GAL_BAD_MONTH,
GAL_BAD_DAY, or GAL_BAD_FRACTION. If the specified date is for a day which ends
with a leap second, the UTC-TAI value returned is for the period leading up to the leap
second. If the date is for a day which begins as a leap second ends, the UTC-TAI
returned is for the period following the leap second. The day number must be in the
normal calendar range, for example 1 through 30 for April. The "almanac" convention of
allowing such dates as January 0 and December 32 is not supported in this routine, in
order to avoid confusion near leap seconds. The fraction of day is used only for dates
before the introduction of leap seconds, the first of which occurred at the end of 1971. It
is tested for validity (zero to less than 1 is the valid range) even if not used; if invalid,
zero is used and status GAL_BAD_FRACTION is returned. For many applications,
setting FD to zero is acceptable; the resulting error is always less than 3 ms (and occurs
only pre-1972).

References:

For dates from 1961 January 1 onwards, the expressions from the file:
ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.

The 5ms time step at 1961 January 1 is taken from the Explanatory Supplement to the
Astronomical Almanac, P. Kenneth Seidelmann (ed.), University Science Books (1992),
Section 2.58.1 (p87).

 g a l _ d a t e n o r m [0.6]

Normalize a two piece SOFA date for maximum precision.

void
gal_datenorm

General Astrodynamics Library

100

(
 double base,
 double *date1,
 double *date2
) ;

On entry BASE contains the pivot Julian Date, e.g. J2000 or MJD0. DATE1 and DATE2
contain a standard SOFA two piece Julian date. On return DATE1 and DATE2 have
been normalized such that DATE1 contains the BASE value and DATE2 the remainder.
The normalization process ensures the maximum retention of precision throughout.

 g a l _ d a y s 2 c a l [0.1]

Convert the day of the year, and year, to Gregorian year, month, day, and fraction of a
day.

void
gal_days2cal
(
 int year,
 double days,
 int *iy,
 int *im,
 int *id,
 double *fd,
 gal_status_t *status
) ;

On entry YEAR contains the year number between 1900 and 2100, and DAYS contains
the day count including fraction of day. On return IY, IM, ID, and FD contain the
Gregorian year, month, day, and fractional part of day respectively. In early eras the
conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the date(s)
of adoption of the Gregorian Calendar, nor is the CE/BCE numbering convention
observed. January 1 is day number 1.

 g a l _ d a y s 2 j d [0.6]

Convert the day of the year, and year, to a Julian date.

void
gal_days2jd
(
 int year,
 double days,
 double *djm0,
 double *djm,
 gal_status_t *status
) ;

Chapter 6 – Date & Time

101

On entry YEAR contains the year number between 1900 and 2100, and DAYS contains
the day count including fraction of day. On return DJM0 and DJM contain the Julian date
in standard two-piece SOFA format. January 1 is day number 1.

 g a l _ d t d b [0.1]

An approximation to TDB-TT, the difference between Barycentric Dynamical Time and
Terrestrial Time, for an observer on the Earth.

double
gal_dtdb
(
 double date1,
 double date2,
 double ut,
 double elong,
 double u,
 double v
) ;

On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) in standard
SOFA two-piece format, UT contains Universal Time (UT1) in fraction of one day,
ELONG contains longitude (east positive in radians), U contains the distance from Earth
spin (kilometers), and V contains distance north of equatorial plane (kilometers). The
function returns TDB-TT in seconds. Although the date is, formally, Barycentric
Dynamical Time (TDB), the Terrestrial Time (TT) can be used with no practical effect on
the accuracy of the prediction.

References:

Fairhead, L., & Bretagnon, P., Astronomy & Astrophysics, 229, 240-247 (1990).

IAU 2006 Resolution 3. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

Moyer, T.D., Celestial Mechanics, 23, 33 (1981).

Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).

Seidelmann, P.K. et al., Explanatory Supplement to the Astronomical Almanac, Chapter
2, University Science Books (1992).

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J.,
Astronomy & Astrophysics, 282, 663-683 (1994).

General Astrodynamics Library

102

 g a l _ e p b [0.1]

Julian Date to Besselian Epoch.

double
gal_epb
(
 double dj1,
 double dj2
) ;

On entry DJ1 and DJ2 contain the Julian Date, the Besselian Epoch is returned. The
Julian Date is supplied in standard SOFA two-piece format.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p b 2 j d [0.1]

Besselian Epoch to Julian Date.

void
gal_epb2jd
(
 double epb,
 double *djm0,
 double *djm
) ;

On entry EPB contains the date in the Besselian Epoch (e.g. 1957.3), on return DJM0
contains the Modified Julian Date zero-point of 2400000.5, and DJM contains the date
as a Modified Julian Date in standard SOFA two-piece format.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p j [0.1]

Julian Date to Julian Epoch.

double
gal_epj

Chapter 6 – Date & Time

103

(
 double dj1,
 double dj2
) ;

This routine returns the Julian epoch for the given Julian Date. On entry DJ1 and DJ2
contain the Julian Date in standard SOFA two-piece format.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ e p j 2 j d [0.1]

Julian Epoch to Julian Date.

void
gal_epj2jd
(
 double epj,
 double *djm0,
 double *djm
) ;

On entry EPJ contains the Julian Epoch (e.g. 1996.8). On return DJM0 contains the
Modified Julian Date zero-point of 2400000.5, and DJM contains the Modified Julian
Date.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.

 g a l _ f d a t e [0.6]

Convert a date to a string in specified format.

char *
gal_fdate
(
 char *format,
 double date1,
 double date2,
 char *result,
 gal_status_t *status
) ;

General Astrodynamics Library

104

On entry FORMAT contains the format string, DATE1 and DATE2 contain a Julian date
in standard two-piece SOFA format. On return RESULT contains the date in string
format. If an error occurs then the applicable error code is set and the function returns
NULL. If successful then the function returns a pointer to RESULT.

The format string contains a list of tokens which will converted into the date elements in
a similar way as printf. The tokens can be in any order, and any non-token characters
will be returned unchanged in the result string. The valid tokens are:

 %yyyy or %YYYY year number e.g. 1972
 %yy or %YY last two digits of year e.g. 05
 %mmmm month full English name in lower case e.g. january
 %MMMM month full English name in upper case e.g. JANUARY
 %Mmmm month full English name with leading upper case
 e.g. January
 %mmm short form English month name in lower cas e.g. jan
 %MMM short form English month name in upper case e.g. JAN
 %Mmm short form English month name with leading upper case
 e.g. Jan
 %mm or %MM number of month with leading zeroes e.g. 01
 %m or %M number of month with no leading zeroes e.g. 1
 %dd or %DD day number with leading zeroes e.g. 01
 %d or %D day number with no leading zeroes e.g. 1
 %hh hour number in 12 hour format and leading zeroes
 e.g. 01 for 13hrs
 %h hour number in 12 hour format with no leading zeroes
 %HH hour number in 24 hour format with leading zeros
 e.g. 01 for 1hrs
 %H hour number in 24 hour format with no leading zeroes
 e.g. 1 for 1hrs
 %NN or %nn minute number with leading zeroes e.g. 02
 %N or %n minute number with no leading zeroes e.g. 2
 %SS or %ss second number with leading zeroes e.g. 02
 %s or %S second number with no leading zeroes e.g. 2
 %ampm am or pm depending on the hour
 %AMPM AM or PM depending on the hour

 g a l _ j d 2 c a l [0.1]

Julian Date to Gregorian year, month, day, and fraction of a day.

void
gal_jd2cal
(

Chapter 6 – Date & Time

105

 double dj1,
 double dj2,
 int *iy,
 int *im,
 int *id,
 double *fd,
 gal_status_t *status
) ;

On entry DJ1 and DJ2 contain the Julian Date in standard SOFA two-piece format. On
return IY contains the year, IM the month, ID the day, and FD the fractional part of day.
The earliest valid date is -68569.5 (-4900 March, 1), and the largest value accepted is
109. If the date is outside of this range then the error code
GAL_OUTSIDE_DATE_RANGE is set. In early eras the conversion is from the
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the
Gregorian Calendar, nor is the CE/BCE numbering convention observed.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ j d 2 d a y s [0.6]

This routine converts a JD date to year and day of year.

void
gal_jd2days
(
 double jd1,
 double jd2,
 int *year,
 double *days,
 gal_status_t *status
) ;

On entry JD1 and JD2 contain the Julian Date in standard two-piece SOFA format, on
return YEAR contains the year number, and DAYS contains the day number. If an
internal error occurs then the applicable error code is set, and YEAR and DAYS are set
to zero.

 g a l _ j d c a l f [0.1]

Julian Date to Gregorian Calendar, expressed in a form convenient for formatting
messages: rounded to a specified precision, and with the fields stored in a single array.

General Astrodynamics Library

106

void
gal_jdcalf
(
 int ndp,
 double dj1,
 double dj2,
 int iymdf[4],
 gal_status_t *status
) ;

On entry DJ1 and DJ2 contain the Julian Date to be converted in standard SOFA two-
piece format, NDP contains the required number of decimal places of days in fraction.
On return IYMDF contain the year, month, day, and fraction in Gregorian calendar. If an
error occurs then the applicable error code is set. In early eras the conversion is from
the "Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the
Gregorian Calendar, nor is the CE/BCE numbering convention observed. Refer to the
routine gal_jd2cal. NDP should be 4 or less if internal overflows are to be avoided on
machines which use 16-bit integers.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 12.92 (p604).

 g a l _ m a f m s [0.5]

This routine calculates the parameters for the Mars Fictitious Mean Sun and related
parameters.

void
gal_mafms
(
 double tt1,
 double tt2,
 double *m,
 double *fms,
 double *pbs,
 double *ls,
 double *eot
) ;

On entry TT1 and TT2 contain the Terrestrial Time (TT) Julian Date in standard SOFA
two-piece format. On return M contains the mean anomaly of Mars, FMS the Fictitious
Mean Sun Angle, PBS the sum of angular perturbations in longitude, LS the areocentric
solar longitude, and EOT the equation of time. All angles are in radians. LS may be
used to determine the seasons of Mars: 0, π/2, π, 3π/2 equates to the start of spring,

Chapter 6 – Date & Time

107

summer, fall, and winter respectively. The referenced URL contains corrections to the
referenced article.

References:

A post-Pathfinder evaluation of areocentric solar coordinates with improved timing
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen,
Planetary and Space Science 48 (2000) 215-235

Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html

 g a l _ m a l t s t [0.5]

This routine converts a Mars Coordinated Time (MTC) date to Mars Local True Solar
Time. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.

double
gal_maltst
(
 double mtc1,
 double mtc2,
 double lambda,
 double eot
) ;

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date in standard
SOFA two-piece format, LAMBDA the longitude, and EOT the equation of time. The
routine returns the Local True Solar Time. All angles are in radians. As defined,
consistent with the terrestrial convention for Mean Solar Time, JD 2451549.5 (2000
January 6 00:00:00) corresponds to a near coincidence of the terrestrial Greenwich
mean solar midnight and the Martian mean solar (prime meridian) midnight. The
addition of the integer number 44796 assures a positive result for any date since JD
2405522 (1873 December 29.5). Longitude is measured westwards from the prime
meridian (0 to 2π). The referenced URL contains corrections to the referenced article.

References:

A post-Pathfinder evaluation of areocentric solar coordinates with improved timing
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen,
Planetary and Space Science 48 (2000) 215-235

Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html

 g a l _ m a s u d a t [0.5]

General Astrodynamics Library

108

This routine calculates a number of Sun data values for the planet Mars.

void
gal_masudat
(
 double mtc1,
 double mtc2,
 double m,
 double ls,
 double eot,
 double lon,
 double lat,
 double *ssl,
 double *sdec,
 double *mhd,
 double *mhlon,
 double *mhlat,
 double *sel,
 double *saz
) ;

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date in standard
SOFA two-piece format, M the Mars mean anomaly, LS the Areocentric solar longitude,
EOT the equation of time, LON and LAT the longitude and latitude of the local observer.
On return SSL contains the sub-solar longitude, SDEC the solar declination
(planetographic), MHD the Mars heliocentric distance (AU), MHLON and MHLAT Marsʼ
heliocentric longitude and latitude, and SEL and SAZ the local solar elevation and
azimuth. All angles are in radians. As defined, consistent with the terrestrial convention
for Mean Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds to a near
coincidence of the terrestrial Greenwich mean solar midnight and the Martian mean
solar (prime meridian) midnight. The addition of the integer number 44796 assures a
positive result for any date since JD 2405522 (1873 December 29.5). Longitude is
measured westwards from the prime meridian (0-2π). The referenced URL contains
corrections to the referenced article.

References:

A post-Pathfinder evaluation of areocentric solar coordinates with improved timing
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen,
Planetary and Space Science 48 (2000) 215-235

Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html

 g a l _ m t c 2 t t [0.5]

Chapter 6 – Date & Time

109

This routine converts a Mars Coordinated Time (MTC) date to a Terrestrial Time (TT)
date. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.

void
gal_mtc2tt
(
 double mtc1,
 double mtc2,
 double *tt1,
 double *tt2
) ;

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date. On return
TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in standard
SOFA two-piece format As defined, consistent with the terrestrial convention for Mean
Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds to a near
coincidence of the terrestrial Greenwich mean solar midnight and the Martian mean
solar (prime meridian) midnight. The addition of the integer number 44796 assures a
positive result for any date since JD 2405522 (1873 December 29.5). The referenced
URL contains corrections to the referenced article.

References:

A post-Pathfinder evaluation of areocentric solar coordinates with improved timing
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen,
Planetary and Space Science 48 (2000) 215-235

Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html

 g a l _ t a i 2 t t [0.2]

This routine converts an International Atomic Time (TAI) Julian Date to a Terrestrial
Time (TT) Julian Date.

void
gal_tai2tt
(
 double tai1,
 double tai2,
 double *tt1,
 double *tt2
) ;

On entry TAI1 and TAI2 contain an International Atomic Time (TAI) Julian Date. On
return TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in

General Astrodynamics Library

110

standard SOFA two-piece format.

References:

Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth
1992, Pages 47-48

 g a l _ t t 2 m t c [0.5]

This routine converts a Terrestrial Time (TT) date to a Mars Coordinated Time (MTC)
date. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.

void
gal_tt2mtc
(
 double tt1,
 double tt2,
 double *mtc1,
 double *mtc2
) ;

On entry TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. On return MTC1
and MTC2 contain the Mars Coordinated Time (MTC) date. Both dates are in standard
SOFA two-piece format. MTC1 contains the sol number, and MTC2 the fractional part of
the sol. A Mars "day" is called a "sol". As defined, consistent with the terrestrial
convention for Mean Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds
to a near coincidence of the terrestrial Greenwich mean solar midnight and the Martian
mean solar (prime meridian) midnight. The addition of the integer number 44796
assures a positive result for any date since JD 2405522 (1873 December 29.5). The
referenced URL contains corrections to the referenced article.

References:

A post-Pathfinder evaluation of areocentric solar coordinates with improved timing
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen,
Planetary and Space Science 48 (2000) 215-235

Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html

g a l _ u t c 2 t a i [0.2]

This routine converts a Coordinated Universal Time (UTC) Julian Date to an
International Atomic Time (TAI) Julian Date.

void

Chapter 6 – Date & Time

111

gal_utc2tai
 (
 double utc1,
 double utc2,
 double *tai1,
 double *tai2,
 gal_status_t *status
) ;

On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date.
On return TAI1 and TAI2 contain the International Atomic Time (TAI) Julian Date. All
dates are in standard SOFA two-piece format. TAI began at 1960 January 1.0 (JD
2436934.5) and it is improper to call the routine with an earlier date. If this is attempted,
zero is returned together with a warning status. Because leap seconds cannot, in
principle, be predicted in advance, a reliable check for dates beyond the valid range is
impossible. To guard against gross errors, a year five or more after the release year of
this routine is considered dubious. In this case the warning status
GAL_DUBIOUS_DATE is set but the result is computed in the normal way. If an error
occurs then the applicable error code is set.

 g a l _ u t c 2 t t [0.2]

This routine converts a Coordinated Universal Time (UTC) Julian Date to a Terrestrial
Time (TT) Julian Date.

void
gal_utc2tt
(
 double utc1,
 double utc2,
 double *tt1,
 double *tt2,
 gal_status_t *status
) ;

On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date.
On return TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in
standard SOFA two-piece format. TAI began at 1960 January 1.0 (JD 2436934.5) and it
is improper to call the routine with an earlier epoch. If this is attempted, zero is returned
together with a warning status. Because leap seconds cannot, in principle, be predicted
in advance, a reliable check for dates beyond the valid range is impossible. To guard
against gross errors, a year five or more after the release year of this routine is
considered dubious. In this case the warning code GAL_DUBIOUS_DATE is set but the
result is computed in the normal way. If an error occurs then the applicable error code is
set.

General Astrodynamics Library

112

 g a l _ u t c 2 u t 1 [0.2]

This routine converts a Coordinated Universal Time (UTC) Julian Date to a Universal
Time (UT1) Julian Date.

void
gal_utc2ut1
(
 double utc1,
 double utc2,
 double dut1,
 double *ut1a,
 double *ut1b
) ;

On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date in
standard SOFA two-piece format, DUT1 contains the UT1-UTC offset in seconds. On
return UT1A and UT1B contain the Universal Time (UT1) Julian Date in standard SOFA
two-piece format.

Chapter 6 – Date & Time

113

Chapter 7 – Reference Frames

115

Chapter 7 – Reference Frames
The routines detailed in this chapter are defined in the gal_frames.h header file. The
header file gal_frame_macros.h (included by gal_frames.h) defines the following
constants:

/*
 * ---
 * Constants for the Ellipsoid Model Identifiers
 * ---
 */

enum {
 GAL_EMEA_DEL1800 = 0, /* Delambre 1800 */
 GAL_EMEA_AIRY1830 = 1, /* Airy 1830 */
 GAL_EMEA_EVER1830 = 2, /* Everest 1830 */
 GAL_EMEA_EVER1830BA = 3, /* Everest 1830 Boni Alt */
 GAL_EMEA_BESL1841 = 4, /* Bessel 1841 */
 GAL_EMEA_CL1866 = 5, /* Clarke 1866 */
 GAL_EMEA_CL1880 = 6, /* Clarke 1880 */
 GAL_EMEA_CLA1880M = 7, /* Clarke 1880 Modified */
 GAL_EMEA_HEL1906 = 8, /* Helmert 1906 */
 GAL_EMEA_INTL1909 = 9, /* International 1909 */
 GAL_EMEA_KRSV = 10, /* Krassovsky */
 GAL_EMEA_MERC1960 = 11, /* Mercury 1960 */
 GAL_EMEA_WGS1960 = 12, /* World Geodetic System 1960 */
 GAL_EMEA_IAU1964 = 13, /* IAU 1964 */
 GAL_EMEA_AUSNAT1965 = 14, /* Australian National 1965 */
 GAL_EMEA_WGS1966 = 15, /* World Geodetic System 1966 */
 GAL_EMEA_MERC1968M = 16, /* Modified Mercury 1968 */
 GAL_EMEA_SA1969 = 17, /* South American 1969 */
 GAL_EMEA_GRS1967 = 18, /* Geodetic Reference System 1967 */
 GAL_EMEA_WGS1972 = 19, /* World Geodetic System 1972 */
 GAL_EMEA_IAG1975 = 20, /* IAG 1975 */
 GAL_EMEA_IAU1976 = 21, /* IAU 1976 */
 GAL_EMEA_GRS1980 = 22, /* Geodetic Reference System 1980 */
 GAL_EMEA_MERIT1983 = 23, /* MERIT 1983 */
 GAL_EMEA_WGS1984 = 24, /* World Geodetic System 1984 */
 GAL_EMEA_IERS1989 = 25, /* IERS 1989 */
 GAL_EMEA_IERS2000 = 26, /* IERS 2000 */
 GAL_EMME_IAU1991 = 27, /* IAU/IAG/COSPAR 1991 Mercury */
 GAL_EMVE_IAU1991 = 28, /* IAU/IAG/COSPAR 1991 Venus */
 GAL_EMEA_IAU1991 = 29, /* IAU/IAG/COSPAR 1991 Earth */
 GAL_EMMA_IAU1991 = 30, /* IAU/IAG/COSPAR 1991 Mars */
 GAL_EMJU_IAU1991 = 31, /* IAU/IAG/COSPAR 1991 Jupiter */
 GAL_EMSA_IAU1991 = 32, /* IAU/IAG/COSPAR 1991 Saturn */
 GAL_EMUR_IAU1991 = 33, /* IAU/IAG/COSPAR 1991 Uranus */
 GAL_EMNE_IAU1991 = 34, /* IAU/IAG/COSPAR 1991 Neptune */
 GAL_EMPL_IAU1991 = 35, /* IAU/IAG/COSPAR 1991 Pluto */
 GAL_EMSU_IAU1991 = 36 /* IAU/IAG/COSPAR 1991 Sun */
} ;

/*
 * ------------------------------
 * Constants for Reference Frames

General Astrodynamics Library

116

 * ------------------------------
 */

enum {
 GAL_RF_J2000 = 1, /* Earth mean equator, dynamical equinox of J2000 */
 GAL_RF_B1950 = 2, /* Earth mean equator, dynamical equinox of B1950 */
 GAL_RF_FK4 = 3, /* Fundamental Catalog (4) */
 GAL_RF_DE118 = 4, /* JPL Developmental Ephemeris (118) */
 GAL_RF_DE96 = 5, /* JPL Developmental Ephemeris (96) */
 GAL_RF_DE102 = 6, /* JPL Developmental Ephemeris (102) */
 GAL_RF_DE108 = 7, /* JPL Developmental Ephemeris (108) */
 GAL_RF_DE111 = 8, /* JPL Developmental Ephemeris (111) */
 GAL_RF_DE114 = 9, /* JPL Developmental Ephemeris (114) */
 GAL_RF_DE122 = 10, /* JPL Developmental Ephemeris (122) */
 GAL_RF_DE125 = 11, /* JPL Developmental Ephemeris (125) */
 GAL_RF_DE130 = 12, /* JPL Developmental Ephemeris (130) */
 GAL_RF_GALACTIC = 13, /* Galactic System II */
 GAL_RF_DE200 = 14, /* JPL Developmental Ephemeris (200) */
 GAL_RF_DE202 = 15, /* JPL Developmental Ephemeris (202) */
 GAL_RF_MARSIAU = 16, /* Mars Mean Equator and IAU vector of J2000 */
 GAL_RF_ECLIPJ2000 = 17, /* Ecliptic coordinates based upon the J2000 frame */
 GAL_RF_ECLIPB1950 = 18, /* Ecliptic coordinates based upon the B1950 frame */
 GAL_RF_DE140 = 19, /* JPL Developmental Ephemeris (140) */
 GAL_RF_DE142 = 20, /* JPL Developmental Ephemeris (142) */
 GAL_RF_DE143 = 21 /* JPL Developmental Ephemeris (143) */
} ;

Chapter 7 – Reference Frames

117

 g a l _ b f 2 c [0.5]

This routine transforms a pv-vector from the planet body fixed reference frame to the
alignment of the International Celestial Reference frame (ICRF).

void
gal_bf2c
(
 double bfrf[2][3],
 double alpha,
 double delta,
 double w,
 double omega,
 double icrf[2][3]
) ;

On entry the variables are set as follows:

 BFRF pv-vector in planet mean equator frame (meters, meters per second)
 ALPHA Right ascension of planet spin axis (radians)
 DELTA Declination of planet spin axis (radians)
 W Prime meridian angle (radians)
 OMEGA Planet rotation rate (radians per second)

On return ICRF contains the pv-vector in the ICRF inertial frame.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

 g a l _ b f 2 m e [0.5]

This routine transforms a pv-vector from the planet body fixed reference frame to the
planet mean equator reference frame.

void
gal_bf2me
(
 double bfrf[2][3],
 double w,
 double omega,
 double merf[2][3]
) ;

General Astrodynamics Library

118

On entry the parameters are set as follows:

 BFRF pv-vector in planet body fixed frame (meters, meters per second)
 W Prime meridian angle (radians)
 OMEGA Planet rotation rate (radians per second)

On return MERF contains the pv-vector in planet mean equator frame.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

g a l _ b i 0 0 [0.1]

Frame bias components of IAU 2000 precession-nutation models (part of MHB2000
with additions).

void
gal_bi00
(
 double *dpsibi,
 double *depsbi,
 double *dra
) ;

On return DPSIBI and DEPSBI contain the longitude and obliquity corrections and DRA
the ICRS right ascension of the J2000 mean equinox. The frame bias corrections in
longitude and obliquity (radians) are required in order to correct for the offset between
the GCRS pole and the mean J2000 pole. They define, with respect to the GCRS frame,
a J2000 mean pole that is consistent with the rest of the IAU 2000A precession-nutation
model. In addition to the displacement of the pole, the complete description of the frame
bias requires also an offset in right ascension. This is not part of the IAU 2000A model,
and is from Chapront et al. (2002). It is returned in radians. This is a supplemented
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).

References:

Chapront, J., Chapront-Touze, M. & Francou, G., Astronomy & Astrophysics, 387, 700,
2002.

Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New
nutation series for non-rigid Earth and insights into the Earth's interior", Journal

Chapter 7 – Reference Frames

119

Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

 g a l _ b p 0 0 [0.1]

Frame bias and precession, IAU 2000.

void
gal_bp00
(
 double date1,
 double date2,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RB contains the frame bias matrix, RP the
precession matrix, and RBP the bias-precession matrix. The matrix RB transforms
vectors from GCRS to mean J2000 by applying frame bias. The matrix RP transforms
vectors from J2000 mean equator and equinox to mean equator and equinox of date by
applying precession. The matrix RBP transforms vectors from GCRS to mean equator
and equinox of date by applying frame bias then precession. It is the product RP x RB.
The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO)
by IAU 2006 Resolution 2.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ b p 0 6 [0.1]

Frame bias and precession, IAU 2006.

void
gal_bp06
(
 double date1,
 double date2,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3]

General Astrodynamics Library

120

) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RB contains the frame bias matrix, RP the
precession matrix, and RBP the bias-precession matrix. The matrix RB transforms
vectors from GCRS to mean J2000 by applying frame bias. The matrix RP transforms
vectors from mean J2000 to mean of date by applying precession. The matrix RBP
transforms vectors from GCRS to mean of date by applying frame bias then precession.
It is the product RP x RB.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ b p n 2 x y [0.1]

Extract from the bias-precession-nutation matrix the X,Y coordinates of the Celestial
Intermediate Pole.

void
gal_bpn2xy
(
 double rbpn[3][3],
 double *x,
 double *y
) ;

On entry RBPN contains the celestial-to-true matrix. On return X and Y contain the
Celestial Intermediate Pole. The matrix rbpn transforms vectors from GCRS to true
equator (and CIO or equinox) of date, and therefore the Celestial Intermediate Pole unit
vector is the bottom row of the matrix. X and Y are components of the Celestial
Intermediate Pole unit vector in the Geocentric Celestial Reference System. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ c 2 b f [0.5]

Chapter 7 – Reference Frames

121

This routine transforms a pv-vector from the alignment of the ICRF reference frame to
the planet body fixed reference frame.

void
gal_c2bf
(
 double icrf[2][3],
 double alpha,
 double delta,
 double w,
 double omega,
 double bfrf[2][3]
) ;

On entry the parameters are set as follows:

 ICRF pv-vector in ICRF inertial frame (meters, meters per second)
 ALPHA Right ascension of planet spin axis (radians)
 DELTA Declination of planet spin axis (radians)
 W Prime meridian angle (radians)
 OMEGA Planet rotation rate (radians per second)

On return BFRF contains the pv-vector in planet mean equator frame.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

 g a l _ c 2 i 0 0 a [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2000A
precession-nutation model.

void
gal_c2i00a
(
 double date1,
 double date2,
 double rc2i[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix.
The matrix RC2I is the first stage in the transformation from celestial to terrestrial
coordinates:

General Astrodynamics Library

122

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. A faster, but
slightly less accurate result (about 1 mas), can be obtained by using instead the
gal_c2i00b routine. The celestial ephemeris origin (CEO) was renamed "celestial
intermediate origin" (CIO) by IAU 2006 Resolution 2.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c 2 i 0 0 b [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2000B
precession-nutation model.

void
gal_c2i00b
(
 double date1,
 double date2,
 double rc2i[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix.
The matrix RC2I is the first stage in the transformation from celestial to terrestrial
coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),

Chapter 7 – Reference Frames

123

ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. This routine is
faster, but slightly less accurate (about 1 mas), than the gal_c2i00a routine. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c 2 i 0 6 a [0.1]

Form the celestial-to-intermediate matrix for a given date using the IAU 2006 precession
and IAU 2000A nutation models.

void
gal_c2i06a
(
 double date1,
 double date2,
 double rc2i[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix.
The matrix RC2I is the first stage in the transformation from celestial to terrestrial
coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

General Astrodynamics Library

124

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ c 2 i b p n [0.1]

Form the celestial-to-intermediate matrix for a given date given the bias – precession -
nutation matrix. IAU 2000.

void
gal_c2ibpn
(
 double date1,
 double date2,
 double rbpn[3][3],
 double rc2i[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, and RBPN contains the celestial-to-true matrix. On return RC2I
contains the celestial-to-intermediate matrix. The matrix RBPN transforms vectors from
GCRS to true equator (and CIO or equinox) of date. Only the CIP (bottom row) is used.
The matrix RC2I is the first stage in the transformation from celestial to terrestrial
coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its
name does not include "00", this routine is in fact specific to the IAU 2000 models. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Chapter 7 – Reference Frames

125

 g a l _ c 2 i x y [0.1]

Form the celestial to intermediate-frame-of-date matrix for a given date when the CIP
X,Y coordinates are known. IAU 2000.

void
gal_c2ixy
(
 double date1,
 double date2,
 double x,
 double y,
 double rc2i[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, X and Y contain the Celestial Intermediate Pole. On return
RC2I contain the celestial-to-intermediate matrix. The Celestial Intermediate Pole
coordinates are the X and Y components of the unit vector in the Geocentric Celestial
Reference System. The matrix RC2I is the first stage in the transformation from celestial
to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its
name does not include "00", this routine is in fact specific to the IAU 2000 models.

References:

McCarthy D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32,
BKG (2004).

 g a l _ c 2 i x y s [0.1]

Form the celestial to intermediate-frame-of-date matrix given the CIP x,y and the CIO
locator s.

void
gal_c2ixys
(
 double x,

General Astrodynamics Library

126

 double y,
 double s,
 double rc2i[3][3]
) ;

On entry X and Y contain the coordinates of the Celestial Intermediate Pole, and S
contains the CIO locator. On return RC2I contains the celestial-to-intermediate matrix.
The Celestial Intermediate Pole coordinates are the X and Y components of the unit
vector in the Geocentric Celestial Reference System. The CIO locator (radians)
positions the Celestial Intermediate Origin on the equator of the CIP. The matrix RC2I is
the first stage in the transformation from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

g a l _ c 2 m e [0.5]

This routine transforms a pv-vector from the alignment of the International Celestial
Reference Frame (ICRF) to the planet mean equator reference frame.

void
gal_c2me
(
 double icrf[2][3],
 double alpha,
 double delta,
 double merf[2][3]
) ;

On entry the parameters are set as follows:

 ICRF pv-vector in ICRF inertial frame (meters, meters per second)
 ALPHA Right ascension of planet spin axis (radians)
 DELTA Declination of planet spin axis (radians)

Chapter 7 – Reference Frames

127

On return MERF contains the pv-vector in planet mean equator frame.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

g a l _ c 2 r a d e c [0.2]

This routine converts a position and velocity vector in the Geocentric Celestial
Reference Frame (GCRF) to right ascension and declination.

void
gal_c2radec
(
 double gcrf[2][3],
 double *ra,
 double *dec,
 double *range,
 double *radot,
 double *decdot,
 double *rangedot
) ;

On entry GCRF contains the GCRF position and velocity vector (meters, meters per
second). On return the variables are set as follows:

 RA Right ascension (radians)
 DEC Declination (radians)
 RANGE Range (meters)
 RADOT Rate of change of right ascension (radians per second)
 DECDOT Rate of change of declination (radians per second)
 RANGEDOT Rate of change of range (range rate) (meters per second)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 248-250

 g a l _ c 2 t 0 0 a [0.1]

Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the
polar motion, using the IAU 2000A nutation model.

void

General Astrodynamics Library

128

gal_c2t00a
(
 double tta,
 double ttb,
 double uta,
 double utb,
 double xp,
 double yp,
 double rc2t[3][3]
) ;

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole
in the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T
transforms from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM
is the polar motion matrix. A faster, but slightly less accurate result (about 1 mas), can
be obtained by using instead the gal_c2t00b routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c 2 t 0 0 b [0.1]

Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the
polar motion, using the IAU 2000B nutation model.

void
gal_c2t00b

Chapter 7 – Reference Frames

129

(
 double tta,
 double ttb,
 double uta,
 double utb,
 double xp,
 double yp,
 double rc2t[3][3]
) ;

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole
in the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T
transforms from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM
is the polar motion matrix. This routine is faster, but slightly less accurate (about 1 mas),
than the gal_c2t00a routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c 2 t 0 6 a [0.1]

Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the
polar motion, using the IAU 2006 precession and IAU 2000A nutation models.

void
gal_c2t06a
(

General Astrodynamics Library

130

 double tta,
 double ttb,
 double uta,
 double utb,
 double xp,
 double yp,
 double rc2t[3][3]
) ;

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole
in the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T
transforms from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM
is the polar motion matrix.

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ c 2 t c e o [0.1]

Assemble the celestial to terrestrial matrix from CIO-based components (the celestial-to-
intermediate matrix, the Earth Rotation Angle and the polar motion matrix).

#define gal_c2tceo(rc2i, era, rpom, rc2t) gal_c2tcio(rc2i, (
era), rpom, rc2t)

On entry RC2I contains the celestial-to-intermediate matrix, ERA the Earth rotation
angle, and RPOM the polar-motion matrix. On return RC2T contains the celestial-to-

Chapter 7 – Reference Frames

131

terrestrial matrix. The name of this routine, gal_c2tceo, reflects the original name of the
celestial intermediate origin (CIO), which before the adoption of IAU 2006 Resolution 2
was called the "celestial ephemeris origin" (CEO). When the name change from CEO to
CIO occurred, a new routine called gal_c2tcio was introduced as the successor to the
existing gal_c2tceo. This routine is merely a front end to the new one. The routine is
included in the collection only to support existing applications. It should not be used in
new applications. The routine is a candidate for deprecation.

 g a l _ c 2 t c i o [0.1]

Assemble the celestial to terrestrial matrix from CIO-based components (the celestial-to-
intermediate matrix, the Earth Rotation Angle and the polar motion matrix).

void
gal_c2tcio
(
 double rc2i[3][3],
 double era,
 double rpom[3][3],
 double rc2t[3][3]
) ;

On entry RC2I contains the celestial-to-intermediate matrix, ERA the Earth rotation
angle, and RPOM the polar-motion matrix. On return RC2T contains the celestial-to-
terrestrial matrix. This routine constructs the rotation matrix that transforms vectors in
the celestial system into vectors in the terrestrial system. It does so starting from pre-
computed components, namely the matrix which rotates from celestial coordinates to
the intermediate frame, the Earth rotation angle and the polar motion matrix. One use of
this routine is when generating a series of celestial-to-terrestrial matrices where only the
Earth Rotation Angle changes, avoiding the considerable overhead of re-computing the
precession-nutation more often than necessary to achieve given accuracy objectives.
The relationship between the arguments is as follows:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003).

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

General Astrodynamics Library

132

 g a l _ c 2 t e q x [0.1]

Assemble the celestial to terrestrial matrix from equinox-based components (the
celestial-to-true matrix, the Greenwich Apparent Sidereal Time and the polar motion
matrix).

void
gal_c2teqx
(
 double rbpn[3][3],
 double gst,
 double rpom[3][3],
 double rc2t[3][3]
) ;

On entry RBPN contains the celestial-to-true matrix, GST the Greenwich (Apparent)
Sidereal Time, and RPOM the polar-motion matrix. On return RC2T contains the
celestial-to-terrestrial matrix. This routine constructs the rotation matrix that transforms
vectors in the celestial system into vectors in the terrestrial system. It does so starting
from pre-computed components, namely the matrix which rotates from celestial
coordinates to the true equator and equinox of date, the Greenwich Apparent Sidereal
Time and the polar motion matrix. One use of the routine is when generating a series of
celestial-to-terrestrial matrices where only the Sidereal Time changes, avoiding the
considerable overhead of re-computing the precession-nutation more often than
necessary to achieve given accuracy objectives. The relationship between the
arguments is as follows:

 [ITRS] = RPOM * R_3(GST) * RBPN * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c 2 t p e [0.1]

Form the celestial to terrestrial matrix given the date, the Universal Time (UT1), the
nutation and the polar motion. IAU 2000.

void

Chapter 7 – Reference Frames

133

gal_c2tpe
(
 double tta,
 double ttb,
 double uta,
 double utb,
 double dpsi,
 double deps,
 double xp,
 double yp,
 double rc2t[3][3]
) ;

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB
contain the Universal Time (UT1) Julian Date, DPSI and DEPS the nutation, and XP and
YP the coordinates of the pole (radians). All dates are in standard SOFA two-piece
format. On return RC2T contains the celestial-to-terrestrial matrix. In the case of UTA
and UTB, the date & time method is best matched to the Earth rotation angle algorithm
used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA
argument is for 0hrs UT1 on the day in question and the UTB argument lies in the range
0 to 1, or vice versa. The caller is responsible for providing the nutation components;
they are in longitude and obliquity, in radians and are with respect to the equinox and
ecliptic of date. For high-accuracy applications, free core nutation should be included as
well as any other relevant corrections to the position of the CIP. XP and YP are the
"coordinates of the pole", in radians, which position the Celestial Intermediate Pole in
the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T
transforms from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(GST) * RBPN * [GCRS]

 = RC2T * [GCRS]

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
RBPN is the bias-precession-nutation matrix, GST is the Greenwich (Apparent) Sidereal
Time and RPOM is the polar motion matrix. Although its name does not include "00",
this routine is in fact specific to the IAU 2000 models.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

General Astrodynamics Library

134

 g a l _ c 2 t p v 0 0 a [0.2]

This routine converts a position & velocity vector in the Geocentric Celestial Reference
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2000A
Resolutions).

void
gal_c2tpv00a
(
 double gcrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double itrf[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 GCRF GCRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return ITRF contains the ITRF position & velocity vector (meters, meters per
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003, measured along the meridians to 0
and 90 deg west respectively. If any internal errors occur the applicable error code is
set.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition

Chapter 7 – Reference Frames

135

2004, Pages 217-219

 g a l _ c 2 t p v 0 0 b [0.2]

This routine converts a position & velocity vector in the Geocentric Celestial Reference
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2000B
Resolutions).

void
gal_c2tpv00b
(
 double gcrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double itrf[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 GCRF GCRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return ITRF contains the ITRF position & velocity vector (meters, meters per
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003, measured along the meridians to 0
and 90 deg west respectively. If any internal errors occur then the applicable error code
is set.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

General Astrodynamics Library

136

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ c 2 t p v 0 6 a [0.2]

This routine converts a position & velocity vector in the Geocentric Celestial Reference
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2006A
Resolutions).

void
gal_c2tpv06a
(
 double gcrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double itrf[2][3],
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 GCRF GCRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return ITRD contains the ITRF position & velocity vector (meters, meters per
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003, measured along the meridians to 0
and 90 deg west respectively. If any internal errors occur then the applicable error
codes is set.

References:

Chapter 7 – Reference Frames

137

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ c 2 t x y [0.1]

Form the celestial to terrestrial matrix given the date, the Universal Time (UT1), the CIP
coordinates and the polar motion. IAU 2000.

void
gal_c2txy
(
 double tta,
 double ttb,
 double uta,
 double utb,
 double x,
 double y,
 double xp,
 double yp,
 double rc2t[3][3]
) ;

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the
Universal Time (UT1) Julian Date, X and Y the Celestial Intermediate Pole, and XP and
YP the coordinates of the pole (radians). All dates are in standard SOFA two-piece
format. On return RC2T contains the celestial-to-terrestrial matrix. In the case of UTA
and UTB, the date & time method is best matched to the Earth rotation angle algorithm
used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA
argument is for 0hrs UT1 on the day in question and the UTB argument lies in the range
0 to 1, or vice versa. The Celestial Intermediate Pole coordinates are the X and Y
components of the unit vector in the Geocentric Celestial Reference System. XP and YP
are the "coordinates of the pole", in radians, which position the Celestial Intermediate
Pole in the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The matrix rc2t
transforms from celestial to terrestrial coordinates:

 [ITRS] = RPOM * R_3(ERA) * RC2I * [GCRS]

 = RC2T * [GCRS]

General Astrodynamics Library

138

where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a
vector in the International Terrestrial Reference System (see IERS Conventions 2003),
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its
name does not include "00", this routine is in fact specific to the IAU 2000 models.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ c h g i r f [0.6]

Form rotation matrix to change from one inertial reference frame to another.

void
gal_chgirf
(
 int refa,
 int refb,
 double rotab[3][3],
 gal_status_t *status
) ;

On entry REFA contains the identifier code of the inertial reference frame to change
from, and REFB contains the identifier code of the inertial reference frame to change to.
On return ROTAB contains the rotation matrix such that B = ROTAB * A. If an error
occurs then the applicable error codes are set. The header file gal_frame_macros.h
defines the constants for the identifier codes.

References:

[1] Jay Lieske, ``Precession Matrix Based on IAU (1976)
System of Astronomical Constants,'' Astron. Astrophys.
73, 282-284 (1979).

[2] E.M. Standish, Jr., ``Orientation of the JPL Ephemerides,
DE 200/LE 200, to the Dynamical Equinox of J2000,''
Astron. Astrophys. 114, 297-302 (1982).

[3] E.M. Standish, Jr., ``Conversion of Ephemeris Coordinates
from the B1950 System to the J2000 System,'' JPL IOM
314.6-581, 24 June 1985.

[4] E.M. Standish, Jr., ``The Equinox Offsets of the JPL
Ephemeris,'' JPL IOM 314.6-929, 26 February 1988.

Chapter 7 – Reference Frames

139

[5] Jay Lieske, ``Expressions for the Precession Quantities
Based upon the IAU (1976) System of Astronomical
Constants'' Astron. Astrophys. 58, 1-16 (1977).

[6] Laura Bass and Robert Cesarone "Mars Observer Planetary
Constants and Models" JPL D-3444 November 1990.

[7] "Explanatory Supplement to the Astronomical Almanac"
edited by P. Kenneth Seidelmann. University Science
Books, 20 Edgehill Road, Mill Valley, CA 94941 (1992)

 g a l _ e e 0 0 [0.1]

The equation of the equinoxes, compatible with IAU 2000 resolutions, given the nutation
in longitude and the mean obliquity.

double
gal_ee00
(
 double date1,
 double date2,
 double epsa,
 double dpsi
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, EPSA contains the mean obliquity, and DPSI the nutation in
longitude. The routine returns the equation of the equinoxes. The obliquity (radians), is
mean of date. The result, which is in radians, operates in the following sense:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation
of the equinoxes

The result is compatible with the IAU 2000 resolutions. For further details, see IERS
Conventions 2003 and Capitaine et al. (2002).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ e e 0 0 a [0.1]

General Astrodynamics Library

140

Equation of the equinoxes, compatible with IAU 2000 resolutions.

double
gal_ee00a
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the equation of the equinoxes. The result,
which is in radians, operates in the following sense:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation
of the equinoxes

The result is compatible with the IAU 2000 resolutions. For further details, see IERS
Conventions 2003 and Capitaine et al. (2002).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ e e 0 0 b [0.1]

Equation of the equinoxes, compatible with IAU 2000 resolutions but using the truncated
nutation model IAU 2000B.

double
gal_ee00b
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contains the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the equation of the equinoxes. The result,
which is in radians, operates in the following sense:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation

Chapter 7 – Reference Frames

141

of the equinoxes

The result is compatible with the IAU 2000 resolutions except that accuracy has been
compromised for the sake of speed. For further details, see McCarthy & Luzum (2001),
IERS Conventions 2003 and Capitaine et al. (2003).

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ e e 0 6 a [0.1]

Equation of the equinoxes, compatible with IAU 2000 resolutions and IAU 2006/2000A
precession-nutation.

double
gal_ee06a
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the equation of the equinoxes. The result,
which is in radians, operates in the following sense:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation
of the equinoxes

References:

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ e e c t 0 0 [0.1]

Equation of the equinoxes complementary terms, consistent with IAU 2000 resolutions.

General Astrodynamics Library

142

double
gal_eect00
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the complementary terms. The
"complementary terms" are part of the equation of the equinoxes (EE), classically the
difference between apparent and mean Sidereal Time:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + EE.

 with:

 EE = DPSI * cos(EPS)

where DPSI is the nutation in longitude and EPS is the obliquity of date. However, if the
rotation of the Earth were constant in an inertial frame the classical formulation would
lead to apparent irregularities in the UT1 timescale traceable to side-effects of
precession-nutation. In order to eliminate these effects from UT1, "complementary
terms" were introduced in 1994 (IAU, 1994) and took effect from 1997 (Capitaine and
Gontier, 1993):

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time +
complementary terms + equation of the equinoxes

By convention, the complementary terms (CT) are included as part of the equation of
the equinoxes rather than as part of the mean Sidereal Time. This slightly compromises
the "geometrical" interpretation of mean sidereal time but is otherwise inconsequential.
This routine computes CT in the above expression, compatible with IAU 2000
resolutions (Capitaine et al., 2002, and IERS Conventions 2003).

References:

Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

IAU Resolution C7, Recommendation 3 (1994)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Chapter 7 – Reference Frames

143

 g a l _ e f o r m [0.6]

Get Earth ellipsoid parameters.

void
gal_eform
(
 int n,
 double *a,
 double *f,
 gal_status_t *status
) ;

On entry N contains the identifier code of the requested ellipsoid model. On return the
variables are set as follows:

 A Equatorial radius
 F Flattening factor

The ellipsoid parameters are returned in the form of equatorial radius in meters (A) and
flattening (F). The latter is a number around 0.00335, i.e. around 1/298. For the case
where an unsupported N value is supplied, zero A and F are returned, and the error
status GAL_INVALID_ID is set.

 g a l _ e m d e t a i l s [0.2]

This routine returns the full details of the requested ellipsoid model.

void
gal_emdetails
(
 const int em,
 int *body,
 char *name,
 double *sma,
 double *inf,
 gal_status_t *status
) ;

On entry EM contains the identifier code of the requested ellipsoid model. On return the
variables are set as follows:

 BODY Solar System Body Identifier
 NAME Ellipsoid Model name
 SMA Semi-major axis (meters)

General Astrodynamics Library

144

 INF Inverse flattening factor

If value of the ellipsoid identifer EM is unknown to the routine then the error code
GAL_INVALID_ID is set and SMA and INF are set to zero.

The header file gal_frame_macros.h defines the constants for the valid values of EM.

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth
Seidelmann, 1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al.

 g a l _ e m n a m e [0.2]

This routine returns the name of the requested ellipsoid model.

char *
gal_emname
(
 const int em,
 char *name,
 gal_status_t *status
) ;

On entry EM contains the identifier code of the required ellipsoid model. On return
NAME contains the model name. The header file gal_frame_macros.h defines constants
for the supported model identifiers. The routine returns a pointer to the string name. If
the value of EM is unsupported by the routine then the error code GAL_INVALID_ID is
set, and the routine returns NULL.

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth
Seidelmann, 1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

Chapter 7 – Reference Frames

145

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al.

 g a l _ e m p a r a m s [0.2]

This routine returns the parameters of the requested ellipsoid model.

int
gal_emparams
(
 const int em,
 double *sma,
 double *inf,
 gal_status_t *status
) ;

On entry EM contains the identifier code of the requested ellipsoid model. The header
file gal_frame_macros.h defines constants for the supported model identifiers. On return
the variables are set as follows:

 SMA Semi-major axis (meters)
 INF Inverse flattening factor

If value of the ellipsoid identifer EM is unknown to the routine then the error code
GAL_INVALID_ID is set and SMA and INF are set to zero.

References:

Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth
Seidelmann, 1992 Page 220

Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler
Page 14

McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002).

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al.

 g a l _ e o 0 6 a [0.1]

General Astrodynamics Library

146

Equation of the origins, IAU 2006 precession and IAU 2000A nutation.

double
gal_eo06a
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the equation of the origins in radians. The
equation of the origins is the distance between the true equinox and the celestial
intermediate origin and, equivalently, the difference between Earth rotation angle and
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since
J2000.0) in right ascension plus the equation of the equinoxes (including the small
correction terms).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ e o p [0.6]

Read Earth Orientation Parameters from CSSI data file.

void
gal_eop
(
 char *filename,
 double date1,
 double date2,
 int buffer,
 double *xp,
 double *yp,
 double *dut1,
 double *lod,
 double *dpsi,
 double *deps,
 double *dx,
 double *dy,
 int *dat,
 int *dtype,
 gal_status_t *status
) ;

Given:

Chapter 7 – Reference Frames

147

 *FILENAME CSSI EOP data file name
 DATE1 Date part 1
 DATE2 Date part 2
 BUFFER Buffering flag
 0 = do not buffer results
 1 = buffer results

Returned:

 *XP x coordinate of the pole (radians)
 *YP y coordinate of the pole (radians)
 *DUT1 UT1 - UTC (seconds)
 *LOD Excess length of day (seconds)
 *DPSI Nutation (radians)
 *DEPS Nutation (radians)
 *DX ? (radians)
 *DY ? (radians)
 *DAT TAI - UTC (seconds)
 *TYPE Parameter type:
 0 = Invalid Coefficients (failure)
 1 = Observed Coefficients
 2 = Predicted Coefficients
 *STATUS Pointer to status structure

The date DATE1+DATE2 is a Julian date in standard SOFA two-piece format. The CSSI
EOP data files can be downloaded from here:

 http://celestrak.com/SpaceData/

The CSSI file format and data details are documented here:

 http://celestrak.com/SpaceData/EOP-format.asp

XP and YP are the coordinates (in radians) of the Celestial Intermediate Pole with
respect to the International Terrestrial Reference System (see IERS Conventions 2003),
measured along the meridians to 0 and 90 deg west respectively. The nutation
components (luni-solar + planetary, IAU 2000A) in longitude and obliquity are in radians
and with respect to the equinox and ecliptic of date. If the date is outside of the date
range of the data file then the error code GAL_OUTSIDE_DATE_RANGE is set. If any
errors occur then the applicable error codes are set and all return values are set to zero.
If the BUFFER parameter is set to 1 then the routine buffers the return results. If the
date requested is the same as the previous call, then the buffered results are returned
and the file is not accessed. If the BUFFER parameter is set to 0 then the file is
accessed on each call. Using the buffered results improves the execution speed,

General Astrodynamics Library

148

however the user should use caution if multiple data files are used, or if the file contents
are changed during program execution.

References:

Vallado, David A. and T.S. Kelso, "Using EOP and Solar Weather Data for Satellite
Operations," presented at the 15th AIAA/AAS Astrodynamics Specialist Conference,
Lake Tahoe, CA, 2005 August 7–11. http://celestrak.com/publications/AAS/05-406/

 g a l _ e o r s [0.1]

Equation of the origins, given the classical NPB matrix and the quantity s.

double
gal_eors
(
 double rnpb[3][3],
 double s
) ;

On entry RNPB contains the classical nutation x precession x bias matrix, and S the
quantity s (the CIO locator). The routine returns the equation of the origins in radians.
The equation of the origins is the distance between the true equinox and the celestial
intermediate origin and, equivalently, the difference between Earth rotation angle and
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since
J2000.0) in right ascension plus the equation of the equinoxes (including the small
correction terms). The algorithm is from Wallace & Capitaine (2006).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P. & Capitaine, N., 2006, Astronomy & Astrophysics (submitted)

 g a l _ e q e q 9 4 [0.1]

Equation of the equinoxes, IAU 1994 model.

double
gal_eqeq94
(
 double date1,
 double date2
) ;

Chapter 7 – Reference Frames

149

On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) Julian Date
in standard SOFA two-piece format. The routine returns the equation of the equinoxes.
The result, which is in radians, operates in the following sense:

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation
of the equinoxes

References:

IAU Resolution C7, Recommendation 3 (1994)

Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)

 g a l _ e r a 0 0 [0.1]

Earth rotation angle (IAU 2000 model).

double
gal_era00
(
 double dj1,
 double dj2
) ;

On entry DJ1 and DJ2 contain the Universal Time (UT1) Julian Date in standard SOFA
two-piece format. The routine returns the Earth rotation angle (radians), in the range 0
to 2π. The date & time method is best matched to the algorithm used: maximum
accuracy (or, at least, minimum noise) is delivered when the DJ1 argument is for 0hrs
UT1 on the day in question and the DJ2 argument lies in the range 0 to 1, or vice versa.
The algorithm is adapted from Expression 22 of Capitaine et al. 2000. The time
argument has been expressed in days directly, and, to retain precision, integer
contributions have been eliminated. The same formulation is given in IERS Conventions
(2003), Chap. 5, Eq. 14.

References:

Capitaine N., Guinot B. and McCarthy D.D, 2000, Astronomy & Astrophysics, 355, 398-
405.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ f a d 0 3 [0.1]

General Astrodynamics Library

150

Fundamental argument, IERS Conventions (2003): mean elongation of the Moon from
the Sun.

double
gal_fad03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns D in radians. Though T is strictly Barycentric
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which
makes no significant difference. The expression used is as adopted in IERS
Conventions (2003) and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Earth.

double
gal_fae03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Earth in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Chapter 7 – Reference Frames

151

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a f 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of the Moon minus
mean longitude of the ascending node.

double
gal_faf03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of the Moon in radians. Though T
is strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a j u 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Jupiter.

double
gal_faju03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Jupiter in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as

General Astrodynamics Library

152

adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a l 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean anomaly of the Moon.

double
gal_fal03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns L in radians. Though T is strictly Barycentric Dynamical
Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which makes no
significant difference. The expression used is as adopted in IERS Conventions (2003)
and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a l p 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean anomaly of the Sun.

double
gal_falp03
(

Chapter 7 – Reference Frames

153

 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns Lʼ in radians. Though T is strictly Barycentric
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which
makes no significant difference. The expression used is as adopted in IERS
Conventions (2003) and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a m a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Mars.

double
gal_fama03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Mars in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

General Astrodynamics Library

154

 g a l _ f a m e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Mercury.

double
gal_fame03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Mercury in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f a n e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Neptune.

double
gal_fane03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Neptune in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).

References:

Chapter 7 – Reference Frames

155

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a o m 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of the Moon's
ascending node.

double
gal_faom03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns Omega in radians. Though T is strictly Barycentric
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which
makes no significant difference. The expression used is as adopted in IERS
Conventions (2003) and is from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a p a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): general accumulated precession in
longitude.

double
gal_fapa03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the general precession in longitude in radians. Though

General Astrodynamics Library

156

T is strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003). It is taken from Kinoshita & Souchay (1990) and
comes originally from Lieske et al. (1977).

References:

Kinoshita, H. and Souchay J. 1990, Celestial Mechanics and Dynamical Astronomy 48,
187

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58,
1-16

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ f a s a 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Saturn.

double
gal_fasa03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Saturn in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

Chapter 7 – Reference Frames

157

 g a l _ f a u r 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Uranus.

double
gal_faur03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Uranus in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

 g a l _ f a v e 0 3 [0.1]

Fundamental argument, IERS Conventions (2003): mean longitude of Venus.

double
gal_fave03
(
 double t
) ;

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries
since J2000. The routine returns the mean longitude of Venus in radians. Though T is
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use
Terrestrial Time (TT), which makes no significant difference. The expression used is as
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon
et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

General Astrodynamics Library

158

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

 g a l _ f w 2 m [0.1]

Form rotation matrix given the Fukushima-Williams angles.

void
gal_fw2m
(
 double gamb,
 double phib,
 double psi,
 double eps,
 double r[3][3]
) ;

On entry GAMB contains the F-W angle gamma_bar, PHIB the F-W angle phi_bar, PSI
the F-W angle psi, and EPS the F-W angle epsilon. All angles are in radians. On return
R contains the rotation matrix.

Naming the following points:

 e J2000 ecliptic pole
 p GCRS pole
 E ecliptic pole of date
 P CIP

the four Fukushima-Williams angles are as follows:

 gamb = gamma = epE
 phib = phi = pE
 psi = psi = pEP
 eps = epsilon = EP

The matrix representing the combined effects of frame bias, precession and nutation is:

 NxPxB = R_1(-EPS).R_3(-PSI).R_1(PHIB).R_3(GAMB)

Three different matrices can be constructed, depending on the supplied angles:

Chapter 7 – Reference Frames

159

To obtain the nutation x precession x frame bias matrix, generate the four precession
angles, generate the nutation components and add them to the psi_bar and epsilon_A
angles, and call this routine. To obtain the precession x frame bias matrix, generate the
four precession angles and call this routine. To obtain the frame bias matrix, generate
the four precession angles for date J2000.0 and call this routine. The nutation-only and
precession-only matrices can if necessary be obtained by combining these three
appropriately.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ f w 2 x y [0.1]

CIP X,Y given Fukushima-Williams bias-precession-nutation angles.

void
gal_fw2xy
(
 double gamb,
 double phib,
 double psi,
 double eps,
 double *x,
 double *y
) ;

On entry GAMB contains the F-W angle gamma_bar, PHIB the F-W angle phi_bar, PSI
the F-W angle psi, and EPS the F-W angle epsilon. All angles are in radians. On return
X and Y contain the CIP X and Y in radians.

Naming the following points:

 e J2000 ecliptic pole,
 p GCRS pole,
 E ecliptic pole of date,
 P CIP,

the four Fukushima-Williams angles are as follows:

 gamb = gamma = epE
 phib = phi = pE
 psi = psi = pEP
 eps = epsilon = EP

General Astrodynamics Library

160

The matrix representing the combined effects of frame bias, precession and nutation is:

 NxPxB = R_1(-epsa).R_3(-psi).R_1(phib).R_3(gamb)

 X and Y are elements [0][2] and [1][2] of the matrix.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ g c 2 g d [0.6]

Transform geocentric coordinates to geodetic using the specified reference ellipsoid.

void
gal_gc2gd (
 int n,
 double xyz[3],
 double *elong,
 double *phi,
 double *height,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 N Ellipsoid identifier
 XYZ Geocentric p-vector

On return the variables are set as follows:

 ELONG Longitude (radians, east positive)
 PHI Latitude (geodetic, radians)
 HEIGHT Height above ellipsoid (geodetic)

The identifier N is a number that specifies the choice of reference ellipsoid. The header
file "gal_frame_macros.h" defines the constants for the identifiers. The geocentric vector
(XYZ, given) and HEIGHT (height, returned) are in meters. An error code of
GAL_INVALID_ID means that the identifier N is illegal. In all error cases, PHI and
HEIGHT are both set to -1e9. The inverse transformation is performed in the function
gal_gd2gc.

 g a l _ g c 2 g d e [0.6]

Transform geocentric coordinates to geodetic for a reference ellipsoid of specified form.

void

Chapter 7 – Reference Frames

161

gal_gc2gde (
 double a,
 double f,
 double xyz[3],
 double *elong,
 double *phi,
 double *height,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 A Equatorial radius
 F Flattening
 XYZ Geocentric p-vector

On return the variables are set as follows:

 ELONG Longitude (radians, east positive)
 PHI Latitude (geodetic, radians)
 HEIGHT Height above ellipsoid (geodetic)

This function is based on the GCONV2H Fortran subroutine by Toshio Fukushima (see
reference). The equatorial radius, A, can be in any units, but meters is the conventional
choice. The flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298.
The equatorial radius, A, and the geocentric vector, XYZ, must be given in the same
units, and determine the units of the returned height, HEIGHT. If an error occurs,
ELONG, PHI and HEIGHT are unchanged. The inverse transformation is performed in
the function gal_gd2gce. The transformation for a standard ellipsoid (such as WGS84)
can more conveniently be performed by calling gal_gc2gd, which uses a numerical code
to identify the required A and F values. The error codes GAL_INVALID_SMA and
GAL_INVALID_FLATTENING are set when A and F respectively have invalid values.

Reference:

Fukushima, T., "Transformation from Cartesian to geodetic coordinates accelerated by
Halley's method", J.Geodesy (2006) 79: 689-693

 g a l _ g d 2 g c [0.6]

Transform geodetic coordinates to geocentric using the specified reference ellipsoid.

void
gal_gd2gc (
 int n,
 double elong,
 double phi,
 double height,

General Astrodynamics Library

162

 double xyz[3],
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 N Ellipsoid identifier
 ELONG Longitude (radians, east positive)
 PHI Latitude (geodetic, radians)
 HEIGHT Height above ellipsoid (geodetic)

On return the variables are set as follows:

 XYZ Geocentric vector

The identifier N is a number that specifies the choice of reference ellipsoid. The header
file "gal_frame_macros.h" defines the constants for the identifiers. The geocentric vector
(XYZ, given) and height (HEIGHT, returned) are in meters. No validation is performed
on the arguments ELONG, PHI and HEIGHT. An error status GAL_INVALID_ID means
that the identifier N is illegal. Error GAL_ARITHMETIC_EXCEPTION protects against
cases that would lead to arithmetic exceptions. In all error cases, XYZ is set to zeros.
The inverse transformation is performed in the function gal_gc2gd.

 g a l _ g d 2 g c e [0.6]

Transform geodetic coordinates to geocentric for a reference ellipsoid of specified form.

void
gal_gd2gce (
 double a,
 double f,
 double elong,
 double phi,
 double height,
 double xyz[3],
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 A Equatorial radius
 F Flattening
 ELONG Longitude (radians, east positive)
 PHI Latitude (geodetic, radians)
 HEIGHT Height above ellipsoid (geodetic)

On return the variables are set as follows:

Chapter 7 – Reference Frames

163

 XYZ Geocentric vector

The equatorial radius, A, can be in any units, but meters is the conventional choice. The
flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298. The equatorial
radius, A, and the height, HEIGHT, must be given in the same units, and determine the
units of the returned geocentric vector, XYZ. No validation is performed on individual
arguments. The error status GAL_ARITHMETIC_EXCEPTION protects against
(unrealistic) cases that would lead to arithmetic exceptions. If an error occurs, XYZ is
unchanged. The inverse transformation is performed in the function gal_gc2gde. The
transformation for a standard ellipsoid (such as WGS84) can more conveniently be
performed by calling gal_gd2gc, which uses a numerical code to identify the required A
and F values.

References:

Green, R.M., Spherical Astronomy, Cambridge University Press, (1985) Section 4.5,
p96.

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed),
University Science Books (1992), Section 4.22, p202.

 g a l _ g m s t 0 0 [0.1]

Greenwich Mean Sidereal Time (model consistent with IAU 2000 resolutions).

double
gal_gmst00
(
 double uta,
 double utb,
 double tta,
 double ttb
) ;

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, and TTA and
TTB contain the Terrestrial Time (TT) Julian Date. Both dates in standard SOFA two-
piece format. The routine returns the Greenwich Mean Sidereal Time in radians, in the
range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth rotation and TT
to predict the effects of precession. If UT1 is used for both purposes, errors of order
100 microarcseconds result. This GMST is compatible with the IAU 2000 resolutions
and must be used only in conjunction with other IAU 2000 compatible components such
as precession-nutation and equation of the equinoxes. The algorithm is from Capitaine
et al. (2003) and IERS Conventions 2003.

References:

General Astrodynamics Library

164

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ g m s t 0 6 [0.1]

Greenwich mean sidereal time (consistent with IAU 2006 precession).

double
gal_gmst06
(
 double uta,
 double utb,
 double tta,
 double ttb
) ;

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, and TTA and
TTB contain the Terrestrial Time (TT) Julian Date. Both dates in standard SOFA two-
piece format. The routine returns the Greenwich Mean Sidereal Time in radians, in the
range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth rotation and TT
to predict the effects of precession. If UT1 is used for both purposes, errors of order 100
microarcseconds result. This GMST is compatible with the IAU 2006 precession and
must not be used with other precession models.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355

 g a l _ g m s t 8 2 [0.1]

Universal Time to Greenwich Mean Sidereal Time (IAU 1982 model).

double
gal_gmst82
(
 double dj1,
 double dj2
) ;

On entry DJ1 and DJ2 contain the Universal Time (UT1) Julian Date in standard SOFA
two-piece format. The routine returns the Greenwich Mean Sidereal Time (GMST) in

Chapter 7 – Reference Frames

165

radians, in the range 0 to 2π. The algorithm is based on the IAU 1982 expression. This
is always described as giving the GMST at 0 hours UT1. In fact, it gives the difference
between the GMST and the UT, the steady 4-minutes-per-day drawing-ahead of ST with
respect to UT. When whole days are ignored, the expression happens to equal the
GMST at 0 hours UT1 each day. In this routine, the entire UT1 (the sum of the two
arguments DJ1 and DJ2) is used directly as the argument for the standard formula, the
constant term of which is adjusted by 12 hours to take account of the noon phasing of
Julian Date. The UT1 is then added, but omitting whole days to conserve accuracy.

References:

Transactions of the International Astronomical Union, XVIII B, 67 (1983).

Aoki et al., Astronomy & Astrophysics 105, 359-361 (1982).

 g a l _ g s t 0 0 a [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions).

double
gal_gst00a
(
 double uta,
 double utb,
 double tta,
 double ttb
) ;

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB the
Terrestrial Time (TT) Julian Date. The routine return the Greenwich Apparent Sidereal
Time (GAST) in radians, in the range 0 to 2π. Both UT1 and TT are required, UT1 to
predict the Earth rotation and TT to predict the effects of precession-nutation. If UT1 is
used for both purposes, errors of order 100 microarcseconds result. This GAST is
compatible with the IAU 2000 resolutions and must be used only in conjunction with
other IAU 2000 compatible components such as precession-nutation. The algorithm is
from Capitaine et al. (2003) and IERS Conventions 2003.

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

General Astrodynamics Library

166

 g a l _ g s t 0 0 b [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions but using the
truncated nutation model IAU 2000B).

double
gal_gst00b
(
 double uta,
 double utb
) ;

On entry UTA and UTB contain the Universal time (UT1) Julian Date in standard SOFA
two-piece format. The routine returns the Greenwich Apparent Sidereal Time (GAST) in
radians, in the range 0 to 2π. The result is compatible with the IAU 2000 resolutions,
except that accuracy has been compromised for the sake of speed and convenience in
two respects: (1) UT is used instead of TDB (or TT) to compute the precession
component of Greenwich Mean Sidereal Time (GMST) and the equation of the
equinoxes. This results in errors of order 0.1 mas at present. (2) The IAU 2000B
abridged nutation model (McCarthy & Luzum, 2001) is used, introducing errors of up to
1 mas. This GAST is compatible with the IAU 2000 resolutions and must be used only in
conjunction with other IAU 2000 compatible components such as precession-nutation.
The algorithm is from Capitaine et al. (2003) and IERS Conventions 2003.

References:

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ g s t 0 6 [0.1]

Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.

double
gal_gst06
(
 double uta,
 double utb,
 double tta,

Chapter 7 – Reference Frames

167

 double ttb,
 double rnpb[3][3]
) ;

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB
contain the Terrestrial Time (TT) Julian Date, RNPB contains the nutation x precession
x bias matrix. The routine returns the Greenwich Apparent Sidereal Time (GAST) in
radians, in the range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth
rotation and TT to predict the effects of precession-nutation. If UT1 is used for both
purposes, errors of order 100 microarcseconds result. Although the routine uses the IAU
2006 series for s+XY/2, it is otherwise independent of the precession-nutation model
and can in practice be used with any equinox-based NPB matrix.

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ g s t 0 6 a [0.1]

Greenwich Apparent Sidereal Time (consistent with IAU 2000 and 2006 resolutions).

double
gal_gst06a
(
 double uta,
 double utb,
 double tta,
 double ttb
) ;

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB
contain the Terrestrial Time (TT) Julian Date. The routine returns the Greenwich
Apparent Sidereal Time (GAST) in radians, in the range 0 to 2π. All dates are in
standard SOFA two-piece format. Both UT1 and TT are required, UT1 to predict the
Earth rotation and TT to predict the effects of precession-nutation. If UT1 is used for
both purposes, errors of order 100 microarcseconds result. This GAST is compatible
with the IAU 2000/2006 resolutions and must be used only in conjunction with IAU 2006
precession and IAU 2000A nutation.

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ g s t 9 4 [0.1]

General Astrodynamics Library

168

Greenwich Apparent Sidereal Time (consistent with IAU 1982/94 resolutions).

double
gal_gst94
(
 double uta,
 double utb
) ;

On entry UTA and UTB contain the Universal time (UT1) Julian Date in standard SOFA
two-piece format. The routine returns the Greenwich Apparent Sidereal Time (GAST) in
radians, in the range 0 to 2π. The result is compatible with the IAU 1982 and 1994
resolutions, except that accuracy has been compromised for the sake of convenience in
that Universal Time (UT1) is used instead of Barycentric Dynamical Time (TDB) (or
Terrestrial Time (TT)) to compute the equation of the equinoxes. This GAST must be
used only in conjunction with contemporaneous IAU standards such as 1976
precession, 1980 obliquity and 1982 nutation. It is not compatible with the IAU 2000
resolutions.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992)

IAU Resolution C7, Recommendation 3 (1994)

 g a l _ i 2 t p v 0 0 [0.2]

This routine converts a position & velocity vector in the Celestial Intermediate Reference
System (CIRS) to the International Terrestrial Reference Frame (ITRF) (IAU 2000
Resolutions).

void
gal_i2tpv00
(
 double cirs[2][3],
 double tta,
 double ttb,
 double ut1a,
 double ut1b,
 double lod,
 double xp,
 double yp,
 double itrf[2][3]
) ;

Chapter 7 – Reference Frames

169

On entry the parameters are set as follows:

 CIRS CIRS position & velocity vector (meters, meters per second)
 TTA Date part 1 (TT)
 TTB Date part 2 (TT)
 UT1A UT1 date part 1
 UT1B UT1 date part 2
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

TTA and TTB contain a Terrestrial Time (TT) Julian Date, and UT1A and UT1B a
Universal Time (UT1) Julian Date. Both dates are in standard SOFA two-piece format.
On return ITRF contains the ITRF position & velocity vector (meters, meters per
second). XP and YP are the "coordinates of the pole", in seconds, which position the
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS
Conventions 2003). In a geocentric right-handed triad u, v, w, where the w-axis points at
the north geographic pole, the v-axis points towards the origin of longitudes and the u
axis completes the system, XP = +u and YP = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ i j k 2 p q w [0.4]

This routine transforms a pv-vector from the IJK frame to the to PQW frame.

void
gal_ijk2pqw
(
 double ijk[2][3],
 double raan,
 double argp,
 double inc,
 double pqw[2][3]
) ;

General Astrodynamics Library

170

On entry the parameters are set as follows:

 IJK pv-vector in IJK frame (meters, meters per second)
 RAAN Longitude of the ascending mode (radians)
 ARGP Argument of pericenter (radians)
 INC Inclination (radians)

On return PQW contains the pv-vector in the PQW frame.

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2

g a l _ i l l u m [0.5]

This routine calculates the degree of the Sun's occultation by a body of a satellite.

int
gal_illum
(
 double rsu,
 double rb,
 double psu[3],
 double pb[3],
 double ps[3],
 double *illum
) ;

On entry the parameters are set as follows:

 RSU Radius of the Sun's disc (meters)
 RB Radius of the occulting body (meters)
 PSU Sun's position vector (meters)
 PB Position vector of occulting body (meters)
 PS Position vector of satellite (meters)

On return the ILLUM is set to the degree of occultation (0 to 1).

 0 = the satellite is in umbra
 1 = the satellite is in sunlight
 0 < illum < 1 the satellite is in penumbra

The routine returns one of the following status codes:

 GAL_NO_OCCULTATION

Chapter 7 – Reference Frames

171

 GAL_PARTIAL_OCCULTATION
 GAL_TOTAL_OCCULTATION

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 81-83

 g a l _ m e 2 b f [0.5]

This routine transforms a pv-vector from the planet mean equator reference frame to the
planet body fixed reference frame.

void
gal_me2bf
(
 double merf[2][3],
 double w,
 double omega,
 double bfrf[2][3]
) ;

On entry the parameters are set as follows:

 MERF pv-vector in planet mean equator frame (meters, meters per second)
 W Prime meridian angle (radians)
 OMEGA Planet rotation rate (radians per second)

On return BFRF contains the pv-vector in planet body fixed frame.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

g a l _ m e 2 c [0.5]

This routine transforms a pv-vector from planet mean equator reference frame reference
frame to an inertial frame aligned with the International Celestial Reference frame
(ICRF).

void
gal_me2c
(
 double merf[2][3],
 double alpha,

General Astrodynamics Library

172

 double delta,
 double icrf[2][3]
) ;

On entry the parameters are set as follows:

 MERF pv-vector in planet mean equator frame (meters, meters per second)
 ALPHA Right ascension of planet spin axis (radians)
 DELTA Declination of planet spin axis (radians)

On return ICRF contains the pv-vector in inertial frame aligned to ICRF.

References:

Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory,
December 1995, Chapters 2, 4, and 5

g a l _ m o r o t e l 0 0 [0.5]

This routine returns the rotational elements for the Earth's Moon (IAU/IAG 2000).

void
gal_morotel00
(
 double tdb1,
 double tdb2,
 double *alpha,
 double *delta,
 double *w,
 double *omega
) ;

On entry TDB1 and TDB2 contain the Barycentric Dynamical Time (TDB) Julian Date in
standard two-piece SOFA format. On return the variables are set as follows:

 ALPHA Right ascension of Moon spin axis (radians)
 DELTA Declination of Moon spin axis (radians)
 W Prime meridian angle (radians)
 OMEGA Rotation Rate (radians per second)

Planetary coordinate systems are defined relative to their mean axis of rotation and
various definitions of longitude depending on the body. The longitude systems of most
of those bodies with observable rigid surfaces have been defined by references to a
surface feature such as a crater. Approximate expressions for these rotational elements
with respect to the J2000 inertial coordinate system have been derived. The

Chapter 7 – Reference Frames

173

International Celestial Reference Frame (ICRF) is the reference coordinate frame of
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on
the north side of the invariable plane of the solar system. The direction of the north pole
is specified by the value of its right ascension ra and declination dec, whereas the
location of the prime meridian is specified by the angle that is measured along the
planet's equator in an easterly direction with respect to the planet's north pole from the
node Q (located at right ascension 90 degrees + RA) of the planet's equator on the
standard equator to the point B where the prime meridian crosses the planet's equator.
The right ascension of the point Q is 90 degrees + RA and the inclination of the planet's
equator to the standard equator is 90 degrees - DEC. Because the prime meridian is
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In
addition, RA, DEC, and W may vary with time due to a precession of the axis of rotation
of the planet. If W increases with time, the planet has direct (or prograde) rotation and if
W decreases with time, the rotation is said to the retrograde.

References:

Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed.
Page 51

Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational
Elements of the Planets and Satellites: 2000, P. K. Seidelmann et al.

g a l _ m o r o t e l 9 1 [0.5]

This routine returns the rotational elements for the Earth's Moon (IAU/IAG/COSPAR
1991).

void
gal_morotel91
(
 double tdb1,
 double tdb2,
 double *alpha,
 double *delta,
 double *w,
 double *omega
) ;

On entry TDB1 and TDB2 contain a Barycentric Dynamical Time (TDB) Julian Date in
standard SOFA two-piece format. On return the variables are set as follows:

General Astrodynamics Library

174

 ALPHA Right ascension of Moon spin axis (radians)
 DELTA Declination of Moon spin axis (radians)
 W Prime meridian angle (radians)
 OMEGA Rotation Rate (radians per second)

Planetary coordinate systems are defined relative to their mean axis of rotation and
various definitions of longitude depending on the body. The longitude systems of most
of those bodies with observable rigid surfaces have been defined by references to a
surface feature such as a crater. Approximate expressions for these rotational elements
with respect to the J2000 inertial coordinate system have been derived. The
International Celestial Reference Frame (ICRF) is the reference coordinate frame of
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on
the north side of the invariable plane of the solar system. The direction of the north pole
is specified by the value of its right ascension ra and declination dec, whereas the
location of the prime meridian is specified by the angle that is measured along the
planet's equator in an easterly direction with respect to the planet's north pole from the
node Q (located at right ascension 90 degrees + RA) of the planet's equator on the
standard equator to the point B where the prime meridian crosses the planet's equator.
The right ascension of the point Q is 90 degrees + RA and the inclination of the planet's
equator to the standard equator is 90 degrees - DEC. Because the prime meridian is
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W
decreases with time, the rotation is said to the retrograde.

References:

Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed.
Page 51
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 1991, M. E. Davies et al.

 g a l _ n u m 0 0 a [0.1]

Form the matrix of nutation for a given date, IAU 2000A model.

void
gal_num00a
(
 double date1,
 double date2,

Chapter 7 – Reference Frames

175

 double rmatn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to
the mean equatorial triad of date. A faster, but slightly less accurate result (about 1
mas), can be obtained by using instead the gal_num00b routine.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

 g a l _ n u m 0 0 b [0.1]

Form the matrix of nutation for a given date, IAU 2000B model.

void
gal_num00b
(
 double date1,
 double date2,
 double rmatn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to
the mean equatorial triad of date. This routine is faster, but slightly less accurate (about
1 mas), than the gal_num00a routine.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

 g a l _ n u m 0 6 a [0.1]

Form the matrix of nutation for a given date, IAU 2006/2000A model.

void
gal_num06a

General Astrodynamics Library

176

(
 double date1,
 double date2,
 double rmatn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to
the mean equatorial triad of date.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ n u m a t [0.1]

Form the matrix of nutation.

void
gal_numat
(
 double epsa,
 double dpsi,
 double deps,
 double rmatn[3][3]
) ;

On entry EPSA contains the mean obliquity of date, DPSI and DEPS contain the
nutation. On return RMATN contains the nutation matrix. The supplied mean obliquity
EPSA, must be consistent with the precession-nutation models from which DPSI and
DEPS were obtained. The caller is responsible for providing the nutation components;
they are in longitude and obliquity, in radians and are with respect to the equinox and
ecliptic of date. The matrix operates in the sense V(true) = RMATN * V(mean), where
the p-vector V(true) is with respect to the true equatorial triad of date and the p-vector
V(mean) is with respect to the mean equatorial triad of date.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222-3 (p114).

Chapter 7 – Reference Frames

177

 g a l _ n u t 0 0 a [0.1]

Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation with free core
nutation omitted).

void
gal_nut00a
(
 double date1,
 double date2,
 double *dpsi,
 double *deps
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and
planetary). The nutation components in longitude and obliquity are in radians and with
respect to the equinox and ecliptic of date. The obliquity at J2000 is assumed to be the
Lieske et al. (1977) value of 84381.448 arcsec. Both the luni-solar and planetary
nutations are included. The latter are due to direct planetary nutations and the
perturbations of the lunar and terrestrial orbits. The routine computes the MHB2000
nutation series with the associated corrections for planetary nutations. It is an
implementation of the nutation part of the IAU 2000A precession-nutation model,
formally adopted by the IAU General Assembly in 2000, namely MHB2000 (Mathews et
al. 2002), but with the free core nutation (FCN) omitted. The full MHB2000 model also
contains contributions to the nutations in longitude and obliquity due to the free-
excitation of the free-core-nutation during the period 1979-2000.These FCN terms,
which are time-dependent and unpredictable, are NOT included in this routine and, if
required, must be independently computed. With the FCN corrections included, this
routine delivers a pole which is at current epochs accurate to a few hundred
microarcseconds. The omission of FCN introduces further errors of about that size. This
routine provides classical nutation. The MHB2000 algorithm, from which it is adapted,
deals also with (i) the offsets between the GCRS and mean poles and (ii) the
adjustments in longitude and obliquity due to the changed precession rates. These
additional functions, namely frame bias and precession adjustments, are supported by
the routines gal_bi00 and gal_pr00. The MHB2000 algorithm also provides "total"
nutations, comprising the arithmetic sum of the frame bias, precession adjustments,
luni-solar nutation and planetary nutation. These total nutations can be used in
combination with an existing IAU 1976 precession implementation, such as gal_pmat76,
to deliver GCRS-to-true predictions of sub-mas accuracy at current epochs. However,
there are three shortcomings in the MHB2000 model that must be taken into account if
more accurate or definitive results are required (see Wallace 2002):

(i) The MHB2000 total nutations are simply arithmetic sums, yet in reality the various
components are successive Euler rotations. This slight lack of rigor leads to cross terms

General Astrodynamics Library

178

that exceed 1 mas after a century. The rigorous procedure is to form the GCRS-to-true
rotation matrix by applying the bias, precession and nutation in that order.

(ii) Although the precession adjustments are stated to be with respect to Lieske et al.
(1977), the MHB2000 model does not specify which set of Euler angles are to be used
and how the adjustments are to be applied. The most literal and straightforward
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add
dpsipr to psi_A and depspr to both omega_A and eps_A.

(iii) The MHB2000 model predates the determination by Chapront et al. (2002) of a 14.6
mas displacement between the J2000 mean equinox and the origin of the ICRS frame. It
should, however, be noted that neglecting this displacement when calculating star
coordinates does not lead to a 14.6 mas change in right ascension, only a small
second-order distortion in the pattern of the precession-nutation effect.

For these reasons, the routines do not generate the "total nutations" directly, though
they can of course easily be generated by calling gal_bi00, gal_pr00 and this routine
and adding the results.

References:

Chapront, J., Chapront-Touze, M. & Francou, G. 2002, Astronomy & Astrophysics 387,
700

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58,
1-16

Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, Journal Geophysical Research 107,
B4. The MHB_2000 code itself was obtained on 9th September 2002 from:

ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.
1994, Astronomy & Astrophysics 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics
Supplement Series 135, 111

Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS
Workshop 5.1 (2002)

 g a l _ n u t 0 0 b [0.1]

Nutation, IAU 2000B model.

Chapter 7 – Reference Frames

179

void
gal_nut00b
(
 double date1,
 double date2,
 double *dpsi,
 double *deps
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and
planetary). The nutation components in longitude and obliquity are in radians and with
respect to the equinox and ecliptic of date. The obliquity at J2000 is assumed to be the
Lieske et al. (1977) value of 84381.448 arcsec. (The errors that result from using this
routine with the IAU 2006 value of 84381.406 arcseconds can be neglected.) The
nutation model consists only of luni-solar terms, but includes also a fixed offset which
compensates for certain long-period planetary terms. This routine is an implementation
of the IAU 2000B abridged nutation model formally adopted by the IAU General
Assembly in 2000. The routine computes the MHB_2000_SHORT luni-solar nutation
series (Luzum 2001), but without the associated corrections for the precession rate
adjustments and the offset between the GCRS and J2000 mean poles. The full IAU
2000A (MHB2000) nutation model contains nearly 1400 terms. The IAU 2000B model
(McCarthy & Luzum 2003) contains only 77 terms, plus additional simplifications, yet still
delivers results of 1 mas accuracy at present epochs. This combination of accuracy and
size makes the IAU 2000B abridged nutation model suitable for most practical
applications. The routine delivers a pole accurate to 1 mas from 1900 to 2100 (usually
better than 1 mas, very occasionally just outside 1 mas). The full IAU 2000A model,
which is implemented in the routine gal_nut00a (q.v.), delivers considerably greater
accuracy at current epochs; however, to realize this improved accuracy, corrections for
the essentially unpredictable free-core-nutation (FCN) must also be included. The
routine provides classical nutation. The MHB_2000_SHORT algorithm, from which it is
adapted, deals also with (i) the offsets between the GCRS and mean poles and (ii) the
adjustments in longitude and obliquity due to the changed precession rates. These
additional functions, namely frame bias and precession adjustments, are supported by
the routines gal_bi00 and gal_pr00. The MHB_2000_SHORT algorithm also provides
"total" nutations, comprising the arithmetic sum of the frame bias, precession
adjustments, and nutation (luni-solar + planetary). These total nutations can be used in
combination with an existing IAU 1976 precession implementation, such as gal_pmat76,
to deliver GCRS-to-true predictions of mas accuracy at current epochs. However, for
symmetry with the gal_nut00a routine (q.v. for the reasons), the routines do not
generate the "total nutations" directly. Should they be required, they could of course
easily be generated by calling gal_bi00, gal_pr00 and this routine and adding the
results. The IAU 2000B model includes "planetary bias" terms that are fixed in size but
compensate for long-period nutations. The amplitudes quoted in McCarthy & Luzum

General Astrodynamics Library

180

(2003), namely Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are optimized for the
"total nutations" method described above. The Luzum (2001) values used in this
implementation, namely -0.135 mas and +0.388 mas, are optimized for the "rigorous"
method, where frame bias, precession and nutation are applied separately and in that
order. During the interval 1995-2050, the implementation delivers a maximum error of
1.001 mas (not including FCN).

References:

Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions for the precession
quantities based upon the IAU /1976/ system of astronomical constants", Astronomy &
Astrophysics 58, 1-2, 1-16. (1977)

Luzum, B., private communication, 2001 (Fortran code MHB_2000_SHORT)

McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J.,
Astronomy & Astrophysics 282, 663-683 (1994)

 g a l _ n u t 0 6 a [0.1]

IAU 2000A nutation with adjustments to match the IAU 2006 precession.

void
gal_nut06a
(
 double date1,
 double date2,
 double *dpsi,
 double *deps
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and
planetary). The nutation components in longitude and obliquity are in radians and with
respect to the mean equinox and ecliptic of date, IAU 2006 precession model (Hilton et
al. 2006, Capitaine et al. 2005). The routine first computes the IAU 2000A nutation, then
applies adjustments for (i) the consequences of the change in obliquity from the IAU
1980 ecliptic to the IAU 2006 ecliptic and (ii) the secular variation in the Earth's
dynamical flattening. This routine provides classical nutation, complementing the IAU
2000 frame bias and IAU 2006 precession. It delivers a pole which is at current epochs
accurate to a few tens of microarcseconds, apart from the free core nutation.

Chapter 7 – Reference Frames

181

References:

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ n u t 8 0 [0.1]

Nutation, IAU 1980 model.

void
gal_nut80
(
 double date1,
 double date2,
 double *dpsi,
 double *deps
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. on return DPSI contains the nutation in longitude (radians), and
DEPS the nutation in obliquity (radians). The nutation components are with respect to
the ecliptic of date.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.222 (p111).

 g a l _ n u t m 8 0 [0.1]

Form the matrix of nutation for a given date, IAU 1980 model.

void
gal_nutm80
(
 double date1,
 double date2,
 double rmatn[3][3]
) ;

On entry DATE1 and DATE2 contain the TDB Julian Date in standard SOFA two-piece
format. On return RMATN contains the nutation matrix. The matrix operates in the
sense V(true) = RMATN * V(mean), where the p-vector V(true) is with respect to the true
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial
triad of date.

General Astrodynamics Library

182

 g a l _ o b l 0 6 [0.1]

Mean obliquity of the ecliptic, IAU 2006 precession model.

double
gal_obl06
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the obliquity of the ecliptic in radians. The
result is the angle between the ecliptic and mean equator of date (DATE1 and DATE2).

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ o b l 8 0 [0.1]

Mean obliquity of the ecliptic, IAU 1980 model.

double
gal_obl80
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. the routine returns the obliquity of the ecliptic in radians. The
result is the angle between the ecliptic and mean equator of date (DATE1 and DATE2).

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Expression 3.222-1 (p114).

 g a l _ p 0 6 e [0.1]

Precession angles, IAU 2006, equinox based.

void
gal_p06e

Chapter 7 – Reference Frames

183

(
 double date1,
 double date2,
 double *eps0,
 double *psia,
 double *oma,
 double *bpa,
 double *bqa,
 double *pia,
 double *bpia,
 double *epsa,
 double *chia,
 double *za,
 double *zetaa,
 double *thetaa,
 double *pa,
 double *gam,
 double *phi,
 double *psi
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. This routine returns the set of equinox based angles for the
Capitaine et al. "P03" precession theory, adopted by the IAU in 2006. The angles are
set out in Table 1 of Hilton et al. (2006):

 EPS0 epsilon_0 obliquity at J2000
 PSIA psi_A luni-solar precession
 OMA omega_A inclination of equator wrt. J2000 ecliptic
 BPA P_A ecliptic pole x, J2000 ecliptic triad
 BQA Q_A ecliptic pole -y, J2000 ecliptic triad
 PIA pi_A angle between moving and J2000 ecliptics
 BPIA Pi_A longitude of ascending node of the ecliptic
 EPSA epsilon_A obliquity of the ecliptic
 CHIA chi_A planetary precession
 ZA z_A equatorial precession: -3rd 323 Euler angle
 ZETAA zeta_A equatorial precession: -1st 323 Euler angle
 THETA theta_A equatorial precession: 2nd 323 Euler angle
 PA p_A general precession
 GAM gamma_J2000 J2000 right ascension difference of ecliptic poles
 PHI phi_J2000 J2000 codeclination of ecliptic pole
 PSI psi_J2000 longitude difference of equator poles, J2000

The returned values are all radians. Hilton et al. (2006) Table 1 also contains angles
that depend on models distinct from the P03 precession theory itself, namely the IAU
2000A frame bias and nutation. The quoted polynomials are used in other routines:

General Astrodynamics Library

184

 gal_xy06 contains the polynomial parts of the X and Y series.

 gal_s06 contains the polynomial part of the s+XY/2 series.

gal_pfw06 implements the series for the Fukushima-Williams angles that are with
respect to the GCRS pole (i.e. the variants that include frame bias).

The IAU resolution stipulated that the choice of parameterization was left to the user,
and so an IAU compliant precession implementation can be constructed using various
combinations of the angles returned by this routine.

The parameterization used is the Fukushima-Williams angles referred directly to the
GCRS pole. These are the final four arguments returned by this routine, but are more
efficiently calculated by calling the routine gal_pfw06. GAL also supports the direct
computation of the CIP GCRS X,Y by series, available by calling gal_xy06. The
agreement between the different parameterizations is at the 1 microarcsecond level in
the present era. When constructing a precession formulation that refers to the GCRS
pole rather than the dynamical pole, it may (depending on the choice of angles) be
necessary to introduce the frame bias explicitly.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

 g a l _ p b 0 6 [0.1]

This routine forms three Euler angles which implement general precession from epoch
J2000.0, using the IAU 2006 model. Frame bias (the offset between ICRS and mean
J2000.0) is included.

void
gal_pb06
(
 double date1,
 double date2,
 double *bzeta,
 double *bz,
 double *btheta
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables BZETA, BZ, and BTHETA are set as
follows:

Chapter 7 – Reference Frames

185

 BZETA 1st rotation: radians clockwise around z
 BZ 3rd rotation: radians clockwise around z
 BTHETA 2nd rotation: radians counterclockwise around y

The traditional accumulated precession angles zeta_A, z_A, theta_A cannot be
obtained in the usual way, namely through polynomial expressions, because of the
frame bias. The latter means that two of the angles undergo rapid changes near this
date. They are instead the results of decomposing the precession-bias matrix obtained
by using the Fukushima-Williams method, which does not suffer from the problem. The
decomposition returns values which can be used in the conventional formulation and
which include frame bias. The three angles are returned in the conventional order,
which is not the same as the order of the corresponding Euler rotations. The
precession-bias matrix is R_3(-z) x R_2(+theta) x R_3(-zeta). Should zeta_A, z_A,
theta_A angles be required that do not contain frame bias, they are available by calling
the routine gal_p06e.

 g a l _ p f w 0 6 [0.1]

Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).

void
gal_pfw06
(
 double date1,
 double date2,
 double *gamb,
 double *phib,
 double *psib,
 double *epsa
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the routine sets the variables as follows:

 GAMB F-W angle gamma_bar (radians)
 PHIB F-W angle phi_bar (radians)
 PSIB F-W angle psi_bar (radians)
 EPSA F-W angle epsilon_A (radians)

Naming the following points:

 e J2000 ecliptic pole
 p GCRS pole
 E mean ecliptic pole of date
 P mean pole of date

General Astrodynamics Library

186

the four Fukushima-Williams angles are as follows:

 GAMB = gamma_bar = epE
 PHIB = phi_bar = pE
 PSIB = psi_bar = pEP
 EPSA = epsilon_A = EP

The matrix representing the combined effects of frame bias and precession is:

 P x B = R_1(-EPSA).R_3(-PSIB).R_1(PHIB).R_3(GAMB)

The matrix representing the combined effects of frame bias, precession and nutation is
simply:

 N x P x B = R_1(-EPSA-dE).R_3(-PSIB-dP).R_1(PHIB).R_3(GAMB)

where dP and dE are the nutation components with respect to the ecliptic of date.

References:

Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351

g a l _ p l r o t e l 0 0 [0.5]

This routine returns the rotational elements of a selected planet (IAU/IAG 2000).

int
gal_plrotel00
 (
 int body,
 double tdb1,
 double tdb2,
 double *alpha,
 double *delta,
 double *w,
 double *omega
) ; *** NEEDS FIXING ***

On entry the parameters are set as follows:

 body Planet identifier code
 tdb1 Date part 1 (TDB)
 tdb2 Date part 2 (TDB)

Chapter 7 – Reference Frames

187

The header file gal_const.h defines the following constants for the planet identifier code:

 GAL_SSB_SU The Sun
 GAL_SSB_ME Mercury
 GAL_SSB_VE Venus
 GAL_SSB_EA Earth
 GAL_SSB_MA Mars
 GAL_SSB_JU Jupiter
 GAL_SSB_SA Saturn
 GAL_SSB_UR Uranus
 GAL_SSB_NE Neptune
 GAL_SSB_PL Pluto

tdb1 and tdb2 contain a Barycentric Dynamical Time (TDB) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 alpha Right ascension of planet spin axis (radians)
 delta Declination of planet spin axis (radians)
 w Prime meridian angle (radians)
 omega Rotation Rate (radians per second)

The routine returns a status code of 0 if successful, and 1 if the planet identifier code is
invalid.

Planetary coordinate systems are defined relative to their mean axis of rotation and
various definitions of longitude depending on the body. The longitude systems of most
of those bodies with observable rigid surfaces have been defined by references to a
surface feature such as a crater. Approximate expressions for these rotational elements
with respect to the J2000 inertial coordinate system have been derived. The
International Celestial Reference Frame (ICRF) is the reference coordinate frame of
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on
the north side of the invariable plane of the solar system. The direction of the north pole
is specified by the value of its right ascension ra and declination dec, whereas the
location of the prime meridian is specified by the angle that is measured along the
planet's equator in an easterly direction with respect to the planet's north pole from the
node Q (located at right ascension 90 degrees + ra) of the planet's equator on the
standard equator to the point B where the prime meridian crosses the planet's equator.
The right ascension of the point Q is 90 degrees + ra and the inclination of the planet's
equator to the standard equator is 90 degrees - dec. Because the prime meridian is
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W
decreases with time, the rotation is said to the retrograde.

General Astrodynamics Library

188

References:

Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed.
Page 51

Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational
Elements of the Planets and Satellites: 2000, P. K. Seidelmann et al.

g a l _ p l r o t e l 9 1 [0.5]

This routine returns the rotational elements of a selected planet (IAU/IAG 1991).

int
gal_plrotel91
 (
 int body,
 double tdb1,
 double tdb2,
 double *alpha,
 double *delta,
 double *w,
 double *omega
) ; *** NEEDS FIXING ***

 On entry the parameters are set as follows:

 body Planet identifier code
 tdb1 Date part 1 (TDB)
 tdb2 Date part 2 (TDB)

The header file gal_const.h defines the following constants for the planet identifier code:

 GAL_SSB_SU The Sun
 GAL_SSB_ME Mercury
 GAL_SSB_VE Venus
 GAL_SSB_EA Earth
 GAL_SSB_MA Mars
 GAL_SSB_JU Jupiter
 GAL_SSB_SA Saturn
 GAL_SSB_UR Uranus
 GAL_SSB_NE Neptune
 GAL_SSB_PL Pluto

Chapter 7 – Reference Frames

189

tdb1 and tdb2 contain a Barycentric Dynamical Time (TDB) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 alpha Right ascension of planet spin axis (radians)
 delta Declination of planet spin axis (radians)
 w Prime meridian angle (radians)
 omega Rotation Rate (radians per second)

The routine returns a status code of 0 if successful, and 1 if the planet identifier code is
invalid.

Planetary coordinate systems are defined relative to their mean axis of rotation and
various definitions of longitude depending on the body. The longitude systems of most
of those bodies with observable rigid surfaces have been defined by references to a
surface feature such as a crater. Approximate expressions for these rotational elements
with respect to the J2000 inertial coordinate system have been derived. The
International Celestial Reference Frame (ICRF) is the reference coordinate frame of
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on
the north side of the invariable plane of the solar system. The direction of the north pole
is specified by the value of its right ascension ra and declination dec, whereas the
location of the prime meridian is specified by the angle that is measured along the
planet's equator in an easterly direction with respect to the planet's north pole from the
node Q (located at right ascension 90 degrees + ra) of the planet's equator on the
standard equator to the point B where the prime meridian crosses the planet's equator.
The right ascension of the point Q is 90 degrees + ra and the inclination of the planet's
equator to the standard equator is 90 degrees - dec. Because the prime meridian is
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W
decreases with time, the rotation is said to the retrograde.

References:

Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed.
Page 51

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 1991, M. E. Davies et al.

g a l _ p q w 2 i j k [0.4]

General Astrodynamics Library

190

This routine transforms a pv-vector from the PQW frame to the to IJK frame.

void
gal_pqw2ijk
(
 double pqw[2][3],
 double raan,
 double argp,
 double inc,
 double ijk[2][3]
) ;

On entry the parameters are set as follows:

 PQW pv-vector in PQW frame (meters, meters per second)
 RAAN Longitude of the ascending mode (radians)
 ARGP Argument of pericenter (radians)
 INC Inclination (radians)

On return IJK contains the pv-vector in the IJK frame.

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2

g a l _ p q w 2 i j k m [0.4]

This routine forms the PQW to IJK transformation matrix.

void
gal_pqw2ijkm
(
 double raan,
 double argp,
 double inc,
 double pqw2ijkm[3][3]
) ;

On entry the parameters are set as follows:

 RAAN Longitude of the ascending mode (radians)
 ARGP Argument of pericenter (radians)
 INC Inclination (radians)

On return PQW2IJKM contains the transformation matrix.

Chapter 7 – Reference Frames

191

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2

g a l _ s e z m [0.5]

This routine forms the SEZ transformation matrix for specified latitude and longitude.

void
gal_sezm
(
 double latitude,
 double longitude,
 double sez[3][3]
) ;

On entry LATITUDE and LONGITUDE contain the required latitude and longitude in
radians. On return SEZ contains the SEZ transformation matrix.

References:

Methods of Orbit Determination, P. R. Escobal 1965, Pages 405-406

g a l _ t 2 a z e l [0.2]

This routine converts a pv-vector in the International Terrestrial Reference Frame (ITRF)
reference frame to azimuth, elevation, range & range-rate

void
gal_t2azel
(
 double itrf[2][3],
 double site[3],
 double lat,
 double lon,
 double *az,
 double *el,
 double *range,
 double *rdot
) ;

On entry the parameters are set as follows:

General Astrodynamics Library

192

 ITRF ITRF position & velocity vector of target (meters, meters per second)
 SITE ITRF position vector of observer (meters)
 LAT Latitude of observer (radians)
 LON Longitude of observer (radians)

On return the variables are set as follows:

 AZ Azimuth (radians)
 EL Elevation (radians)
 RANGE Range (meters)
 RDOT Range Rate (meters, meters per second)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 252-257

 g a l _ t 2 c p v 0 0 a [0.2]

This routine converts a position & velocity vector in the International Terrestrial
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU
2000A Resolutions).

void
gal_t2cpv00a
(
 double itrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double gcrf[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 ITRF ITRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)

Chapter 7 – Reference Frames

193

 YP Y coordinate of the pole (radians)

On return GCRF contains the GCRF position & velocity vector (meters, meters per
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003), measured along the meridians to 0
and 90 deg west respectively.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 c p v 0 0 b [0.2]

This routine converts a position & velocity vector in the International Terrestrial
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU
2000B Resolutions).

void
gal_t2cpv00b
(
 double itrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double gcrf[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 ITRF ITRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)

General Astrodynamics Library

194

 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return GCRF contains the GCRF position & velocity vector (meters, meters per
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003) , measured along the meridians to 0
and 90 deg west respectively.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 c p v 0 6 a [0.2]

This routine converts a position & velocity vector in the International Terrestrial
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU
2006A Resolutions).

void
gal_t2cpv06a
(
 double itrf[2][3],
 double utc1,
 double utc2,
 double dut1,
 double lod,
 double xp,
 double yp,
 double gcrf[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 ITRF ITRF position & velocity vector (meters, meters per second)
 UTC1 Date part 1 (UTC)

Chapter 7 – Reference Frames

195

 UTC2 Date part 2 (UTC)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return gcrf contains the GCRF position & velocity vector (meters, meters per
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in
seconds, which position the Celestial Intermediate Pole in the International Terrestrial
Reference System (see IERS Conventions 2003) , measured along the meridians to 0
and 90 deg west respectively.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ t 2 i p v 0 0 [0.2]

This routine converts a position & velocity vector in the International Terrestrial
Reference Frame (ITRF) to the CIRS reference frame (IAU 2000 Resolutions).

void
gal_t2ipv00
(
 double itrf[2][3],
 const double tta,
 const double ttb,
 const double ut1a,
 const double ut1b,
 const double lod,
 const double xp,
 const double yp,
 double cirs[2][3]
) ;

On entry the parameters are set as follows:

 ITRF ITRF position & velocity vector (meters, meters per second)

General Astrodynamics Library

196

 TTA Date part 1 (TT)
 TTB Date part 2 (TT)
 DUT1 UT1 - UTC (seconds)
 LOD Excess length of day (seconds)
 XP X coordinate of the pole (radians)
 YP Y coordinate of the pole (radians)

On return cirs contains the CIRS position & velocity vector (meters, meters per second).
The TTA and TTB Terrestrial time (TT) Julian Date in is standard SOFA two-piece
format. XP and YP are the "coordinates of the pole", in seconds, which position the
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS
Conventions 2003). In a geocentric right-handed triad u, v, w, where the w-axis points at
the north geographic pole, the v-axis points towards the origin of longitudes and the u
axis completes the system, XP = +u and YP = -v.

References:

SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review
Board 2007

http://www.iau-sofa.rl.ac.uk

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 217-219

 g a l _ p m a t 0 0 [0.1]

Precession matrix (including frame bias) from GCRS to a specified date, IAU 2000
model.

void
gal_pmat00
(
 double date1,
 double date2,
 double rbp[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RBP contains the bias-precession matrix. The matrix
operates in the sense V(date) = RBP * V(J2000), where the p-vector V(J2000) is with
respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector
V(date) is with respect to the mean equatorial triad of the given date.

References:

Chapter 7 – Reference Frames

197

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General
Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p m a t 0 6 [0.1]

Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006
model.

void
gal_pmat06
(
 double date1,
 double date2,
 double rbp[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RBP contains the bias-precession matrix. The matrix
operates in the sense V(date) = RBP * V(J2000), where the p-vector V(J2000) is with
respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector
V(date) is with respect to the mean equatorial triad of the given date.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ p m a t 7 6 [0.1]

Precession matrix from J2000 to a specified date, IAU 1976 model.

void
gal_pmat76
 (
 double date1,
 double date2,
 double rmatp[3][3]
) ;

On entry DATE1 and DATE2 contain the TDB Julian Date in standard SOFA two-piece
format. On return RMATP contains the precession matrix, J2000 -> DATE1+DATE2.
The matrix operates in the sense V(date) = RMATP * V(J2000), where the p-vector
V(J2000) is with respect to the mean equatorial triad of epoch J2000 and the p-vector

General Astrodynamics Library

198

V(date) is with respect to the mean equatorial triad of the given date. Though the matrix
method itself is rigorous, the precession angles are expressed through canonical
polynomials which are valid only for a limited time span. In addition, the IAU 1976
precession rate is known to be imperfect. The absolute accuracy of the present
formulation is better than 0.1 arcseconds from 1960CE to 2040CE, better than 1
arcseconds from 1640CE to 2360CE, and remains below 3 arcseconds for the whole of
the period 500BCE to 3000CE. The errors exceed 10 arcseconds outside the range
1200BCE to 3900CE, exceed 100 arcseconds outside 4200BCE to 5600CE and exceed
1000 arcseconds outside 6800BCE to 8200CE.

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.

Kaplan, G.H., 1981. USNO circular no. 163, pA2.

 g a l _ p n 0 0 [0.1]

Precession-nutation, IAU 2000 model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void
gal_pn00
(
 double date1,
 double date2,
 double dpsi,
 double deps,
 double *epsa,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3],
 double rn[3][3],
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, DPSI and DEPS contain the nutation. On return the variables
are set as follows:

 EPSA mean obliquity
 RB frame bias matrix
 RP precession matrix
 RBP bias-precession matrix
 RN nutation matrix

Chapter 7 – Reference Frames

199

 RBPN GCRS-to-true matrix

The caller is responsible for providing the nutation components; they are in longitude
and obliquity, in radians and are with respect to the equinox and ecliptic of date. For
high-accuracy applications, free core nutation should be included as well as any other
relevant corrections to the position of the CIP. The returned mean obliquity is consistent
with the IAU 2000 precession-nutation models. The matrix RB transforms vectors from
GCRS to J2000 mean equator and equinox by applying frame bias. The matrix RP
transforms vectors from J2000 mean equator and equinox to mean equator and equinox
of date by applying precession. The matrix RBP transforms vectors from GCRS to mean
equator and equinox of date by applying frame bias then precession. It is the product
RP x RB. The matrix RN transforms vectors from mean equator and equinox of date to
true equator and equinox of date by applying the nutation (luni-solar and planetary). The
matrix RBPN transforms vectors from GCRS to true equator and equinox of date. It is
the product RN x RBP, applying frame bias, precession and nutation in that order.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 0 a [0.1]

Precession-nutation, IAU 2000A model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void
gal_pn00a
(
 double date1,
 double date2,
 double *dpsi,
 double *deps,
 double *epsa,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3],
 double rn[3][3],
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

General Astrodynamics Library

200

 DPSI, DEPS nutation
 EPSA mean obliquity
 RB frame bias matrix
 RP precession matrix
 RBP bias-precession matrix
 RN nutation matrix
 RBPN GCRS-to-true matrix

The nutation components (luni-solar and planetary, IAU 2000A) in longitude and
obliquity are in radians and with respect to the equinox and ecliptic of date. Free core
nutation is omitted; for the utmost accuracy, use the gal_pn00 routine, where the
nutation components are caller-specified. For faster but slightly less accurate results,
use the gal_pn00b routine. The mean obliquity is consistent with the IAU 2000
precession. The matrix RB transforms vectors from GCRS to J2000 mean equator and
equinox by applying frame bias. The matrix RP transforms vectors from J2000 mean
equator and equinox to mean equator and equinox of date by applying precession. The
matrix RBP transforms vectors from GCRS to mean equator and equinox of date by
applying frame bias then precession. It is the product RP x RB. The matrix RN
transforms vectors from mean equator and equinox of date to true equator and equinox
of date by applying the nutation (luni-solar and planetary). The matrix RBPN transforms
vectors from GCRS to true equator and equinox of date. It is the product RN x RBP,
applying frame bias, precession and nutation in that order. The X,Y,Z coordinates of the
IAU 2000A Celestial Intermediate Pole are elements [0-2][2] of the matrix RBPN.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 0 b [0.1]

Precession-nutation, IAU 2000B model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void
gal_pn00b
(
 double date1,
 double date2,
 double *dpsi,
 double *deps,
 double *epsa,
 double rb[3][3],
 double rp[3][3],

Chapter 7 – Reference Frames

201

 double rbp[3][3],
 double rn[3][3],
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 DPSI, DEPS nutation
 EPSA mean obliquity
 RB frame bias matrix
 RP bias-precession matrix
 RBP precession matrix
 RN nutation matrix
 RBPN GCRS-to-true matrix

The nutation components (luni-solar and planetary, IAU 2000B) in longitude and
obliquity are in radians and with respect to the equinox and ecliptic of date. For more
accurate results, but at the cost of increased computation, use the gal_pn00a routine.
For the utmost accuracy, use the gal_pn00 routine, where the nutation components are
caller-specified. The mean obliquity is consistent with the IAU 2000 precession. The
matrix RB transforms vectors from GCRS to J2000 mean equator and equinox by
applying frame bias. The matrix RP transforms vectors from J2000 mean equator and
equinox to mean equator and equinox of date by applying precession. The matrix RBP
transforms vectors from GCRS to mean equator and equinox of date by applying frame
bias then precession. It is the product RP x RB. The matrix rn transforms vectors from
mean equator and equinox of date to true equator and equinox of date by applying the
nutation (luni-solar and planetary). The matrix RBPN transforms vectors from GCRS to
true equator and equinox of date. It is the product RN x RBP, applying frame bias,
precession and nutation in that order. The X,Y,Z coordinates of the IAU 2000B Celestial
Intermediate Pole are elements [0-2][2] of the matrix RBPN.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

 g a l _ p n 0 6 [0.1]

Precession-nutation, IAU 2006 model: a multi-purpose routine, supporting classical
(equinox-based) use directly and CIO-based use indirectly.

void
gal_pn06

General Astrodynamics Library

202

(
 double date1,
 double date2,
 double dpsi,
 double deps,
 double *epsa,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3],
 double rn[3][3],
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, and dpsi and deps the nutation. On return the variables are set
as follows:

 EPSA mean obliquity
 RB frame bias matrix
 RP precession matrix
 RBP bias-precession matrix
 RN nutation matrix
 RBPN GCRS-to-true matrix

The caller is responsible for providing the nutation components; they are in longitude
and obliquity, in radians and are with respect to the equinox and ecliptic of date. For
high-accuracy applications, free core nutation should be included as well as any other
relevant corrections to the position of the CIP. The returned mean obliquity is consistent
with the IAU 2006 precession. The matrix RB transforms vectors from GCRS to mean
J2000 by applying frame bias. The matrix RP transforms vectors from mean J2000 to
mean of date by applying precession. The matrix RBP transforms vectors from GCRS to
mean of date by applying frame bias then precession. It is the product RP x RB. The
matrix RN transforms vectors from mean of date to true of date by applying the nutation
(luni-solar and planetary). The matrix RBPN transforms vectors from GCRS to true of
date CIP/equinox). It is the product RN x RBP, applying frame bias, precession and
nutation in that order. The X,Y,Z coordinates of the IAU 2006/2000A Celestial
Intermediate Pole are elements [0-2][2] of the matrix RBPN.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ p n 0 6 a [0.1]

Chapter 7 – Reference Frames

203

Precession-nutation, IAU 2006/2000A models: a multi-purpose routine, supporting
classical (equinox-based) use directly and CIO-based use indirectly.

void
gal_pn06a
(
 double date1,
 double date2,
 double *dpsi,
 double *deps,
 double *epsa,
 double rb[3][3],
 double rp[3][3],
 double rbp[3][3],
 double rn[3][3],
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 DPSI, DEPS nutation
 EPSA mean obliquity

RB frame bias matrix
RP precession matrix

 RBP bias-precession matrix
RN nutation matrix
RBPN GCRS-to-true matrix

The nutation components (luni-solar and planetary, IAU 2000A) in longitude and
obliquity are in radians and with respect to the equinox and ecliptic of date. Free core
nutation is omitted; for the utmost accuracy, use the gal_pn06 routine, where the
nutation components are caller-specified. The mean obliquity is consistent with the IAU
2006 precession. The matrix RB transforms vectors from GCRS to mean J2000 by
applying frame bias. The matrix RP transforms vectors from mean J2000 to mean of
date by applying precession. The matrix RBP transforms vectors from GCRS to mean of
date by applying frame bias then precession. It is the product RP x RB. The matrix RN
transforms vectors from mean of date to true of date by applying the nutation (luni-solar
and planetary). The matrix RBPN transforms vectors from GCRS to true of date
(CIP/equinox). It is the product RN x RBP, applying frame bias, precession and nutation
in that order. The X,Y,Z coordinates of the IAU 2006/2000A Celestial Intermediate Pole
are elements [0-2][2] of the matrix RBPN.

References:

General Astrodynamics Library

204

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

 g a l _ p n m 0 0 a [0.1]

Form the matrix of precession-nutation for a given date (including frame bias), equinox-
based, IAU 2000A model.

void
gal_pnm00a
(
 double date1,
 double date2,
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RBPN contains the classical NPB matrix. The matrix
operates in the sense V(date) = RBPN x V(GCRS), where the p-vector V(date) is with
respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector
V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial
Reference System (IAU, 2000). A faster, but slightly less accurate result (about 1 mas),
can be obtained by using instead the gal_pnm00b routine.

References:

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General
Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p n m 0 0 b [0.1]

Form the matrix of precession-nutation for a given date (including frame bias), equinox-
based, IAU 2000B model.

void
gal_pnm00b
(
 double date1,
 double date2,
 double rbpn[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RBPN the bias-precession-nutation matrix. The
matrix operates in the sense V(date) = RBPN * V(GCRS), where the p-vector V(date) is
with respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector

Chapter 7 – Reference Frames

205

V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial
Reference System (IAU, 2000). This routine is faster, but slightly less accurate (about 1
mas), than the gal_pnm00a routine.

References:

IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General
Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)

 g a l _ p n m 0 6 a [0.1]

Form the matrix of precession-nutation for a given date (including frame bias), IAU 2006
precession and IAU 2000A nutation models.

void
gal_pnm06a
(
 double date1,
 double date2,
 double rnpb[3][3]
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return RNPB contains bias-precession-nutation matrix. The
matrix operates in the sense V(date) = RNPB * V(GCRS), where the p-vector V(date) is
with respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector
V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial
Reference System (IAU, 2000).

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

 g a l _ p n m 8 0 [0.1]

Form the matrix of precession/nutation for a given date, IAU 1976 precession model,
IAU 1980 nutation model.

void
gal_pnm80
(
 double date1,
 double date2,
 double rmatpn[3][3]
) ;

General Astrodynamics Library

206

On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) Julian Date
in standard SOFA two-piece format. On return RMATPN contains the combined
precession/nutation matrix. The matrix operates in the sense V(date) = RMATPN x
V(J2000), where the p-vector V(date) is with respect to the true equatorial triad of date
(DATE1 and DATE2) and the p-vector V(J2000) is with respect to the mean equatorial
triad of epoch J2000.

References:

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.),
University Science Books (1992), Section 3.3 (p145).

 g a l _ p o m 0 0 [0.1]

Form the matrix of polar motion for a given date, IAU 2000.

void
gal_pom00
(
 double xp,
 double yp,
 double sp,
 double rpom[3][3]
) ;

On entry XP and YP contain the coordinates of the pole in radians and the TIO locator s'
in radians. XP and YP are the "coordinates of the pole", in radians, which position the
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS
Conventions 2003), measured along the meridians to 0 and 90 deg west respectively.
SP is the TIO locator s', in radians, which positions the Terrestrial Intermediate Origin
on the equator. It is obtained from polar motion observations by numerical integration,
and so is in essence unpredictable. However, it is dominated by a secular drift of about
47 microarcseconds per century, and so can be taken into account by using s' = -47 * T,
where T is centuries since J2000.0. The routine gal_sp00 implements this
approximation. The matrix operates in the sense V(TRS) = RPOM * V(CIP), meaning
that it is the final rotation when computing the pointing direction to a celestial source.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ p r 0 0 [0.1]

Chapter 7 – Reference Frames

207

Precession-rate part of the IAU 2000 precession-nutation models (part of MHB2000).

void
gal_pr00
(
 double date1,
 double date2,
 double *dpsipr,
 double *depspr
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return DPSIPR and DEPSPR contain the precession
corrections. The precession adjustments are expressed as "nutation components",
corrections in longitude and obliquity with respect to the J2000 equinox and ecliptic.
Although the precession adjustments are stated to be with respect to Lieske et al.
(1977), the MHB2000 model does not specify which set of Euler angles are to be used
and how the adjustments are to be applied. The most literal and straightforward
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add
DPSIPR to psi_A and DEPSPR to both omega_A and eps_A (Wallace 2002). This is an
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).

References

Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions for the precession
quantities based upon the IAU (1976) System of Astronomical Constants", Astronomy &
Astrophysics, 58, 1-16 (1977)

Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New
nutation series for non-rigid Earth and insights into the Earth's interior", Journal
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS
Workshop 5.1 (2002)

 g a l _ p r e c 7 6 [0.1]

IAU 1976 precession model. This routine forms the three Euler angles which implement
general precession between two epochs, using the IAU 1976 model (as for the FK5
catalog).

void
gal_prec76

General Astrodynamics Library

208

(
 double ep01,
 double ep02,
 double ep11,
 double ep12,
 double *zeta,
 double *z,
 double *theta
) ;

On entry EP01 and EP02 contain the Barycentric Dynamical Time (TDB) starting epoch,
and EP11 and EP12 contain the TDB ending epoch. Both dates are Julian Dates in
standard SOFA two-piece format. On return the variables are set as follows:

 ZETA 1st rotation: radians clockwise around z
 Z 3rd rotation: radians clockwise around z
 THETA 2nd rotation: radians counterclockwise around y

The accumulated precession angles ZETA, Z, THETA are expressed through canonical
polynomials which are valid only for a limited time span. In addition, the IAU 1976
precession rate is known to be imperfect. The absolute accuracy of the present
formulation is better than 0.1 arcseconds from 1960CE to 2040CE, better than 1
arcseconds from 1640CE to 2360CE, and remains below 3 arcseconds for the whole of
the period 500BCE to 3000CE. The errors exceed 10 arcseconds outside the range
1200BCE to 3900CE, exceed 100 arcseconds outside 4200BCE to 5600CE and exceed
1000 arcseconds 1000 arcseconds outside 6800BCE to 8200CE. The three angles are
returned in the conventional order, which is not the same as the order of the
corresponding Euler rotations. The precession matrix is R_3(-Z) x R_2(+THETA) x
R_3(-ZETA).

References:

Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.

 g a l _ s 0 0 [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU
2000A precession-nutation.

double
gal_s00
(
 double date1,
 double date2,

Chapter 7 – Reference Frames

209

 double x,
 double y
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, X and Y contain the CIP coordinates. The routine returns the
CIO locator s in radians. The CIO locator s is the difference between the right
ascensions of the same point in two systems: the two systems are the GCRS and the
CIP,CIO, and the point is the ascending node of the CIP equator. The quantity s
remains below 0.1 arcsecond throughout 1900CE-2100CE. The series used to compute
s is in fact for s+xy/2, where x and y are the x and y components of the CIP unit vector;
this series is more compact than a direct series for s would be. This routine requires X
and Y to be supplied by the caller, who is responsible for providing values that are
consistent with the supplied date. The model is consistent with the IAU 2000A
precession-nutation.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ s 0 0 a [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2000A precession-nutation model.

double
gal_s00a
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO
locator s is the difference between the right ascensions of the same point in two
systems. The two systems are the GCRS and the CIP,CIO, and the point is the
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is
more compact than a direct series for s would be. This routine uses the full IAU 2000A

General Astrodynamics Library

210

nutation model when predicting the CIP position. Faster results, with no significant loss
of accuracy, can be obtained via the routine gal_s00b, which uses instead the IAU
2000B truncated model.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ s 0 0 b [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2000B precession-nutation model.

double
gal_s00b
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO
locator s is the difference between the right ascensions of the same point in two
systems. The two systems are the GCRS and the CIP,CIO, and the point is the
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is
more compact than a direct series for s would be. This routine uses the IAU 2000B
truncated nutation model when predicting the CIP position. The routine gal_s00a uses
instead the full IAU 2000A model, but with no significant increase in accuracy and at
some cost in speed.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by

Chapter 7 – Reference Frames

211

IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ s 0 6 [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU
2006/2000A precession-nutation.

double
gal_s06
(
 double date1,
 double date2,
 double x,
 double y
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format, X and Y contain CIP coordinates. The routine returns the CIO
locator s in radians. The CIO locator s is the difference between the right ascensions of
the same point in two systems: the two systems are the GCRS and the CIP,CIO, and
the point is the ascending node of the CIP equator. The quantity s remains below 0.1
arcsecond throughout 1900CE - 2100CE. The series used to compute s is in fact for
s+xy/2, where x and y are the x and y components of the CIP unit vector; this series is
more compact than a direct series for s would be. This routine requires X,Y to be
supplied by the caller, who is responsible for providing values that are consistent with
the supplied date. The model is consistent with the "P03" precession (Capitaine et al.
2003), adopted by IAU 2006 Resolution 1, 2006, and the IAU 2000A nutation (with P03
adjustments).

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics 432, 355

McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ s 0 6 a [0.1]

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the
Celestial Intermediate Pole, using the IAU 2006 precession and IAU 2000A nutation

General Astrodynamics Library

212

models.

double
gal_s06a
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO
locator s is the difference between the right ascensions of the same point in two
systems. The two systems are the GCRS and the CIP,CIO, and the point is the
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is
more compact than a direct series for s would be. This routine uses the full IAU 2000A
nutation model when predicting the CIP position.

References:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by
IAU 2006 Resolution 2.

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

 g a l _ s p 0 0 [0.1]

The TIO locator s', positioning the Terrestrial Intermediate Origin on the equator of the
Celestial Intermediate Pole.

double
gal_sp00
(
 double date1,
 double date2
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. The routine returns the TIO locator s' in radians. The TIO

Chapter 7 – Reference Frames

213

locator s' is obtained from polar motion observations by numerical integration, and so is
in essence unpredictable. However, it is dominated by a secular drift of about 47
microarcseconds per century, which is the approximation evaluated by this routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ x y 0 6 [0.1]

X,Y coordinates of celestial intermediate pole from series based on IAU 2006
precession and IAU 2000A nutation.

void
gal_xy06
(
 double date1,
 double date2,
 double *x,
 double *y
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return X and Y contain the CIP X,Y coordinates. The X,Y
coordinates are those of the unit vector towards the celestial intermediate pole. They
represent the combined effects of frame bias, precession and nutation. The fundamental
arguments used are as adopted in IERS Conventions (2003) and are from Simon et al.
(1994) and Souchay et al. (1999). This is an alternative to the angles-based method, via
the routine gal_fw2xy and as used in gal_xys06a for example. The two methods agree
at the 1 microarcsecond level (at present), a negligible amount compared with the
intrinsic accuracy of the models. However, it would be unwise to mix the two methods
(angles-based and series-based) in a single application.

References:

Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics, 412, 567

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note
No. 32, BKG

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J.,
Astronomy & Astrophysics, 1994, 282, 663

General Astrodynamics Library

214

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astronomy & Astrophysics
Supplement Series 135, 111

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

 g a l _ x y s 0 0 a [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2000A precession-nutation model.

void
gal_xys00a
(
 double date1,
 double date2,
 double *x,
 double *y,
 double *s
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 X, Y Celestial Intermediate Pole
 S the CIO locator s

The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector
in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the
Celestial Intermediate Origin on the equator of the CIP. A faster, but slightly less
accurate result (about 1 mas for X, Y), can be obtained by using instead the gal_xys00b
routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ x y s 0 0 b [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2000B precession-nutation model.

void
gal_xys00b

Chapter 7 – Reference Frames

215

(
 double date1,
 double date2,
 double *x,
 double *y,
 double *s
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 X, Y Celestial Intermediate Pole
 S the CIO locator s

The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector
in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the
Celestial Intermediate Origin on the equator of the CIP. This routine is faster, but slightly
less accurate (about 1 mas in x,y), than the gal_xys00a routine.

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No.
32, BKG (2004)

 g a l _ x y s 0 6 a [0.1]

For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and
the CIO locator s, using the IAU 2006 precession and IAU 2000A nutation models.

void
gal_xys06a
(
 double date1,
 double date2,
 double *x,
 double *y,
 double *s
) ;

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard
SOFA two-piece format. On return the variables are set as follows:

 X, Y Celestial Intermediate Pole
 S the CIO locator s

The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector

General Astrodynamics Library

216

in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the
Celestial Intermediate Origin on the equator of the CIP. Series-based solutions for
generating X and Y are also available: see Capitaine & Wallace (2006) and gal_xy06.

References:

Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855

Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981

Chapter 7 – Reference Frames

217

Chapter 8 – Star Routines

219

Chapter 8 - Star Routines
The routines detailed in this chapter are defined in the gal_star.h header file.

General Astrodynamics Library

220

 g a l _ f k 5 2 h [0.1]

Transform FK5 (J2000.0) star data into the Hipparcos system.

void
gal_fk52h
(
 double r5,
 double d5,
 double dr5,
 double dd5,
 double px5,
 double rv5,
 double *rh,
 double *dh,
 double *drh,
 double *ddh,
 double *pxh,
 double *rvh
) ;

On entry the parameters are set as follows (all FK5, equinox J2000.0, epoch J2000.0):

 R5 right ascension (radians)
 D5 declination (radians)
 DR5 proper motion in right ascension (dRA/dt, radians per Julian year)
 DD5 proper motion in declination (dDec/dt, radians per Julian year)
 PX5 parallax (arcseconds)
 RV5 radial velocity (positive = receding)

On return the variables are set as follows (all Hipparcos, epoch J2000.0):

 RH right ascension (radians)
 DH declination (radians)
 DRH proper motion in right ascension (dRA/dt, radians per Julian year)
 DDH proper motion in declination (dDec/dt, radians per Julian year)
 PXH parallax (arcseconds)
 RVH radial velocity (positive = receding)

This routine transforms FK5 star positions and proper motions into the system of the
Hipparcos catalogue. The proper motions in right ascension are dRA/dt rather than
cos(Dec)*dRA/dt, and are per year rather than per century. The FK5 to Hipparcos
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue

Chapter 8 – Star Routines

221

are not taken into account. See also gal_h2fk5, gal_fk5hz, gal_hfk5z.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ f k 5 h i p [0.1]

FK5 to Hipparcos rotation and spin.

void
gal_fk5hip
(
 double r5h[3][3],
 double s5h[3]
) ;

On return R5H contains the r-matrix: FK5 rotation wrt Hipparcos, and S5H contains the
r-vector: FK5 spin wrt Hipparcos. This routine models the FK5 to Hipparcos
transformation as a pure rotation and spin; zonal errors in the FK5 catalogue are not
taken into account. The r-matrix r5h operates in the sense: P_Hipparcos = R5H x
P_FK5 where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is the equivalent
Hipparcos p-vector. The r-vector S5H represents the time derivative of the FK5 to
Hipparcos rotation. The units are radians per year (Julian, TDB).

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ f k 5 h z [0.1]

Transform an FK5 (J2000) star position into the system of the Hipparcos catalogue,
assuming zero Hipparcos proper motion.

void
gal_fk5hz
(
 double r5,
 double d5,
 double date1,
 double date2,
 double *rh,
 double *dh
) ;

General Astrodynamics Library

222

On entry the parameters are set as follows:

 R5 FK5 right ascension (radians), equinox J2000.0, at date
 D5 FK5 declination (radians), equinox J2000.0, at date
 DATE1 TDB date part 1 in standard SOFA two-piece format
 DATE2 TDB date part 2 in standard SOFA two-piece format

On return the variables are set as follows:

 RH Hipparcos right ascension (radians)
 DH Hipparcos declination (radians)

This routine converts a star position from the FK5 system to the Hipparcos system, in
such a way that the Hipparcos proper motion is zero. Because such a star has, in
general, a non-zero proper motion in the FK5 system, the routine requires the date at
which the position in the FK5 system was determined. The FK5 to Hipparcos
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue
are not taken into account. It was the intention that Hipparcos should be a close
approximation to an inertial frame, so that distant objects have zero proper motion; such
objects have (in general) non-zero proper motion in FK5, and this routine returns those
fictitious proper motions. The position returned by this routine is in the FK5 J2000
reference system but at date (DATE1 and DATE2). See also gal_fk52h, gal_h2fk5,
gal_hfk5z.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ h 2 f k 5 [0.1]

Transform Hipparcos star data into the FK5 (J2000.0) system.

void
gal_h2fk5
(
 double rh,
 double dh,
 double drh,
 double ddh,
 double pxh,
 double rvh,
 double *r5,
 double *d5,
 double *dr5,
 double *dd5,

Chapter 8 – Star Routines

223

 double *px5,
 double *rv5
) ;

On entry the parameters are set as follows (all Hipparcos, epoch J2000.0):

 RH right ascension (radians)
 DH declination (radians)
 DRH proper motion in right ascension (dRA/dt, radians per Julian year)
 DDH proper motion in declination (dDec/dt, radians per Julian year)
 PXH parallax (arcseconds)
 RVH radial velocity (positive = receding)

On return the variables are set as follows (all FK5, equinox J2000.0, epoch J2000.0):

 R5 right ascension (radians)
 D5 declination (radians)
 DR5 proper motion in right ascension (dRA/dt, radians per Julian year)
 DD5 proper motion in declination (dDec/dt, radians per Julian year)
 PX5 parallax (arcseconds)
 RV5 radial velocity (positive = receding)

This routine transforms Hipparcos star positions and proper motions into FK5 J2000.
The proper motions in right ascension are dRA/dt rather than cos(Dec)*dRA/dt, and are
per year rather than per century. The FK5 to Hipparcos transformation is modeled as a
pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account.
See also gal_fk52h, gal_fk5hz, gal_hfk5z.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ h f k 5 z [0.1]

Transform a Hipparcos star position into FK5 J2000.0, assuming zero Hipparcos proper
motion.

void
gal_hfk5z
(
 double rh,
 double dh,
 double date1,
 double date2,
 double *r5,

General Astrodynamics Library

224

 double *d5,
 double *dr5,
 double *dd5
) ;

On entry the parameters are set as follows:

 RH Hipparcos right ascension (radians)
 DH Hipparcos declination (radians)
 DATE1,DATE2 TDB date in standard SOFA two-piece format

On return the variables are set as follows (all FK5, equinox J2000, date date1+date2):

 R5 right ascension (radians)
 D5 declination (radians)
 DR5 FK5 right ascension proper motion (radians per year)
 DD5 declination proper motion (radians per year)

The proper motion in right ascension is dRA/dt rather than cos(Dec)*dRA/dt. The FK5 to
Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the
FK5 catalogue are not taken into account. It was the intention that Hipparcos should be
a close approximation to an inertial frame, so that distant objects have zero proper
motion; such objects have (in general) non-zero proper motion in FK5, and this routine
returns those fictitious proper motions. The position returned by this routine is in the
FK5 J2000.0 reference system but at date (DATE1 and DATE2). See also gal_fk52h,
gal_h2fk5, gal_fk5zhz.

References:

F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).

 g a l _ p v s t a r [0.1]

Convert star position & velocity vector to catalog coordinates.

void
gal_pvstar
(
 double pv[2][3],
 double *ra,
 double *dec,
 double *pmr,
 double *pmd,
 double *px,
 double *rv,

Chapter 8 – Star Routines

225

 gal_status_t *status
) ;

On entry PV contains the pv-vector (AU, AU per day). On return the variables are set as
follows:

 RA right ascension (radians)
 DEC declination (radians)
 PMR right ascension proper motion (radians per year)
 PMD declination proper motion (radians per year)
 PX parallax (arcseconds)
 RV radial velocity (kilometers per second, positive = receding)

The specified pv-vector is the coordinate direction (and its rate of change) for the epoch
at which the light leaving the star reached the solar-system Barycenter. The star data
returned by this routine are "observables" for an imaginary observer at the solar-system
Barycenter. Proper motion and radial velocity are, strictly, in terms of Barycentric
Coordinate Time, TCB. For most practical applications, it is permissible to neglect the
distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The result will, as
a rule, be limited by the intrinsic accuracy of the proper-motion and radial-velocity data;
moreover, the supplied pv-vector is likely to be merely an intermediate result (for
example generated by the routine gal_starpv), so that a change of time unit will cancel
out overall.

In accordance with normal star-catalog conventions, the object's right ascension and
declination are freed from the effects of secular aberration. The frame, which is aligned
to the catalog equator and equinox, is Lorentzian and centered on the SSB.
Summarizing, the specified pv-vector is for most stars almost identical to the result of
applying the standard geometrical "space motion" transformation to the catalog data.
The differences, which are the subject of the Stumpff paper cited below, are:

(i) In stars with significant radial velocity and proper motion, the constantly
changing light-time distorts the apparent proper motion. Note that this is a
classical, not a relativistic, effect.

 (ii) The transformation complies with special relativity.

Care is needed with units. The star coordinates are in radians and the proper motions in
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in
kilometers per second, but the pv-vector result is in AU and AU per day. The proper
motions are the rate of change of the right ascension and declination at the catalog
epoch and are in radians per Julian year. The right ascension proper motion is in terms
of coordinate angle, not true angle, and will thus be numerically larger at high
declinations. Straight-line motion at constant speed in the inertial frame is assumed. If
the speed is greater than or equal to the speed of light, the routine sets the error code

General Astrodynamics Library

226

GAL_EXCESSIVE_VELOCITY and aborts. The inverse transformation is performed by
the routine gal_starpv.

If an internal error occurs then the appropriate error code is set.

References:

Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).

 g a l _ s t a r p m [0.1]

Star proper motion: update star catalog data for space motion.

void
gal_starpm
(
 double ra1,
 double dec1,
 double pmr1,
 double pmd1,
 double px1,
 double rv1,
 double ep1a,
 double ep1b,
 double ep2a,
 double ep2b,
 double *ra2,
 double *dec2,
 double *pmr2,
 double *pmd2,
 double *px2,
 double *rv2,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 RA1 right ascension (radians), before
 DEC1 declination (radians), before
 PMR1 right ascension proper motion (radians per year), before
 PMD1 declination proper motion (radians per year), before
 PX1 parallax (arcseconds), before
 RV1 radial velocity (kilometers per second, positive = receding), before
 EP1a "before" epoch, part A
 EP1b "before" epoch, part B
 EP2a "after" epoch, part A

Chapter 8 – Star Routines

227

 EP2b "after" epoch, part B

On return the variables are set as follows:

 RA2 right ascension (radians), after
 DEC2 declination (radians), after
 PMR2 right ascension proper motion (radians per year), after
 PMD2 declination proper motion (radians per year), after
 PX2 parallax (arcseconds), after
 RV2 radial velocity (kilometers per second, positive = receding), after

The routine returns the following status codes:

 -1 system error (should not occur)
 0 no warnings or errors
 1 distance overridden
 2 excessive velocity
 4 solution didn't converge
 else binary logical OR of the above warnings

The starting and ending Barycentric dynamical Time (TDB) epochs EP1A and EP1B
and EP2A and EP2B are Julian Dates in standard SOFA two-piece format. In
accordance with normal star-catalog conventions, the object's right ascension and
declination are freed from the effects of secular aberration. The frame, which is aligned
to the catalog equator and equinox, is Lorentzian and centered on the SSB. The proper
motions are the rate of change of the right ascension and declination at the catalog
epoch and are in radians per TDB Julian year. The parallax and radial velocity are in
the same frame. Care is needed with units. The star coordinates are in radians and the
proper motions in radians per Julian year, but the parallax is in arcseconds. The RA
proper motion is in terms of coordinate angle, not true angle. If the catalog uses
arcseconds for both RA and DEC proper motions, the RA proper motion will need to be
divided by cos(DEC) before use. Straight-line motion at constant speed, in the inertial
frame, is assumed. An extremely small (or zero or negative) parallax is interpreted to
mean that the object is on the "celestial sphere", the radius of which is an arbitrary
(large) value (see the gal_starpv routine for the value used). When the distance is
overridden in this way, the error code GAL_DISTANCE_OVERRIDEN is set. If the
space velocity is a significant fraction of c (see the constant VMAX in the routine
gal_starpv), it is arbitrarily set to zero. When this action occurs the error code
GAL_EXCESSIVE_VELOCITY is set. The relativistic adjustment carried out in the
gal_starpv routine involves an iterative calculation. If the process fails to converge
within a set number of iterations, the error code GAL_NO_CONVERGENCE is set.

 g a l _ s t a r p v [0.1]

General Astrodynamics Library

228

Convert star catalog coordinates to position & velocity vector.

void
gal_starpv
(
 double ra,
 double dec,
 double pmr,
 double pmd,
 double px,
 double rv,
 double pv[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 RA right ascension (radians)
 DEC declination (radians)
 PMR right ascension proper motion (radians per year)
 PMD declination proper motion (radians per year)
 PX parallax (arcseconds)
 RV radial velocity (kilometers per second, positive means receding)

On return PV contains the pv-vector (AU, AU per day).

The routine returns one of the following status codes:

 0 no warnings
 1 distance overridden
 2 excessive velocity
 4 solution didn't converge
 else binary logical OR of the above

The star data accepted by this routine are "observables" for an imaginary observer at
the solar-system Barycenter. Proper motion and radial velocity are, strictly, in terms of
Barycentric Coordinate Time, TCB. For most practical applications, it is permissible to
neglect the distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The
result will, as a rule, be limited by the intrinsic accuracy of the proper-motion and radial-
velocity data; moreover, the pv-vector is likely to be merely an intermediate result, so
that a change of time unit would cancel out overall. In accordance with normal star-
catalog conventions, the object's right ascension and declination are freed from the
effects of secular aberration. The frame, which is aligned to the catalog equator and
equinox, is Lorentzian and centered on the SSB. The resulting position and velocity pv-
vector is with respect to the same frame and, like the catalog coordinates, is freed from
the effects of secular aberration. Should the "coordinate direction", where the object was

Chapter 8 – Star Routines

229

located at the catalog epoch, be required, it may be obtained by calculating the
magnitude of the position vector PV[0][0-2] dividing by the speed of light in AU per day
to give the light-time, and then multiplying the space velocity PV[1][0-2] by this light-time
and adding the result to PV[0][0-2]. Summarizing, the pv-vector returned is for most
stars almost identical to the result of applying the standard geometrical "space motion"
transformation. The differences, which are the subject of the Stumpff paper referenced
below, are:

In stars with significant radial velocity and proper motion, the constantly changing
light-time distorts the apparent proper motion. Note that this is a classical, not a
relativistic, effect.

The transformation complies with special relativity.

Care is needed with units. The star coordinates are in radians and the proper motions in
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in
kilometers per second, but the pv-vector result is in AU and AU per day. The RA proper
motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for
both RA and DEC proper motions, the RA proper motion will need to be divided by
cos(DEC) before use. Straight-line motion at constant speed, in the inertial frame, is
assumed. An extremely small (or zero or negative) parallax is interpreted to mean that
the object is on the "celestial sphere", the radius of which is an arbitrary (large) value
(see the constant PXMIN). When the distance is overridden in this way, the ode
GAL_DISTANCE_OVERRIDEN is set. If the space velocity is a significant fraction of c
(see the constant VMAX), it is arbitrarily set to zero. When this action occurs the error
code GAL_EXCESSIVE_VELOCITY is set. The relativistic adjustment involves an
iterative calculation. If the process fails to converge within a set number (IMAX) of
iterations, the error code GAL_NO_CONVERGENCE is set. The inverse transformation
is performed by the routine gal_pvstar.

References:

Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).

General Astrodynamics Library

230

Chapter 9 - Ellipsoids

231

Chapter 9 - Ellipsoids
The routines detailed in this chapter are defined in the gal_frame_macros.h header file.

General Astrodynamics Library

232

 g a l _ e l l i p s o i d s . h [0.2]

This header file includes the header files of the routines that make up the ellipsoids sub-
library, and defines the constants for the Ellipsoid Model identifiers.

 Identifier Ellipsoid Model

 Earth

 GAL_EMEA_DEL1800 Delambre 1800
 GAL_EMEA_AIRY1830 Airy 1830
 GAL_EMEA_EVER1830 Everest 1830
 GAL_EMEA_EVER1830BA Everest 1830 Boni Alt
 GAL_EMEA_BESL1841 Bessel 1841
 GAL_EMEA_CL1866 Clarke 1866
 GAL_EMEA_CL1880 Clarke 1880
 GAL_EMEA_CLA1880M Clarke 1880 Modified
 GAL_EMEA_HEL1906 Helmert 1906
 GAL_EMEA_INTL1909 International 1909
 GAL_EMEA_KRSV Krassovsky
 GAL_EMEA_MERC1960 Mercury 1960
 GAL_EMEA_WGS1960 World Geodetic System 1960
 GAL_EMEA_IAU1964 IAU 1964
 GAL_EMEA_AUSNAT1965 Australian National 1965
 GAL_EMEA_WGS1966 World Geodetic System 1966
 GAL_EMEA_MERC1968M Modified Mercury 1968
 GAL_EMEA_SA1969 South American 1969
 GAL_EMEA_GRS1967 Geodetic Reference System 1967
 GAL_EMEA_WGS1972 World Geodetic System 1972
 GAL_EMEA_IAG1975 IAG 1975
 GAL_EMEA_IAU1976 IAU 1976
 GAL_EMEA_GRS1980 Geodetic Reference System 1980
 GAL_EMEA_MERIT1983 MERIT 1983
 GAL_EMEA_WGS1984 World Geodetic System 1984
 GAL_EMEA_IERS1989 IERS 1989
 GAL_EMEA_IAU1991 IAU/IAG/COSPAR 1991 Earth
 GAL_EMEA_IERS2000 IERS 2000

 Other Bodies

 GAL_EMME_IAU1991 IAU/IAG/COSPAR 1991 Mercury

Chapter 9 - Ellipsoids

233

 GAL_EMVE_IAU1991 IAU/IAG/COSPAR 1991 Venus
 GAL_EMMA_IAU1991 IAU/IAG/COSPAR 1991 Mars
 GAL_EMJU_IAU1991 IAU/IAG/COSPAR 1991 Jupiter
 GAL_EMSA_IAU1991 IAU/IAG/COSPAR 1991 Saturn
 GAL_EMUR_IAU1991 IAU/IAG/COSPAR 1991 Uranus
 GAL_EMNE_IAU1991 IAU/IAG/COSPAR 1991 Neptune
 GAL_EMPL_IAU1991 IAU/IAG/COSPAR 1991 Pluto
 GAL_EMSU_IAU1991 IAU/IAG/COSPAR 1991 Sun

It is important that the constants are used rather than the actual numerical value
of the constants, as the numerical values may change between GAL releases.

General Astrodynamics Library

234

Chapter 10 – Force Models

235

Chapter 10 - Force Models
The routines detailed in this chapter are defined in the gal_gravity.h header file. Version
0.6.0 of GAL introduces many changes to the gravity sub-system. The gravity models
that were previously defined in individual header files have been encapsulated into
routines. The interfaces of many routines have been changed to use the GAL status
recording mechanism.

General Astrodynamics Library – Reference Manual

236

 g a l _ g m . h [0.3]

This header file defines the gravity model structures, and constants for the gravity model
identifiers and status codes.

/* --
 * Structure to store the gravity model details
 * --
 */

typedef struct {

 int body ; /* Solar System Body Identifier */
 char name[40] ; /* Gravity Model name */
 double gm ; /* GM (mu) (m^3 s^-2) */
 double sma ; /* Semi-Major Axis(meters) */
 int max_degree ; /* Highest degree of coefficients */
 int max_order ; /* Highest order of coefficients */
 int normalized ; /* 1 = Normalized, 0 = Unnormalized */
 double *terms ; /* Pointer to spherical terms */

} gal_gm_t ;

/* ---
 * Structure to store the derivative parameters for derivs
 * ---
 */

typedef struct {
 gal_gm_t *gm ; /* Gravity Model */
 int max_degree ; /* Max degree to use */
 int max_order ; /* Max order to use */
} gal_derivsp_t ;

/*
 * ---
 * Constants for the gravity model identifiers
 * ---
 */

enum {

/*

Chapter 10 – Force Models

237

 * Earth
 */

 GAL_GMEA_EGM96 = 0,
 GAL_GMEA_JGM3 = 1,
 GAL_GMEA_WGS72 = 2,
 GAL_GMEA_WGS66 = 3,

/*
 * The Moon
 */

 GAL_GMMO_GLGM1 = 4,
 GAL_GMMO_GLGM2 = 5,

/*
 * Venus
 */

 GAL_GMVE_MGNP180U = 6,
 GAL_GMVE_MGNP120PSAAP = 7,

/*
 * Mars
 */

 GAL_GMMA_GMM2B = 8,
 GAL_GMMA_MGM1025 = 9,

} ;

/*
 * --
 * Constants for gravity model coefficients normalization state
 * --
 */

enum {
 GAL_UNNORMALIZED = 0,
 GAL_NORMALIZED = 1,
} ;

g a l _ a c c d r a g [0.5]

Computes the perturbational acceleration due to atmospheric drag

void

General Astrodynamics Library – Reference Manual

238

gal_accdrag
(
 double pv[2][3],
 double area,
 double mass,
 double cd,
 double p,
 double omega,
 double a[3]
) ;

On entry PV contains the satelliteʼs position and velocity vectors (meters, meters per
second), AREA the satelliteʼs surface area (meters2), MASS the satelliteʼs mass
(kilograms), CD the drag coefficient, P the atmospheric density (kilograms per meter3),
and OMEGA the planetʼs rotation rate (radians per second). On return A contains the
acceleration vector (a=d^2r/dt^2).

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 83-85

g a l _ a c c h [0.3]

Computes the body fixed acceleration due to the harmonic gravity field of the central
body.

void
gal_acch
(
 double pbf[3],
 gal_gm_t *gm,
 int max_n,
 int max_m,
 double abf[3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 P Position vector in body fixed frame (meters)
 GM Gravity Model
 MAX_N Maximum degree to use
 MAX_M Maximum order to use

On return ABF contains the body fixed acceleration vector. If the maximum degree
and/or order to use exceeds that of the supplied gravity model then the error codes

Chapter 10 – Force Models

239

GAL_INVALID_DEGREE or GAL_INVALID_ORDER are set in the status structure
instance. If the routine fails to allocate memory for workspace then the error code
GAL_ALLOC_FAILED is set in the status structure instance.

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 61-68

 g a l _ a c c p m [0.1]

Computes the perturbational acceleration due to a point mass

void
gal_accpm
(
 double ps[3],
 double ppm[3],
 double gm,
 double a[3]
) ;

On entry the parameters are set as follows:

 PS Position vector of satellite (meters)
 PPM Position vector of point mass (meters)
 GM Gravitational parameter of point mass (meters3 per second2)

On return A contains the acceleration vector (A = d^2r/dt^2).

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 69-70

 g a l _ a c c s r p [0.5]

Computes the perturbational acceleration due to solar radiation pressure

void
gal_accsrp
(
 double psat[3],
 double psun[3],
 double p,
 double au,
 double area,

General Astrodynamics Library – Reference Manual

240

 double mass,
 double eps,
 double v,
 double n[3],
 double a[3]
) ;

On entry the variables are set as follows:

 PSAT Position vector of satellite (meters)
 PSUN Position vector of the Sun (meters)
 P Solar radiation pressure at one AU (Newtons per meter)
 AU Length of Astronomical Unit (meters)
 AREA Satellite surface area (meters2)
 MASS Satellite mass (kilograms)
 EPS Reflectivity
 V Shadow function (0 = eclipse, 1 = full sunlight)
 N Normal unit vector for the satellite's surface

On return A contains the acceleration vector (A = d^2r/dt^2). Reflectivity is usually in the
range 0.2 to 0.9. The header file gal_astro.h defines the constant GAL_SRP96 for the
solar radiation pressure at 1AU (IERS 1996).

 Solar Panel 0.21
 High Gain Antenna 0.30
 Aluminum coated Mylar solar sail 0.88

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 77-79

g a l _ a c c s r p s [0.5]

Computes the perturbational acceleration due to solar radiation pressure using the
simplified formula.

void
gal_accsrps
(
 double psat[3],
 double psun[3],
 double p,
 double au,
 double area,
 double mass,

Chapter 10 – Force Models

241

 double eps,
 double v,
 double a[3]
) ;

On entry the variables are set as follows:

 PSAT Position vector of satellite (meters)
 PSUN Position vector of the Sun (meters)
 P Solar radiation pressure at one AU (Newtons per meter)
 AU Length of Astronomical Unit (meters)
 AREA Satellite surface area (meters2)
 MASS Satellite mass (kilograms)
 EPS Reflectivity
 V Shadow function (0 = eclipse, 1 = full sunlight)

On return A contains the acceleration vector (A = d^2r/dt^2). Reflectivity is usually in the
range 0.2 to 0.9. The header file gal_astro.h defines the constant GAL_SRP96 for the
solar radiation pressure at 1AU (IERS 1996).

 Solar Panel 0.21
 High Gain Antenna 0.30
 Aluminum coated Mylar solar sail 0.88

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 77-79

g a l _ c a n p v [0.4]

This routine converts a pv-vector from regular to canonical units.

void
gal_canpv
(
 double pv1[2][3],
 double gm,
 double re,
 double pv2[2][3]
) ;

On entry PV1 contains the pv-vector to convert, GM contains the gravitational
parameter, and RE contains the mean radius of the reference orbit. On return PV2
contains the converted position and velocity vectors in canonical units. GM and RE must
be stated in consistent units, i.e. meters or kilometers based.

General Astrodynamics Library – Reference Manual

242

 g a l _ e a a d h p [0.5]

Computes the Earth's Atmospheric Density using the Harris-Priester Density Model

void
gal_eaadhp
(
 double p[3],
 double height,
 double alpha,
 double delta,
 double *ad,
 gal_status_t *status
) ;

On entry the variables are set as follows:

 PV Position vector of satellite (meters, meters per second)
 True-of-date inertial reference frame
 HEIGHT Height of the satellite above mean sea level (meters)
 ALPHA Right ascension of the Sun (radians)
 DELTA Declination of the Sun (radians)

On return AD contains the atmospheric density (kilograms per meter3). The routine sets
the error code GAL_OUT_OF_RANGE if the height is out of the range model. In the out
of range case AD is set to zero.

References:

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 89-91

g a l _ g m a l l o c [0.3]

This routine creates a blank gravity model of given degree.

gal_gm_t *
gal_gmalloc
(
 int n
) ;

On entry N contains the required degree. The routine returns a pointer to gravity model
structure or NULL if failure.

Chapter 10 – Force Models

243

 g a l _ g m c p y [0.3]

This routine allocates memory and populates it with all or a subset of a gravity model.

gal_gm_t *
gal_gmcpy
(
 gal_gm_t *gm1,
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 GM1 Pointer to source gravity model structure to copy
 MAXN Maximum degree to be returned
 MAXM Maximum order to be returned
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to the newly allocated model. This function additionally
allows the user to limit the maximum degree and order of the coefficients to be included,
useful when the full accuracy of the model is not required. If a maximum degree or order
is requested greater than that provided for the base model then the higher unknown
coefficients are set to zero. If the routine is unable to allocate memory then NULL is
returned.

 g a l _ g m d e n o r m [0.3]

This routine un-normalizes a gravity model's coefficients

gal_gm_t *
gal_gmdenorm
(
 gal_gm_t *gm1,
 gal_gm_t *gm2,
 gal_status_t *status
) ;

On entry GM1 contains the source gravity model. On return GM2 contains the
unnormalized terms. The routine returns a pointer to GM2. If an internal error occurs
then the applicable error code is set.

General Astrodynamics Library – Reference Manual

244

 g a l _ g m f r e e [0.3]

This routine frees a gravity model previously allocated by gal_gmalloc or gal_gmcpy

void
gal_gmfree
(
 gal_gm_t *gm
) ;

On entry GM contains a pointer to the model to be deallocated.

 g a l _ g m g e t [0.3]

This routine makes a copy of a selected gravity model.

gal_gm_t *
gal_gmget
(
 int gmi,
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 GMI Identifier of the required gravity model
 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the required gravity model. If the gravity
model identifier is unknown then the error code GAL_INVALID_ID is set. If the routine
was unable to allocate memory then the error code GAL_ALLOC_FAILED is set. In the
case of any error NULL is returned. The user must call gal_gmfree to de-allocate
memory when finished with the gravity model. The header file gal_gm.h defines the
constants for the gravity model identifiers.

 g a l _ g m g e t _e g m 9 6 [0.6]

This file returns a gravity model containing the EGM96 Earth gravity model.

gal_gm_t *

Chapter 10 – Force Models

245

gal_gmget_egm96
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmegm96.h that was included in releases of GAL prior to version 0.6.0.

References:

Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox
C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis
E.C., Rapp R.H., Olson T.R.; The Development of the Joint NASA GSFC and the
National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; NASA
Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA,
1998

 g a l _ g m g e t _ g l g m 1 [0.6]

This file returns a gravity model containing the GLGM1 Lunar gravity model.

gal_gm_t *
gal_gmget_glgm1
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 MAXN Maximum degree to return

General Astrodynamics Library – Reference Manual

246

 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmglgm1.h that was included in releases of GAL prior to version 0.6.0.

This model for the Lunar Gravity Field is derived from a tracking of Lunar Orbiters
1,2,3,4 & 5, the Apollo-15 subsatellite, and Clementine: 361,000 observations from
Clementine, and 300,000 observations from the other spacecraft. The field was derived
using the 1992 IAU Model for the Moon. Note that the IAU reference for this model has
typographical errors for two the quantities describing the angular librations. The IAU
“Table II” lists the IAU model for the orientation for the lunar pole and prime meridian.
The quantities which read:

 E3 = 260.008 - 13.012001*d
 E5 = 357.529 - 0.985600*d

should instead read:

 E3 = 260.008 + 13.012001*d
 E5 = 357.529 + 0.985600*d

References:

Goddard Lunar Gravity Model-1 (GLGM-1): A 70th degree and order gravity model for
the Moon, by F G Lemoine, D E Smith, and M T Zuber, P11A-9, EOS, Transactions of
the American Geophysical Union Volume 75, No. 44, 1994.

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A.
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S
Tjuflin, Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992.

 g a l _ g m g e t _ g l g m 2 [0.6]

This file returns a gravity model containing the GLGM2 Lunar gravity model.

gal_gm_t *
gal_gmget_glgm2
(
 int maxn,

Chapter 10 – Force Models

247

 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmglgm2.h that was included in releases of GAL prior to version 0.6.0.

The field was derived using the 1992 IAU Model for the Moon. Note that the IAU
reference for this model has typographical errors for two of the quantities describing the
angular librations. The IAU reference “Table II” lists the IAU model for the orientation for
the lunar pole and prime meridian. The quantities which read:

 E3 = 260.008 - 13.012001*d
 E5 = 357.529 - 0.985600*d

 should instead read:

 E3 = 260.008 + 13.012001*d
 E5 = 357.529 + 0.985600*d

References:

Journal Geophysical Research, GLGM-2, A 70th Degree and Order Lunar Gravity Model
from Clementine and Historical Data, Submitted, November 1995. by F. G. Lemoine, D.
E. Smith, M.T. Zuber, G. A. Neumann, and D. D. Rowlands.

Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A.
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S
Tjuflin, Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992.

High Degree and Order Spherical Harmonic Models for the Moon from Clementine and
Historic S-Band Doppler Data, 1995 XXI General Assembly, IUGG, Boulder, Colorado,
July 12, 1995. by F. G. Lemoine, D. E. Smith, M. T. Zuber, and G. A. Neumann.

General Astrodynamics Library – Reference Manual

248

 g a l _ g m g e t _ g m m 2 b [0.6]

This file returns a gravity model containing the GMM2B Mars gravity model.

gal_gm_t *
gal_gmget_gmm2b
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmgmm2b.h that was included in releases of GAL prior to version 0.6.0.

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no
Mariner 9 or Viking data are included. Coordinate system is IAU 1991 (Davies et al.,
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992). The model was
constructed from 955,115 observations, summarized in the table below. MGS data are
limited to tracking from the Aerobraking Hiatus and Science Phasing Orbit (SPO)
subphases of the Orbit Insertion phase of the mission and to February 1999 to
February 2000 after the orbit was circularized.

Time Periods Arcs Observations

Hiatus 2 24119
SPO-1 8 31001
SPO-2 16 157972
Feb-Mar 1999 9 76813
Apr 1999 - Feb 2000 47 665210

Total 955115

Orbit reconstruction was improved using Mars Orbiter Laser Altimeter (MOLA) data on 5

Chapter 10 – Force Models

249

arcs between March and December 1999. Inter-arc and intra-arc crossovers at 21343
points were included in the orbit solutions. The gravity model was derived using a Kaula
type constraint: sqrt(2)*13*10**(-5)/L**2. The analysis and results were described by
F.G. Lemoine, D.D. Rowlands, D.E. Smith, D.S. Chinn, G.A. Neumann, and M.T. Zuber
at the Spring Meeting of the American Geophysical Union, May 30 - June 3, 2000,
Washington. DC. Further improvements to the model are expected as additional MGS
data are incorporated. This Mars gravity model was produced by F.G. Lemoine under
the direction of D.E. Smith of the MGS Radio Science Team.

References:

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell, Waltham, MA, 1966

 g a l _ g m g e t _ j g m 3 [0.6]

This file returns a gravity model containing the JGM-3 Earth gravity model.

gal_gm_t *
gal_gmget_jgm3
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmjgm3.h that was included in releases of GAL prior to version 0.6.0.

References:

Tapley B., Watkins M., Ries J., Davis G., Eanes R., Poole S., Rim H., Schutz B., Shum
C., Nerem R., Lerch F., Marshall J.A., Klosko S.M., Pavlis N., Williamson R.; The Joint
Gravity Model 3; Journal of Geophysical Research, Vol. 101, No. B12, S. 28029-28049,
1996

General Astrodynamics Library – Reference Manual

250

 g a l _ g m g e t _ m g m 1 0 2 5 [0.6]

This file returns a gravity model containing the MGM1025 Mars gravity model.

gal_gm_t *
gal_gmget_mgm1025
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmmgm1025.h that was included in releases of GAL prior to version 0.6.0.

This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no
Mariner 9 or Viking data are included. The MGM1025 gravity model is an update to the
GMM-2B gravity model. It was determined from 155 arcs of MGS tracking data in
Hiatus, SPO, GCO and Mapping. MGM1025 includes the same Mapping and GCO data
as were in GMM2B; in addition, it includes data from the first half of 2001 (through July
21, 2001) when the MGS orbit orientation angle with respect to the line-of-sight (LOS)
was optimum for gravity measurements. It excludes data in the vicinity of solar
conjunction from May 8 to July 30 in 2000.

 GMM2B MGM1025

 Model Size 80x80 80x80
 Coordinate System IAU 1991 IAU 2000

 Observations

 Hiatus 24,119 24,119
 SPO-1 31,001 31,014
 SPO-2 157,972 136,667
 GCO 76,813 80,795

Chapter 10 – Force Models

251

 Mapping 665,210 1,352,661
 TOTAL 955,155 1,625,276

 Number of Arcs

 Hiatus 2 2
 SPO-1 8 8
 SPO-2 16 14
 GCO 9 9
 Mapping 47 122

MGM1025 has improved correlation with topography compared with GMM-2B. The
average correlation with MOLA derived topography (through degree 70) is 0.722 for
GMM-2B and 0.756 for MGM1025. The new model has slightly greater power in the
band from l=60 to 70. The average RMS of fit to the F2 (two-way) tracking data is 0.13
to 0.20 millimeters per second with this model, excluding arcs in the vicinity of solar
conjunction. The average RMS of fit for the one-way (F1) Doppler tracking with this
model is 0.10 to 0.15 millimeters per second. The one-way data contribute to solutions
starting sporadically in February 2000 and more consistently in arcs starting in March of
2000. They are used solely to fill in what would otherwise be gaps in the two-way
tracking Frequency biases are estimated for each pass of one-way data. The coordinate
system for the model is IAU 2000 (Seidelman et al., Celestial Mechanics & Dynamical
Astronomy, 82, 83-110, 2002), defined by the Mars Cartography Working Group. It
includes updates to the orientation of the Mars Pole and rotation rate from a joint
Pathfinder/Viking solution, and a re-determination of the location of the prime meridian
(with respect to the crater Airy-0) from Mars Global Surveyor MOC and MOLA data.
Pole right ascension (alpha) and declination (delta), prime meridian (Wo), and rotation
rate (Wodot) in IAU 2000 are:

 alpha 317.68143 deg -0.1061 degrees per century
 delta 52.88650 deg -0.0609 degrees per century
 Wo 176.630 deg
 Wdot 350.89198266 deg/day

This Mars gravity model was produced by F.G. Lemoine under the direction of D.E.
Smith of the MGS Radio Science Team.

References:

The analysis and results for MGM1025 were described by F.G. Lemoine, G.A.
Neumann, D.S. Chinn, D.E. Smith, M.T. Zuber, D.D. Rowlands, D.P. Rubincam, and
D.E. Pavlis in 'Solution for Mars Geophysical Parameters from Mars Global Surveyor
Tracking Data', American Geophysical Union Fall Meeting 2001 (EOS, Trans. AGU
82(47), Fall Meeting Supplement, Abstract P42A-0545, F721, 2001). The GMM2B

General Astrodynamics Library – Reference Manual

252

model was described by Lemoine et al., 'An Improved Solution of the Gravity Field of
Mars (GMM-2B) from Mars Global Surveyor', Journal Geophysical Research, 106(E10),
23359-23376, October 25, 2001.

 g a l _ g m g e t _ m g n p 1 2 0 p [0.6]

This file returns a gravity model containing the MGNP120PSAAP Venus gravity model.

gal_gm_t *
gal_gmget_mgnp120p
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmmgnp120p.h that was included in releases of GAL prior to version 0.6.0.

This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus
gravity model is produced by the Magellan Gravity Science Team at JPL under the
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution.

 g a l _ g m g e t _ m g n p 1 8 0 u [0.6]

This file returns a gravity model containing the MGNP180U Venus gravity model.

gal_gm_t *
gal_gmget_mgnp180u
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

Chapter 10 – Force Models

253

On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmmgnp180u.h that was included in releases of GAL prior to version 0.6.0.

This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus
gravity model is produced by the Magellan Gravity Science Team at JPL under the
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution.

 g a l _ g m g e t _ w g s 6 6 [0.6]

This file returns a gravity model containing the WGS66 Earth gravity model.

gal_gm_t *
gal_gmget_wgs66
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmwgs66.h that was included in releases of GAL prior to version 0.6.0.

The value for GM is unknown, so the value for WGS72 is used instead.

General Astrodynamics Library – Reference Manual

254

 g a l _ g m g e t _ w g s 7 2 [0.6]

This file returns a gravity model containing the WGS72 Earth gravity model.

gal_gm_t *
gal_gmget_wgs72
(
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

The routine returns a pointer to a new copy of the gravity model. If the routine was
unable to allocate memory then NULL is returned, and the error code
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory
when finished with the gravity model. This routine replaces the functionality of
gal_gmwgs72.h that was included in releases of GAL prior to version 0.6.0.

 g a l _ g m l d a [0.6]

This routine loads a gravity model from an ASCII file in ICGEM format.

gal_gm_t *
gal_gmlda
(
 FILE *fp,
 int maxn,
 int maxm,
 int norm,
 gal_status_t *status
) ;

 On entry the parameters are set as follows:

 FP Pointer to open file handle
 MAXN Maximum degree to return
 MAXM Maximum order to return
 NORM GAL_NORMALIZED means spherical terms are to be normalized
 GAL_UNNORMALIZED means spherical terms are to be un-normalized

Chapter 10 – Force Models

255

The ICGEM-format accommodates Earth Gravity Field models in terms of spherical
harmonic coefficients and Ocean and Atmosphere Tides. This routine only handles the
spherical harmonic coefficients. Each individual data file consists of two sections: The
header containing parameters which do not depend on degree and order. The end of
the header is marked by the keyword "end_of_head" (as a separator between header
and data section). The data section with the list of degree- and order-dependent
parameters. The records have the following basic structure: The basic structure of the
record lines is unformatted, i.e. separators are blanks and/or tabs. Each record consists
of one keyword followed by one or more parameters (numbers or characters), which are
separated by one or an arbitrary number of blanks and/or tabs. The number of
parameters depends on the corresponding keyword as defined below. There are
mandatory and optional records. All lines led by non-defined keywords are comments.
In any line, additional characters and/or numbers beyond the last parameter are allowed
as comments. Leading and trailing blanks are ignored. This routine extends the ICGEM
format with the addition of the "body" keyword. Valid values for this keyword are the
GAL Object Identifier codes. This routine assumes that the object is the Earth. If the file
contains body identifier in the header then that will be used. Many gravity models can
be downloaded from the International Centre for Global Earth Models (ICGEM).

http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html

References:

The ICGEM-format by Franz Barthelmes and Christoph Förste, GFZ Potsdam,
Department 1 “Geodesy and Remote Sensing” , 2006 February 26

 g a l _ g m n o r m [0.3]

This routine normalizes a gravity model's coefficients

gal_gm_t *
gal_gmnorm
(
 gal_gm_t *gm1,
 gal_gm_t *gm2,
 gal_status_t *status
) ;

On entry GM1 contains the source gravity model. On return GM2 contains the
normalized coefficients. The routine returns a pointer to GM2. This routine depends
upon the gal_factorial routine. Recent gravity models (e.g. EGM 2008) have degrees
and orders that require the computation of factorials that exceed the largest possible
value that can be represented as an IEEE long double type. Any errors recorded by
gal_factorial are returned to the user in the status structure instance.

General Astrodynamics Library – Reference Manual

256

 g a l _ g m s v a [0.6]

This routine saves a gravity model to an ASCII file in ICGEM format.

void
gal_gmsva
(
 FILE *fp,
 gal_gm_t *gm,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 FP Pointer to open ASCII file
 GM Pointer to gravity model structure

The ICGEM-format accommodates Earth Gravity Field models in terms of spherical
harmonic coefficients and Ocean and Atmosphere Tides. This routine only handles the
spherical harmonic coefficients. Each individual data file consists of two sections: The
header containing parameters which do not depend on degree and order. The end of
the header is marked by the keyword "end_of_head" (as a separator between header
and data section). The data section with the list of degree- and order-dependent
parameters. The records have the following basic structure: The basic structure of the
record lines is unformatted, i.e. separators are blanks and/or tabs. Each record consists
of one keyword followed by one or more parameters (numbers or characters), which are
separated by one or an arbitrary number of blanks and/or tabs. The number of
parameters depends on the corresponding keyword as defined below. There are
mandatory and optional records. All lines led by non-defined keywords are comments.
In any line, additional characters and/or numbers beyond the last parameter are allowed
as comments. Leading and trailing blanks are ignored. This routine extends the ICGEM
format with the addition of the "body" keyword. Valid values for this keyword are the
GAL Object Identifier codes.

References:

The ICGEM-format by Franz Barthelmes and Christoph Förste, GFZ Potsdam,
Department 1 “Geodesy and Remote Sensing” , 2006 February 26

g a l _ g m u z h [0.3]

This routine calculates an un-normalized zonal harmonic

double
gal_gmuzh
(

Chapter 10 – Force Models

257

 gal_gm_t *gm,
 gal_facexp_t *facexp,
 int harmonic,
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 GM Pointer to gravity model
 FACEXP Pointer to factorial exponent lookup table
 HARMONIC Required harmonic

The routine returns the required un-normalized zonal harmonic. If the requested
harmonic exceeds the maximum degree of the gravity model then the error code
GAL_INVALID_DEGREE is set.

 g a l _ s t g e t [0.3]

This routine gets spherical terms C & S of degree n and order m from the given gravity
model

void
gal_stget
(
 const int n,
 const int m,
 gal_gm_t *gm,
 double *c,
 double *s,
 gal_status_t *status
) ;

On entry N contains the required degree, and M the required order, gm is a pointer to
the gravity model structure. On return C and S contain the C and S coefficients of
degree N and order M. If the required degree or order exceed the maximum of the
gravity model then the error code GAL_INVALID_DEGREE and/or
GAL_INVALID_ORDER are set.

g a l _ s t n f [0.3]

This function computes the spherical terms normalization factor.

double
gal_stnf
(

General Astrodynamics Library – Reference Manual

258

 gal_facexp_t *facexp,
 const int n,
 const int m,
 gal_status_t *status
) ;

On entry FACEXP contains a pointer to the factorial exponent lookup table, N the
required degree, and M the required order. The routine returns the normalization factor.
This routine depends upon the gal_factorial routine. Recent gravity models (e.g. EGM
2008) have degrees and orders that require the computation of factorials that exceed
the largest possible value that can be represented as an IEEE long double type. Any
errors recorded by gal_factorial are returned to the user in the status structure instance.

References:

Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section,
Second Pressing Pages 519-520

 g a l _ s t s e t [0.3]

This routine sets spherical terms C & S of degree N and order M in the given gravity
model

void
gal_stset
(
 const int n,
 const int m,
 const double c,
 const double s,
 gal_gm_t *gm,
 gal_status_t *status
) ;

On entry N contains the required degree, M the required order, C and S contain the
values to store in the gravity model. On return the spherical terms of the gravity model
GM have been updated. If the required degree or order exceed the maximum of the
gravity model then the error code GAL_INVALID_DEGREE and / or
GAL_INVALID_ORDER are set.

g a l _ s t u n f [0.3]

This function computes the spherical terms un-normalization factor.

double

Chapter 10 – Force Models

259

gal_stunf
(
 gal_facexp_t *facexp,
 const int n,
 const int m,
 gal_status_t *status
) ;

On entry FACEXP contains a pointer to the factorial exponent lookup table, N contains
the required degree, and M the required order. The routine returns the un-normalization
factor of degree N and order M. Recent gravity models (e.g. EGM 2008) have degrees
and orders that require the computation of factorials that exceed the largest possible
value that can be represented as an IEEE long double type. Any errors recorded by
gal_factorial are returned to the user in the status structure instance.

References:

Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section,
Second Pressing Pages 519-520

 g a l _ t u [0.4]

This routine computes the canonical unit TU factor from the mean radius and
gravitational parameter.

double
gal_tu
(
 double gm,
 double re
) ;

On entry GM contains the gravitational parameter, and RE the mean radius of the
reference orbit. The routine returns the TU factor. GM and RE must be stated in
consistent units, i.e. meters or kilometers based.

 g a l _ u n c a n p v [0.4]

This routine converts a pv-vector from canonical units to regular units

void
gal_uncanpv
(
 double pv1[2][3],
 double gm,

General Astrodynamics Library – Reference Manual

260

 double re,
 double pv2[2][3]
) ;

On entry PV1 contains the position and velocity vectors in canonical units, GM contains
the gravitational parameter, and RE the mean radius of the reference orbit. On return
PV2 contains the position and velocity vectors in regular units. GM and RE must be
stated in consistent units, i.e. meters or kilometers based.

Chapter 10 – Force Models

261

General Astrodynamics Library – Reference Manual

262

Chapter 11 - USSTRATCOM

263

Chapter 11 – U S S T R A T C O M
The routines detailed in this chapter are defined in the gal_usstratcom.h header file. The
header file also defines the following structures and constants:

/*
 * Two-Line Element Structure
 */

struct tle_node {
 int satnum ; /* US Space Command Object Number */
 char classification ; /* Security Classification */
 char intldesg[12] ; /* International Designator (COSPAR/WDC-A-R&S) */
 int epochyr ; /* Epoch Year */
 double epochdays ; /* Epoch Day of Year (plus Fraction) */
 double ndot ; /* Mean motion derivative (rev/day /2) */
 double nddot ; /* Mean motion second derivative (rev/day2 /6) */
 double bstar ; /* Bstar / Drag Term */
 int ephtype ; /* Ephermeris Type */
 int setnum ; /* Element set number */
 double inclo ; /* Inclination */
 double nodeo ; /* Right Ascension of Ascending Node (deg) */
 double ecco ; /* Eccentricity */
 double argpo ; /* Argument of Perigee (deg) */
 double mo ; /* Mean Anamaly (deg) */
 double no ; /* Mean Motion (rev/day) */
 int revnum ; /* Epoch Revolution Number */
 struct tle_node *next ; /* Pointer to next TLE */
} ;

typedef struct tle_node gal_tle_t ;

/*
 * Piece of launch definition structure
 */

struct piece_node {
 char piece[4] ; /* Piece of launch */
 int satnum ; /* US Space Command Object Number */
 char intldesg[12] ; /* International Designator (COSPAR/WDC-A-R&S) */
 char name[40] ; /* Description of piece of launch */
 double launch_date1 ; /* Launch date part 1 */
 double launch_date2 ; /* Launch date part 2 */
 int status ; /* Orbital Status */
 double decay_date1 ; /* Decay date part 1 */
 double decay_date2 ; /* Decay date part 2 */
 double period ; /* Period */
 double inclo ; /* Inclination */
 double apogee ; /* Apogee */
 double perigee ; /* Perigee */
 double rcs ; /* RADAR cross section */
 int owner_code ; /* GAL Catalog Object Owner Code */
 int payload ; /* Payload = 1, Debris = 0 */
 gal_tle_t *tle ; /* Pointer to TLE list */
 int tcount ; /* Number of TLEs */
 int tag ; /* Tag; 1 = tagged, 0 = not tagged */

 struct piece_node *next ; /* Pointer to next piece of launch */
} ;

typedef struct piece_node gal_piece_t ;

General Astrodynamics Library – Reference Manual

264

/*
 * Launch definition structure
 */

struct launch_node {
 int year ; /* Year of launch */
 int number ; /* Launch number of year */
 double launch_date1 ; /* Date of launch part 1 */
 double launch_date2 ; /* Date of launch part 2 */
 int lv_code ; /* GAL Launch Vehicle Code */
 gal_piece_t *piece ; /* Pointer to pieces of launch */
 int pcount ; /* Number of pieces of launch */
 struct launch_node *next ; /* Pointer to next launch */
} ;

typedef struct launch_node gal_launch_t ;

/*
 * Object catalog structure
 */

typedef struct {
 gal_launch_t *launch ; /* Pointer to launches */
 int lcount ; /* Count of number of launches */
 gal_piece_t *index ; /* Pointer to lookup table */
 int icount ; /* Number of entries in index */
} gal_objcat_t ;

/* ---------------------------
 * Catalog Object Status Codes
 * ---------------------------
 */

enum {
 GAL_COS_UNKNOWN = 0, /* Unknown Status */
 GAL_COS_BARYCENTRIC_ORBIT_EMB = 1,
 GAL_COS_CIRCUMLUNAR = 2,
 GAL_COS_DECAYED = 3,
 GAL_COS_ESCAPED_SOLAR_SYSTEM = 4,
 GAL_COS_GEOCENTRIC_ORBIT = 5,
 GAL_COS_HELIOCENTRIC_ORBIT = 6,
 GAL_COS_LUNAR_IMPACT = 7,
 GAL_COS_LUNAR_LANDING = 8,
 GAL_COS_MARS_IMPACT = 9,
 GAL_COS_MARS_ORBIT = 10,
 GAL_COS_NO_ELEMENTS_AVAILABLE = 11,
 GAL_COS_NO_INITIAL_ELEMENTS = 12,
 GAL_COS_SELENOCENTRIC_ORBIT = 13,
 GAL_COS_VENUS_IMPACT = 14,
 GAL_COS_VENUS_LANDING = 15,
 GAL_COS_VENUS_ORBIT = 16
} ;

/* --------------------------
 * Catalog Object Owner Codes
 * --------------------------
 */

enum {
 GAL_COO_UNKNOWN = 0,
 GAL_COO_ALGERIA = 1,
 GAL_COO_ARABSAT = 2,
 GAL_COO_ARGENTINA = 3,
 GAL_COO_ASIASAT_CORP = 4,
 GAL_COO_AUSTRALIA = 5,
 GAL_COO_BERMUDA = 6,
 GAL_COO_BRAZIL = 7,
 GAL_COO_CANADA = 8,
 GAL_COO_CHILE = 9,
 GAL_COO_CIS = 10,
 GAL_COO_COLUMBIA = 11,

Chapter 11 - USSTRATCOM

265

 GAL_COO_CZECHOSLOVAKIA = 12,
 GAL_COO_DENMARK = 13,
 GAL_COO_EGYPT = 14,
 GAL_COO_ESA = 15,
 GAL_COO_ESRO = 16,
 GAL_COO_EUMETSAT = 17,
 GAL_COO_EUTELSAT = 18,
 GAL_COO_FRANCE = 19,
 GAL_COO_FRANCE_GERMANY = 20,
 GAL_COO_GERMANY = 21,
 GAL_COO_GLOBALSTAR = 22,
 GAL_COO_GREECE = 23,
 GAL_COO_INDIA = 24,
 GAL_COO_INDONESIA = 25,
 GAL_COO_INMARSAT = 26,
 GAL_COO_INTELSAT = 27,
 GAL_COO_IRAN = 28,
 GAL_COO_IRIDIUM = 29,
 GAL_COO_ISRAEL = 30,
 GAL_COO_ISRO = 31,
 GAL_COO_ISS = 32,
 GAL_COO_ITALY = 33,
 GAL_COO_JAPAN = 34,
 GAL_COO_KOREA = 35,
 GAL_COO_LUXEMBOURG = 36,
 GAL_COO_MALAYSIA = 37,
 GAL_COO_MEXICO = 38,
 GAL_COO_NATO = 39,
 GAL_COO_NETHERLANDS = 40,
 GAL_COO_NEW_ICO = 41,
 GAL_COO_NIGERIA = 42,
 GAL_COO_NORTH_KOREA = 43,
 GAL_COO_NORWAY = 44,
 GAL_COO_PAKISTAN = 45,
 GAL_COO_PHILIPPINES = 46,
 GAL_COO_PORTUGAL = 47,
 GAL_COO_PRC = 48,
 GAL_COO_PRC_BRAZIL = 49,
 GAL_COO_PRC_ESA = 50,
 GAL_COO_RASC = 51, /* Need to find out what this is */
 GAL_COO_SAUDI_ARABIA = 52,
 GAL_COO_SEA_LAUNCH = 53,
 GAL_COO_SINGPORE_TAIWAN = 54,
 GAL_COO_SOUTH_AFRICA = 55,
 GAL_COO_SOUTH_KOREA = 56,
 GAL_COO_SPAIN = 57,
 GAL_COO_SWEDEN = 58,
 GAL_COO_SWITZERLAND = 59,
 GAL_COO_TAIWAN = 60,
 GAL_COO_THAILAND = 61,
 GAL_COO_TURKEY = 62,
 GAL_COO_UNITED_ARAB_EMIRATES = 63,
 GAL_COO_UNITED_KINGDOM = 64,
 GAL_COO_USA = 65,
 GAL_COO_USA_BRAZIL = 66,
 GAL_COO_VENEZUELA = 67,
 GAL_COO_VIETNAM = 68
} ;

#define GAL_MAX_OWNERS (GAL_COO_VIETNAM + 1)

/* --------------------------
 * Launch vehicle identifiers
 * --------------------------
 */

enum {
 GAL_LV_UNKNOWN = 0,
 GAL_LV_APEX = 1,
 GAL_LV_ARIANE_1 = 2,
 GAL_LV_ARIANE_2 = 3,

General Astrodynamics Library – Reference Manual

266

 GAL_LV_ARIANE_3 = 4,
 GAL_LV_ARIANE_40 = 5,
 GAL_LV_ARIANE_40PLUS = 6,
 GAL_LV_ARIANE_40PLUS3 = 7,
 GAL_LV_ARIANE_42L = 8,
 GAL_LV_ARIANE_42LPLUS3 = 9,
 GAL_LV_ARIANE_42P = 10,
 GAL_LV_ARIANE_42PPLUS = 11,
 GAL_LV_ARIANE_42PPLUS3 = 12,
 GAL_LV_ARIANE_44L = 13,
 GAL_LV_ARIANE_44LPLUS = 14,
 GAL_LV_ARIANE_44LPLUS3 = 15,
 GAL_LV_ARIANE_44LP = 16,
 GAL_LV_ARIANE_44LPPLUS = 17,
 GAL_LV_ARIANE_44LPPLUS3 = 18,
 GAL_LV_ARIANE_44P = 19,
 GAL_LV_ARIANE_44PPUS3 = 20,
 GAL_LV_ARIANE_5 = 21,
 GAL_LV_ASLV_D3 = 22,
 GAL_LV_ASLV_D4 = 23,
 GAL_LV_ATHENA_1_OAM = 24,
 GAL_LV_ATHENA_2 = 25,
 GAL_LV_ATLAS = 26,
 GAL_LV_ATLAS_1_CENTAUR = 27,
 GAL_LV_ATLAS_14E = 28,
 GAL_LV_ATLAS_2_CENTAUR = 29,
 GAL_LV_ATLAS_28E = 30,
 GAL_LV_ATLAS_2A = 31,
 GAL_LV_ATLAS_2A_CENTAUR = 32,
 GAL_LV_ATLAS_2AS_CENTAUR = 33,
 GAL_LV_ATLAS_34F = 34,
 GAL_LV_ATLAS_35F = 35,
 GAL_LV_ATLAS_3A_CENTAUR = 36,
 GAL_LV_ATLAS_3B_CENTAUR = 37,
 GAL_LV_ATLAS_41E = 38,
 GAL_LV_ATLAS_42E = 39,
 GAL_LV_ATLAS_5_CENTAUR = 40,
 GAL_LV_ATLAS_5_STAR_48_B = 41,
 GAL_LV_ATLAS_55E = 42,
 GAL_LV_ATLAS_67F = 43,
 GAL_LV_ATLAS_75E = 44,
 GAL_LV_ATLAS_AGENA = 45,
 GAL_LV_ATLAS_AGENA_A = 46,
 GAL_LV_ATLAS_AGENA_B = 47,
 GAL_LV_ATLAS_AGENA_D = 48,
 GAL_LV_ATLAS_CENTAUR = 49,
 GAL_LV_ATLAS_CENTAUR_2 = 50,
 GAL_LV_ATLAS_D = 51,
 GAL_LV_ATLAS_D_5 = 52,
 GAL_LV_ATLAS_D_7 = 53,
 GAL_LV_ATLAS_F = 54,
 GAL_LV_ATLAS_F_BURNER_2 = 55,
 GAL_LV_ATLAS_H = 56,
 GAL_LV_BLACK_ARROW = 57,
 GAL_LV_BLOCK_DM = 58,
 GAL_LV_BLOCK_DM_SL = 59,
 GAL_LV_BREEZE_KM = 60,
 GAL_LV_BREEZE_M = 61,
 GAL_LV_CELESTIS_01_PEGASUS = 62,
 GAL_LV_CELESTIS_02_TAURUS = 63,
 GAL_LV_CELESTIS_03_TAURUS = 64,
 GAL_LV_CZ_1 = 65,
 GAL_LV_CZ_2 = 66,
 GAL_LV_CZ_2B = 67,
 GAL_LV_CZ_2C = 68,
 GAL_LV_CZ_2D = 69,
 GAL_LV_CZ_2E = 70,
 GAL_LV_CZ_2F = 71,
 GAL_LV_CZ_3 = 72,
 GAL_LV_CZ_3A = 73,
 GAL_LV_CZ_3B = 74,

Chapter 11 - USSTRATCOM

267

 GAL_LV_CZ_3C = 75,
 GAL_LV_CZ_4 = 76,
 GAL_LV_CZ_4B = 77,
 GAL_LV_CZ_4C = 78,
 GAL_LV_CZ_5 = 79,
 GAL_LV_DELTA = 80,
 GAL_LV_DELTA_1 = 81,
 GAL_LV_DELTA_1_PLUSCAMEO = 82,
 GAL_LV_DELTA_1_CEP_1 = 83,
 GAL_LV_DELTA_1_ITOS_B = 84,
 GAL_LV_DELTA_2 = 85,
 GAL_LV_DELTA_2_DUVE = 86,
 GAL_LV_DELTA_3 = 87,
 GAL_LV_DELTA_4 = 88,
 GAL_LV_DELTA_4H = 89,
 GAL_LV_DIAMANT = 90,
 GAL_LV_DIAMANT_MIKA = 91,
 GAL_LV_DIAMANT_B = 92,
 GAL_LV_DIAMANT_B_P4 = 93,
 GAL_LV_DNEPR_1 = 94,
 GAL_LV_FALCON_1 = 95,
 GAL_LV_FREGAT = 96,
 GAL_LV_GSLV = 97,
 GAL_LV_H_1 = 98,
 GAL_LV_H_1_MABES = 99,
 GAL_LV_H_2 = 100,
 GAL_LV_H_2A = 101,
 GAL_LV_H_2B = 102,
 GAL_LV_IABS = 103,
 GAL_LV_IRIS = 104,
 GAL_LV_IRS_P2 = 105,
 GAL_LV_IUS = 106,
 GAL_LV_JUNO_II = 107,
 GAL_LV_M_3C = 108,
 GAL_LV_M_3H = 109,
 GAL_LV_M_3S = 110,
 GAL_LV_M_3S2 = 111,
 GAL_LV_M_4S = 112,
 GAL_LV_M_5 = 113,
 GAL_LV_MARS_96 = 114,
 GAL_LV_MINOTAUR = 115,
 GAL_LV_N_1 = 116,
 GAL_LV_N_2 = 117,
 GAL_LV_OPTUS_B1_STAR_63F = 118,
 GAL_LV_PAM_S = 119,
 GAL_LV_PEGASUS = 120,
 GAL_LV_PSLV = 121,
 GAL_LV_PSLV_1C = 122,
 GAL_LV_SAFIR_2 = 123,
 GAL_LV_SATURN_1 = 124,
 GAL_LV_SATURN_1B = 125,
 GAL_LV_SATURN_5 = 126,
 GAL_LV_SCOUT_A = 127,
 GAL_LV_SCOUT_A_1 = 128,
 GAL_LV_SCOUT_B = 129,
 GAL_LV_SCOUT_B_1 = 130,
 GAL_LV_SCOUT_D_1 = 131,
 GAL_LV_SCOUT_D_1_D = 132,
 GAL_LV_SCOUT_E_1 = 133,
 GAL_LV_SCOUT_F_1 = 134,
 GAL_LV_SCOUT_G_1 = 135,
 GAL_LV_SCOUT_X_1 = 136,
 GAL_LV_SCOUT_X_2M = 137,
 GAL_LV_SCOUT_X_3 = 138,
 GAL_LV_SCOUT_X_3M = 139,
 GAL_LV_SCOUT_X_4 = 140,
 GAL_LV_SHAVIT = 141,
 GAL_LV_SL_04 = 142,
 GAL_LV_SL_1 = 143,
 GAL_LV_SL_11 = 144,
 GAL_LV_SL_12 = 145,

General Astrodynamics Library – Reference Manual

268

 GAL_LV_SL_13 = 146,
 GAL_LV_SL_14 = 147,
 GAL_LV_SL_16 = 148,
 GAL_LV_SL_18 = 149,
 GAL_LV_SL_19 = 150,
 GAL_LV_SL_21 = 151,
 GAL_LV_SL_23 = 152,
 GAL_LV_SL_24 = 153,
 GAL_LV_SL_26 = 154,
 GAL_LV_SL_3 = 155,
 GAL_LV_SL_4 = 156,
 GAL_LV_SL_5 = 157,
 GAL_LV_SL_6 = 158,
 GAL_LV_SL_7 = 159,
 GAL_LV_SL_8 = 160,
 GAL_LV_SL_9 = 161,
 GAL_LV_SLV_3 = 162,
 GAL_LV_SS_18 = 163,
 GAL_LV_SSN_23 = 164,
 GAL_LV_STRELA = 165,
 GAL_LV_TAURUS = 166,
 GAL_LV_THOR_ABLE = 167,
 GAL_LV_THOR_ABLESTAR = 168,
 GAL_LV_THOR_AGENA_B = 169,
 GAL_LV_THOR_AGENA_D = 170,
 GAL_LV_THOR_ALTAIR = 171,
 GAL_LV_THOR_BURNER_2 = 172,
 GAL_LV_THOR_BURNER_2A = 173,
 GAL_LV_THOR_DELTA_1 = 174,
 GAL_LV_THORAD_AGENA_D = 175,
 GAL_LV_THORAD_DELTA_1 = 176,
 GAL_LV_TITAN_2 = 177,
 GAL_LV_TITAN_2G = 178,
 GAL_LV_TITAN_3 = 179,
 GAL_LV_TITAN_34B = 180,
 GAL_LV_TITAN_34B_AGENA = 181,
 GAL_LV_TITAN_34B_AGENA_D = 182,
 GAL_LV_TITAN_34D = 183,
 GAL_LV_TITAN_34D_AGENA_D = 184,
 GAL_LV_TITAN_34D_IUS = 185,
 GAL_LV_TITAN_3A_TRANSTAGE = 186,
 GAL_LV_TITAN_3B_AGENA = 187,
 GAL_LV_TITAN_3C = 188,
 GAL_LV_TITAN_3C_TRANSTAGE = 189,
 GAL_LV_TITAN_3D = 190,
 GAL_LV_TITAN_3E = 191,
 GAL_LV_TITAN_3E_CENTAUR = 192,
 GAL_LV_TITAN_4 = 193,
 GAL_LV_TITAN_4_CENTAUR = 194,
 GAL_LV_TITAN_401_CENTAUR = 195,
 GAL_LV_TITAN_4A = 196,
 GAL_LV_TITAN_4A_CENTAUR = 197,
 GAL_LV_TITAN_4B = 198,
 GAL_LV_TITAN_4B_CENTAUR = 199,
 GAL_LV_TOS = 200,
 GAL_LV_VANGUARD = 201
} ;

#define GAL_MAX_LAUNCHERS (GAL_LV_VANGUARD + 1)

Chapter 11 - USSTRATCOM

269

g a l _ l a u n c h _ i n s [0.6]

This routine inserts a launch structure into an object catalog.

gal_launch_t *
gal_launch_ins
(
 gal_objcat_t *objcat,
 int year,
 int number,
 gal_status_t *status
) ;

On entry OBJCAT points to an object catalog structure created previously by
gal_objcat_alloc. YEAR is set to the year of the launch, and NUMBER to the number of
the launch within the year. The routine returns a pointer to the launch structure. If the
launch is already in the catalog then a pointer is returned to the existing structure. i.e.
no duplicates are created. If an internal error occurs then the error code
GAL_ALLOC_FAILED is set and the routine returns NULL. The launches are stored in a
linked list within the catalog, the order is most recent first.

g a l _ l d s s r [0.6]

This routine loads an object catalog from a US Strategic Command Satellite Situation
Report file.

void
gal_ldssr
(
 FILE *fp,
 gal_objcat_t *objcat,
 gal_status_t *status
) ;

On entry FP points to an open file, and OBJCAT points to an object catalog structure
created previously by gal_objcat_alloc. If an error occurs then the applicable error code
is set. The Satellite Situation Report is a listing of those satellites (objects) currently in
orbit and those which have previously orbited the Earth. Some objects are too small or
too far from the Earth's surface to be detected; therefore, the Satellite Situation Report
does not include all man-made objects orbiting the Earth. The latest report can be
downloaded from here:

http://www.space-track.org/perl/login.pl

g a l _ l v c o d e [0.6]

General Astrodynamics Library – Reference Manual

270

This routine returns the GAL identifer code of a launch vehicle.

int
gal_lvcode
(
 char *name
) ;

On entry NAME points to an object name, the routine returns the GAL launch vehicle
identifier associated with the object name. If the object name is unknown then the
routine returns GAL_LV_UNKNOWN. The header file “gal_usstratcom.h” defines the
GAL_LV_* constants.

g a l _ l v n a m e [0.6]

This routine returns the name of a launch vehicle.

char *
gal_lvname
(
 int launcher,
 char *name,
 gal_status_t *status
) ;

On entry LAUNCHER contains the GAL identifier code of the required launch vehicle.
On return NAME contains the name of the launch vehicle, and the routine returns a
pointer to NAME. The header file "gal_usstratcom.h" defines the applicable GAL_LV_*
constants. If the specified identifier code is not known to the routine then the error code
GAL_INVALID_ID is set, and the routine returns NULL.

g a l _ o b j c a t _ a l l o c [0.6]

This routine creates an empty object catalog instance.

gal_objcat_t *
gal_objcat_alloc
(
) ;

If the allocation fails then NULL is returned. Object catalog instances must be de-
allocated using the gal_objcat_free routine.

g a l _ o b j c a t _ e x p o r t [0.6]

Chapter 11 - USSTRATCOM

271

This routine exports the contents of an object catalog structure to a fixed format ASCII
file.

void
gal_objcat_export
(
 FILE *fp,
 gal_objcat_t *objcat,
 gal_status_t *status
) ;

On entry FP points to an open file, and OBJCAT points to an object catalog instance.
The routine exports the contents of the object catalog to a fixed format ASCII file. The
sort order is most recent launch first, then piece of launch. The format is as follows:

%-11s International designation
%8i US Strategic Command Object Number
%-40s Object name
%8i GAL Launch Vehicle Identifier Code
%8i GAL Owner Identifier Code
%8i Payload flag; 1 means payload, 0 means debris
%8i Status code
%20.12e Launch date part 1 (JD UTC)
%20.12e Launch date part 2 (JD UTC)
%20.12e Decay date part 1 (JD UTC)
%20.12e Decay date part 2 (JD UTC)
%20.12e Period
%20.12e Inclination
%20.12e Apogee
%20.12e Perigee
%20.12e RADAR cross section

Constants for the identifier codes are defined in “gal_usstratcom.h”.

g a l _ o b j c a t _ f r e e [0.6]

This routine frees an object catalog instance.

void
gal_objcat_free
(
 gal_objcat_t *objcat
) ;

On entry OBJCAT points to the object catalog instance to de-allocate.

g a l _ o b j c a t _ i n i t [0.6]

General Astrodynamics Library – Reference Manual

272

This routine initializes an object catalog instance.

void
gal_objcat_free
(
 gal_objcat_t *objcat
) ;

On entry OBJCAT points to the object catalog instance to initialize. If the object catalog
contains any launches, piece of launches, or TLEs then these are removed and de-
allocated. The object catalog instance is returned to the same state as it was when
created by gal_objcat_alloc.

g a l _ o b j o w n e r _ c o d e [0.6]

Returns the code of a catalog object's owner organization or country for the specified
US Stategic Command abbreviation code.

int
gal_objowner_code
(
 char *owner
) ;

On entry OWNER contains a USSTRATCOM object owner abbreviation code. The
routine returns the GAL Object Owner Code. If the OWNER abbrevation is unknown to
the routine then GAL_UNKNOWN_OWNER is returned. The header file
“gal_usstratcom.h” contains the GAL_COO_* constants.

g a l _ o b j o w n e r _ n a m e [0.6]

Returns the name of a catalog object's owner organization or country for the specified
GAL Object Owner Code.

char *
gal_objowner_name
(
 int owner,
 char *name,
 gal_status_t *status
) ;

On entry OWNER contains the GAL Object Owner Code for the required country or
organization. The routine returns a pointer to NAME which now contains the owner
name. The header file "gal_usstratcom.h" defines the applicable GAL_COO_*
constants. If the specified identifier code is not known to the routine then the error code

Chapter 11 - USSTRATCOM

273

GAL_INVALID_ID is set, and the routine returns NULL.

g a l _ o s c 2 m e a n [0.6]

This routine converts osculating Keplerian elements to mean elements suitable for use
with the SGP4 orbit propagator.

void
gal_osc2mean
(
 double epoch1,
 double epoch2,
 double osc[6],
 gal_gm_t *gm,
 double mean[6],
 gal_status_t *status
) ;

On entry EPOCH1 and EPOCH2 contain the UTC date in standard SOFA two-piece
format. OSC contains the osculating elements; the elements are stored as follows:

 [0] - Argument of perigee (degrees)
 [1] - Right ascension of ascending node (degrees)
 [2] - Inclination (degrees)
 [3] - Mean motion (rev / day)
 [4] - Eccentricity
 [5] - Mean anomaly (degrees)

On return MEAN contains the mean elements.

The conversion process will not always converge to a solution. If it does not converge
then the error code GAL_NO_CONVERGENCE is set. Testing against the complete
unclassified catalog (as of January 2009) it was found that out of 11766 objects, 11103
(~94%) converged and matched the NORAD values exactly, 9 (~0.07%) objects
converged but did not exactly match the NORAD values, and 654 (~5%) objects failed
to converge. Propagating the 9 objects that converged but do not match NORAD over a
10 day period, shows that the velocities match within 1 m/s to those NORAD keps. x
and y positions match within 1 km, and the worst difference value for z position is 11km
after 10 days.

g a l _ p I e c e _ i n s [0.6]

This routine inserts a piece of launch structure into an object catalog.

gal_piece_t *
gal_piece_ins
(

General Astrodynamics Library – Reference Manual

274

 gal_objcat_t *objcat,
 int satnum,
 char *intldesg,
 int *year,
 int *number,
 gal_status_t *status
) ;

On entry OBJCAT points to an object catalog structure created previously by
gal_objcat_alloc, SATNUM contains the US Strategic Command Object Number, and
INTLDESG contains the international designation (COSPAR/WDC-A-R&S). On return
YEAR is set to the year of the launch, and NUMBER to the number of the launch within
the year. The routine returns a pointer to the piece of launch structure. If the piece of
launch is already in the catalog then a pointer is returned to the existing structure. i.e.
no duplicates are created. If an internal error occurs then the error code
GAL_ALLOC_FAILED is set and the routine returns NULL. The piece of launches are
stored in a linked list within the catalog, the piece order is “A”, “B”, … “AA”, “AB”, …
“AAA”, ... The international Designator must be in the format:

 "YYYY-NNNPPP" e.g. "1997-051VX "

g a l _ s e t t l e [0.6]

This routine sets up a TLE structure from given mean Keplerian elememts suitable for
use with the SGP4 propagator.

void
gal_settle
(
 double epoch1,
 double epoch2,
 double mean[6],
 gal_tle_t *tle,
 gal_status_t *status
) ;

On entry EPOCH1 and EPOCH2 contain a UTC date in standard SOFA two-piece
format. MEAN contains the keplerian elements stored as follows:

 [0] - Argument of perigee (degrees)
 [1] - Right ascension of ascending node (degrees)
 [2] - Inclination (degrees)
 [3] - Mean motion (rev / day)
 [4] - Eccentricity
 [5] - Mean anomaly (degrees)

Chapter 11 - USSTRATCOM

275

On return TLE is populated suitably for initializing the SGP4 propagator.

g a l _ s g p 4 [0.2]

This routine is the SGP4 propagation model from US Strategic Command.

void
gal_sgp4
(
 gal_sgp4_t *sgp4,
 double date1,
 double date2,
 double pv[2][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 SGP4 Initialized structure from gal_sgp4init call.
 DATE1 Date part 1 (UTC)
 DATE2 Date part 2 (UTC)

On return the variables are set as follows:

 SGP4 Common values for subsequent calls
 PV Geocentric position/velocity (meters, meters per second)
 True Equator Mean Equinox (TEME)

If an error occurs then the applicable error code is set. This is an updated and combined
version of SGP4 and SDP4, which were originally published separately in Spacetrack
Report #3. This version follows the methodology from the AIAA paper (2006) describing
the history and development of the code. This routine is a translation from c++ to c of
David Vallado's SGP4UNIT.sgp4 routine (2007 November 16).

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard,
Kelso, T.S., AIAA 2006-6753

General Astrodynamics Library – Reference Manual

276

 g a l _ s g p 4 g m [0.2]

This routine gets the gravity model parameters required by SGP4

void
gal_sgp4gm
(
 gal_gm_t *gm,
 double *tumin,
 double *mu,
 double *re,
 double *xke,
 double *j2,
 double *j3,
 double *j4,
 double *j3oj2,
 gal_status_t *status
) ;

On entry GM points to the gravity model structure. On return the variables are set as
follows:

 TUMIN One time unit (minutes)
 MU Earth gravitational parameter (meters3 per second2)
 RE Radius of the Earth (kilometers)
 XKE Reciprocal of tumin
 J2 Un-normalized second zonal harmonic value
 J3 Un-normalized third zonal harmonic value
 J4 Un-normalized fourth zonal harmonic value
 J3OJ2 J3 divided by J2

If an error occurs then the applicable error code is set.

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard,
Kelso, T.S., AIAA 2006-6753

 g a l _ s g p 4 i n i t [0.2]

Chapter 11 - USSTRATCOM

277

This routine initializes the variables for gal_sgp4.

void
gal_sgp4init
(
 gal_gm_t *gm,
 gal_tle_t *tle,
 gal_sgp4_t *sgp4,
 gal_status_t *status
) ;

On entry GM points to the gravity model structure, and TLE points to the two-line-
elements parameters structure. On return SGP4 is initialized to its start state. If an error
occurs then the applicable error code is set. This routine is based on a translation from
c++ to c of David Vallado's SGP4UNIT.sgp4init routine (2007 November 16).

References:

NORAD Spacetrack Report #3 1980, Hoots, Roehrich

NORAD Spacetrack Report #6 1986, Hoots

Hoots, Schumacher and Glover 2004

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard,
Kelso, T.S., AIAA 2006-6753

 g a l _ s g p 4 r s [0.5]

This routine computes the rise and set parameters for an Earth orbiting spacecraft and
terrestrial observer using the Ernandes algorithm and the SGP4 propagator

void
gal_sgp4rs
(
 double utc1,
 double utc2,
 double latitude,
 double longitude,
 double height,
 double minel,
 double timefwd,
 double gm,
 double re,

General Astrodynamics Library – Reference Manual

278

 double inf,
 gal_sgp4_t *sgp4,
 double pass[3][3],
 gal_status_t *status
) ;

On entry the parameters are set as follows:

 UTC1 Date part 1 (UTC)
 UTC2 Date part 2 (UTC)
 LATITUDE Observer latitude (radians)
 LONGITUDE Observer longitude (radians)
 HEIGHT Observer height ASL (meters)
 MINEL Minimum elevation (radians)
 TIMEFWD Max time forward (days)
 GM Gravitational parameter (meters3 per second2)
 RE Earth equatorial radius (meters)
 INF Earth inverse flattening factor
 SGP4 Initialized SGP4 structure

On return pass contains the AOS, CUL, & LOS details. UTC1 and UTC2 contain a
Coordinated Universal Time (UTC) Julian Date in standard SOFA two-piece format. If
the satellite never sets then the warning code GAL_NEVER_SETS is set. If an error
occurs then the applicable error code is set. The rise and set parameters are the time,
elevation, and azimuth for Acquisition of Signal (AOS), Loss of Signal (LOS), and
Culmination (CUL) (maximum elevation). All angles are in radians. On return the array
PASS is populated as follows:

 PASS[0][0] AOS JD (UTC)
 PASS[0][1] AOS Elevation
 PASS[0][2] AOS Azimuth
 PASS[1][0] CUL JD (UTC)
 PASS[1][1] CUL Elevation
 PASS[1][2] CUL Azimuth
 PASS[2][0] LOS JD (UTC)
 PASS[2][1] LOS Elevation
 PASS[2][2] LOS Azimuth

This routine is based upon the rise/set algorithm devised and developed by Ernandes.

References:

Kenneth J. Ernandes, private communication, December 17, 1997

Chapter 11 - USSTRATCOM

279

 g a l _ s g p 4 t . h [0.2]

This header file defines the SGP4 data structure that is used to store interim results
between successive calls to gal_sgp4.

typedef struct {

/*
 * Internal Control Variables
 */

 int error ;
 char init ;
 char method ;

/*
 * TLE Parameters
 */

 int satnum ; /* NORAD Catalog Number */
 char classification ; /* Security Classification */
 char intldesg[10] ; /* International Designator (COSPAR/WDC-A-R&S) */
 int epochyr ; /* Epoch Year */
 double epochdays ; /* Epoch Day of Year (plus Fraction) */
 double epoch ; /* Epoch Date (days since 1950-01-01 0h) */
 double ndot ; /* Mean motion derivative */
 double nddot ; /* Mean motion second derivative */
 double bstar ; /* Bstar / Drag Term */
 int ephtype ; /* Ephemeris Type */
 int setnum ; /* Element set number */
 double inclo ; /* Inclination (rad) */
 double nodeo ; /* Right Ascension of Ascending Node (rad) */
 double ecco ; /* Eccentricity */
 double argpo ; /* Argument of Perigee (rad) */
 double mo ; /* Mean Anomaly (rad) */
 double no ; /* Mean Motion (rad/min) */
 int revnum ; /* Epoch Revolution Number */

 double a ;
 double altp ;
 double alta ;
 double jdepoch1 ; /* Julian Date of Epoch Part 1 */
 double jdepoch2 ; /* Julian Date of Epoch Part 2 */
 double rcse ;
 int epochtynumrev ;

/*
 * Gravity Model Parameters
 */

 double tumin ; /* Minutes in one time unit */
 double mu ; /* Earth gravitational parameter */
 double radiusearthkm ; /* Radius of the earth in kilometers
*/
 double xke ; /* Reciprocal of tumin */

General Astrodynamics Library – Reference Manual

280

 double j2 ; /* Un-normalized second zonal harmonic value */
 double j3 ; /* Un-normalized third zonal harmonic value */
 double j4 ; /* Un-normalized fourth zonal harmonic value */
 double j3oj2 ; /* j3 divided by j2 */
 double vkmpersec ;

/*
 * Near Earth
 */

 int isimp ;
 double aycof ;
 double con41 ;
 double cc1 ;
 double cc4 ;
 double cc5 ;
 double d2 ;
 double d3 ;
 double d4 ;
 double delmo ;
 double eta ;
 double argpdot ;
 double omgcof ;
 double sinmao ;
 double t ;
 double t2cof ;
 double t3cof ;
 double t4cof ;
 double t5cof ;
 double x1mth2 ;
 double x7thm1 ;
 double mdot ;
 double nodedot ;
 double xlcof ;
 double xmcof ;
 double nodecf ;

/*
 * Deep Space
 */

 int irez ;
 double d2201 ;
 double d2211 ;
 double d3210 ;
 double d3222 ;
 double d4410 ;
 double d4422 ;
 double d5220 ;
 double d5232 ;
 double d5421 ;
 double d5433 ;
 double dedt ;
 double del1 ;
 double del2 ;
 double del3 ;
 double didt ;

Chapter 11 - USSTRATCOM

281

 double dmdt ;
 double dnodt ;
 double domdt ;
 double e3 ;
 double ee2 ;
 double peo ;
 double pgho ;
 double pho ;
 double pinco ;
 double plo ;
 double se2 ;
 double se3 ;
 double sgh2 ;
 double sgh3 ;
 double sgh4 ;
 double sh2 ;
 double sh3 ;
 double si2 ;
 double si3 ;
 double sl2 ;
 double sl3 ;
 double sl4 ;
 double gsto ;
 double xfact ;
 double xgh2 ;
 double xgh3 ;
 double xgh4 ;
 double xh2 ;
 double xh3 ;
 double xi2 ;
 double xi3 ;
 double xl2 ;
 double xl3 ;
 double xl4 ;
 double xlamo ;
 double zmol ;
 double zmos ;
 double atime ;
 double xli ;
 double xni ;

/*
 * The following parameters are for the use of the gal_sgp4rs routine
 */

 double time ; /* UTC JD of last computation */
 double pv[2][3] ; /* pv-vector (m, m/s) */
 double pos ; /* modulus of p-vector */
 double vel ; /* modulus of v-vector */

} gal_sgp4_t ;

References:

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard,

General Astrodynamics Library – Reference Manual

282

Kelso, T.S., AIAA 2006-6753

 g a l _ t l e c h k s u m [0.2]

This routine calculates the US Strategic Command two line element (TLE) card
checksum character

char
gal_tlechksum
(
 char *card
) ;

On entry card points to the string containing the line for which the checksum is required.
The routine returns the checksum character. The checksum is modulo 10, letters,
blanks, periods, plus signs equal 0; minus signs equal 1.

 g a l _ t l e d e c [0.2]

This routine decodes the packed two line element (TLE) cards into the tle structure

void
gal_tledec
(
 char *card1,
 char *card2,
 gal_tle_t *tle,
 gal_status_t *status
) ;

On entry CARD1 and CARD2 point to the first and second TLE lines respectively. On
return the structure pointed to by TLE contains the decoded TLE parameters. If an error
occurs then the applicable error code is set.

References:

Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard,
Kelso, T.S., AIAA 2006-6753

Chapter 11 - USSTRATCOM

283

Chapter 12 – Keplerian Propagation

285

Chapter 12 – Keplerian Propagation
The routines detailed in this chapter are defined in the gal_kepler.h header file.

General Astrodynamics Library – Reference Manual

286

 g a l _ e a 2 t a [0.5]

This routine calculates the true anomaly from eccentric anomaly.

double
gal_ea2ta
(
 double ea,
 double ecc
) ;

On entry EA contains the eccentric anomaly (radians), and ECC the eccentricity. The
routine returns the true anomaly (radians). This routine is valid for elliptical orbits only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Page 85

 g a l _ h a 2 t a [0.5]

This routine calculates the true anomaly from hyperbolic anomaly.

double
gal_ha2ta
(
 double ha,
 double ecc
) ;

On entry HA contains the hyperbolic anomaly (radians), and ECC the eccentricity. The
routine returns the true anomaly (radians). This routine is valid for hyperbolic orbits only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Page 85

g a l _ k e p 2 p v [0.4]

This routine computes position and velocity from the classical orbital elements.

void
gal_kep2pv

Chapter 12 – Keplerian Propagation

287

(
 double gm,
 double ecc,
 double raan,
 double argp,
 double inc,
 double p,
 double v,
 double truelon,
 double u,
 double lonper,
 double pv[2][3]
) ;

On entry the parameters are set as follows, if any parameter is unknown then the
constant GAL_UNDEFINED (defined in gal_math.h) should be passed as parameter:

GM Gravitational parameter (meters3 per second2)
ECC Eccentricity
RAAN Longitude of the ascending mode (radians)
ARGP Argument of Pericenter (radians)
INC Inclination (radians)
P Semi-Latus Rectum (meters)
V True Anomaly (radians)
TRUELON True Longitude (radians)
U Argument of Latitude (radians)
LONPER True Longitude of Periapsis (radians)

On return PV contains the position and velocity vectors (meters, meters per second).

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 118-122

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32

Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell
1991, Pages 149-157

 g a l _ m a 2 e a [0.5]

This routine calculates the eccentric anomaly from mean anomaly.

double

General Astrodynamics Library – Reference Manual

288

gal_ma2ea
(
 double ma,
 double ecc
) ;

On entry MA contains the mean anomaly (radians), and ECC the eccentricity. The
routine returns the eccentric anomaly (radians). This routine is valid for elliptical orbits
only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 72-75

 g a l _ m a 2 h a [0.5]

This routine calculates the hyperbolic anomaly from mean anomaly.

double
gal_ma2ha
(
 double ma,
 double ecc
) ;

On entry MA contains the mean anomaly (radians), and ECC the eccentricity. The
routine returns the hyperbolic anomaly (radians). This routine is valid for hyperbolic
orbits only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 78-80

g a l _ p v 2 k e p [0.4]

This routine computes the classical orbital elements from position and velocity.

void
gal_pv2kep
(
 double gm,
 double pv[2][3],
 double *sma,

Chapter 12 – Keplerian Propagation

289

 double *ecc,
 double *raan,
 double *argp,
 double *ma,
 double *inc,
 double *p,
 double *v,
 double *truelon,
 double *u,
 double *lonper
) ;

On entry GM contains the gravitational parameter (meters3 per second2), and PV the
position and velocity vectors (meters, meters per second). On return the variables are
set as follows, if any result cannot be calculated then GAL_UNDEFINED (defined in
gal_math.h) is returned:

SMA Semi-Major Axis (meters)
ECC Eccentricity
RAAN Longitude of the ascending mode (radians)
ARGP Argument of Pericenter (radians)
MA Mean Anomaly (radians)
INC Inclination (radians)
P Semi-Latus Rectum (meters)
V True Anomaly (radians)
TRUELON True Longitude (radians)
U Argument of Latitude (radians)
LONPER True Longitude of Periapsis (radians)

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 118-122

Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32

Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell
1991, Pages 149-157

 g a l _ p v t 2 p v [0.4]

This routine calculates position and velocity from starting position and velocity at given
time using Universal variables. This routine is valid for all orbit types.

void

General Astrodynamics Library – Reference Manual

290

gal_pvt2pv
(
 double gm,
 double pv0[2][3],
 double ed0,
 double ed1,
 double tt0,
 double tt1,
 double pv[2][3]
) ;

On entry the variables are set as follows:

GM Gravitational parameter (meters3 per second2)
PV0 Epoch position & velocity vectors (meters, meters per second)
ED0, ED1 Epoch date (TT)
TT0, TT1 Required date (TT)

Both Terrestrial Time (TT) Julian Dates are in standard SOFA two-piece format. On
return PV contains the position and velocity vectors (meters, meters per second). The
iteration method is the Laguerre's method described in Chobotov page 58. It was
selected as it converged faster than the Newton-Raphson method described by Vallado,
and the choice of initial value is simpler. The calculations of SN and CN are from
Vallado as they are simpler to implement.

References:

Orbital Mechanics Third Edition, AIAA Education Series, Chobotov, Vladimir A. Ed.,
Pages 55-61

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 101-103

 g a l _ t 2 p a [0.5]

This routine calculates the parabolic anomaly from time dt.

double
gal_t2pa
 (
 double gm,
 double dt,
 double p
) ;

Chapter 12 – Keplerian Propagation

291

On entry the variables are set as follows:

gm Gravitational parameter (meters3 per second2)
dt Time since periapsis (seconds)
p Semi parameter (meters)

The routine returns the parabolic anomaly (radians). This routine is valid for parabolic
trajectories only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Pages 75-78

 g a l _ t a 2 e a [0.5]

This routine calculates the eccentric anomaly from true anomaly.

double
gal_ta2ea
 (
 double ta,
 double ecc
) ;

On entry ta contains the true anomaly (radians), and ecc the eccentricity. The routine
returns the eccentric anomaly (radians). This routine is valid for elliptical orbits only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Page 85

 g a l _ t a 2 h a [0.5]

This routine calculates the hyperbolic anomaly from true anomaly.

double
gal_ta2ha
 (
 double ta,
 double ecc
) ;

General Astrodynamics Library – Reference Manual

292

On entry ta contains the true anomaly (radians), and ecc the eccentricity. The routine
returns the hyperbolic anomaly (radians). This routine is valid for hyperbolic orbits only.

References:

Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition
2004, Page 85

Chapter 12 – Keplerian Propagation

293

Chapter 13 – Ephemerides

295

Chapter 13 - Ephemerides
The routines detailed in this chapter are defined in the gal_ephemerides.h header file.

General Astrodynamics Library – Reference Manual

296

g a l _ b e a p v 8 7 [0.4]

Earth Barycentric position and velocity.

void
gal_beapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

On entry the parameters are set as follows:

tt1 Epoch part 1 (TT)
tt2 Epoch part 2 (TT)
ref Reference frame

0 = dynamical equinox and ecliptic J2000.
1 = FK5 (VSOP87)

On return pv contains the position and velocity vectors (AU, AU per day).

pv[0][0] x
pv[0][1] y
pv[0][2] z

pv[1][0] xdot
pv[1][1] ydot
pv[1][2] zdot

tt1 and tt2 contain a Terrestrial Time (TT) Julian Date in standard SOFA two-piece
format. The vectors are Barycentric with respect to the FK5 Reference Frame. The
routine is a solution from the planetary theory VSOP87. The main version of VSOP87 is
similar to the previous theory VSOP82. In the both cases the constants of integration
have been determined by fitting to the numerical integration DE200 of the Jet Propulsion
Laboratory. The differences between VSOP87 and VSOP82 mainly improve the validity
time-span for Mercury, Venus, Earth-Moon Barycenter and Mars with a precision of 1"
for 4000 years before and after J2000. The same precision is ensured for Jupiter and
Saturn over 2000 years and for Uranus and Neptune over 6000 years before and after
J2000. The size of the relative precision p0 of VSOP87 solutions is given hereunder.
That means that the actual precision is close by p0*a0 AU for the distances (a0 being
the semi-major axis) and close by p0 radian for the other variables. By derivation with

Chapter 13 – Ephemerides

297

respect to time expressed in day (d), the precision of the velocities is close by p0*a0 AU
per day for the distances and close by p0 radians per day for the other variables.

Body a0 (au) p0 (10-8)
Mercury 0.3871 0.6
Venus 0.7233 2.5
Earth 1.0000 2.5
Mars 1.5237 10.0
Jupiter 5.2026 35.0
Saturn 9.5547 70.0
Uranus 19.2181 8.0
Neptune 30.1096 42.0

References:

Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309.

 g a l _ b e b p v 8 7 [0.4]

Earth-Moon Barycenter Barycentric position and velocity.

void
gal_bebpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ b j u p v 8 7 [0.4]

Jupiter Barycentric position and velocity.

void
gal_bjupv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

General Astrodynamics Library – Reference Manual

298

See gal_beapv87 for details.

 g a l _ b m a p v 8 7 [0.4]

Mars Barycentric position and velocity.

void
gal_bmapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ b m e p v 8 7 [0.4]

Mercury Barycentric position and velocity.

void
gal_bmepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ b n e p v 8 7 [0.4]

Neptune Barycentric position and velocity.

void
gal_bnepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

Chapter 13 – Ephemerides

299

See gal_beapv87 for details.

 g a l _ b p l p v 8 7 [0.4]

Pluto Barycentric position and velocity.

void
gal_bplpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87, and gal_hplpv87 for details.

 g a l _ b s a p v 8 7 [0.4]

Saturn Barycentric position and velocity.

void
gal_bsapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ b s u p v 8 7 [0.4]

Sun Barycentric position and velocity.

void
gal_bsupv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

General Astrodynamics Library – Reference Manual

300

 g a l _ b u r p v 8 7 [0.4]

Uranus Barycentric position and velocity.

void
gal_burpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ b v e p v 8 7 [0.4]

Venus Barycentric position and velocity.

void
gal_bvepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_beapv87 for details.

 g a l _ e p v 0 0 [0.1]

Earth position and velocity, heliocentric and Barycentric, with respect to the International
Celestial Reference Frame.

int
gal_epv00
 (
 double epoch1,
 double epoch2,
 double pvh[2][3],
 double pvb[2][3]
) ;

On entry epoch1+epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date in

Chapter 13 – Ephemerides

301

standard SOFA two-piece format. On return pvh contains the heliocentric Earth position
and velocity, and pvb the Barycentric Earth position and velocity (AU, AU per day). The
routine returns one of the following status codes:

0 success
1 warning: date outside 1900-2100CE

The vectors are with respect to the International Celestial Reference Frame. The routine
is a simplified solution from the planetary theory VSOP2000 (X. Moisson, P. Bretagnon,
2001, Celestial Mechanics & Dynamical Astronomy, 80, 3/4, 205-213) and is an
adaptation of original Fortran code supplied by P. Bretagnon (private communication,
2000). Comparisons over the time span 1900-2100 with this simplified solution and the
JPL DE405 ephemeris give the following results:

 RMS max

Heliocentric:

position error 3.7 11.2 kilometers
velocity error 1.4 5.0 millimeters per second

Barycentric:

position error 4.6 13.4 kilometers
velocity error 1.4 4.9 millimeters per second

 g a l _ g m o p v 0 2 [0.3]

Moon geocentric position and velocity.

int
gal_gmopv02
 (
 double epoch1,
 double epoch2,
 int icor,
 double pv[2][3]
) ;

On entry the parameters are set as follows:

epoch1 Epoch part 1 (TDB)
epoch2 Epoch part 2 (TDB)
icor correction type

0: the constants are fitted to LLR observations provided from 1970
to 2001; it is the default value;

General Astrodynamics Library – Reference Manual

302

1: the constants are fitted to DE405 ephemeris over one also
additive corrections to the secular coefficients.

On return pv contains the geocentric Moon position & velocity (meters, meters per
second). The routine returns one of the following status codes:

 0 success

1 warning: date outside 1940-2060 CE

epoch1 and epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date is in
standard SOFA two-piece format. The algorithm used is the Lunar Solution ELP/MPP02.

References:

Lunar Solution ELP version ELP/MPP02, Jean Chapront and Gerard Francou,
Observatoire de Paris -SYRTE department - UMR 8630/CNRS, October 2002

 g a l _ g s u p v 0 0 [0.3]

Sun position and velocity, with respect to the Geocentric Celestial Reference Frame
(GCRF).

int
gal_gsupv00
 (
 double epoch1,
 double epoch2,
 double pv[2][3]
) ;

On entry epoch1 and epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date
in standard SOFA two-piece format. On return pv contains the geocentric Sun position &
velocity (meters, meters per second). The routine returns one of the following status
codes:

0 success
1 warning: date outside 1900-2100CE range

References:

IERS Technical Note 32, IERS Conventions 2003, Dennis D. McCarthy et al., Page 12

 g a l _ h e a p v 8 7 [0.4]

Chapter 13 – Ephemerides

303

Earth heliocentric position and velocity, with respect to the FK5 Reference Frame.

void
gal_heapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

On entry the parameters are set as follows:

tt1 Epoch part 1 (TT)
tt2 Epoch part 2 (TT)
ref Reference frame

0 dynamical equinox and ecliptic J2000.
1 FK5 (VSOP87)

On return pv contains the position and velocity vectors (AU, AU per day).

pv[0][0] x
pv[0][1] y
pv[0][2] z

pv[1][0] xdot
pv[1][1] ydot
pv[1][2] zdot

tt1 and tt2 contain the Terrestrial Time Julian Date is standard SOFA two-piece format.
The vectors are heliocentric with respect to the FK5 Reference Frame. The routine is a
solution from the planetary theory VSOP87. The main version of VSOP87 is similar to
the previous theory VSOP82. In the both cases the constants of integration have been
determined by fitting to the numerical integration DE200 of the Jet Propulsion
Laboratory. The differences between VSOP87 and VSOP82 mainly improve the validity
time-span for Mercury, Venus, Earth-Moon Barycenter and Mars with a precision of 1"
for 4000 years before and after J2000. The same precision is ensured for Jupiter and
Saturn over 2000 years and for Uranus and Neptune over 6000 years before and after
J2000. The size of the relative precision p0 of VSOP87 solutions is given hereunder.
That means that the actual precision is close by p0*a0 AU for the distances (a0 being
the semi-major axis) and close by p0 radian for the other variables. By derivation with
respect to time expressed in day (d), the precision of the velocities is close by p0*a0 AU
per day for the distances and close by p0 radians per day for the other variables.

Body a0 (AU) p0 (10-8)

General Astrodynamics Library – Reference Manual

304

Mercury 0.3871 0.6
Venus 0.7233 2.5
Earth 1.0000 2.5
Mars 1.5237 10.0
Jupiter 5.2026 35.0
Saturn 9.5547 70.0
Uranus 19.2181 8.0
Neptune 30.1096 42.0

References:

Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309.

 g a l _ h e b p v 8 7 [0.4]

Earth-Moon Barycenter heliocentric position and velocity.

void
gal_hebpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h j u p v 8 7 [0.4]

Jupiter heliocentric position and velocity.

void
gal_hjupv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h m a p v 8 7 [0.4]

Chapter 13 – Ephemerides

305

Mars heliocentric position and velocity.

void
gal_hmapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h m e p v 8 7 [0.4]

Mercury heliocentric position and velocity.

void
gal_hmepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h n e p v 8 7 [0.4]

Neptune heliocentric position and velocity.

void
gal_hnepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h p l p v 8 7 [0.4]

Pluto heliocentric position and velocity.

General Astrodynamics Library – Reference Manual

306

void
gal_hplpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

 On entry the parameters are set as follows:

tt1 epoch part 1 (TDB)
tt2 epoch part 2 (TDB)
ref Reference frame

0 dynamical equinox and ecliptic J2000.
1 FK5 (VSOP87)

tt1 and tt2 contain a Barycentric Dynamical Time Julian Date in standard SOFA two-
piece format. On return pv contains the position and velocity vectors (AU, AU per day).

pv[0][0] x
pv[0][1] y
pv[0][2] z

pv[1][0] xdot
pv[1][1] ydot
pv[1][2] zdot

The tables of Pluto were constructed by J. Chapront (BDL) with a method of
approximation using frequency analysis as described in the referenced paper.

This representation uses the result of numerical integration DE200 of Jet Propulsion
Laboratory as a source.

The interval of validity is 146120 days, from January 1 1700 0h JD2341972.5 to January
24 2100 0h JD2488092.5 The tables contain series which represent the heliocentric
rectangular coordinates of Pluto as functions of time. The reference frame is defined
with dynamical equinox and equator J2000 (DE200). The time scale is Barycentric
Dynamical Time (TDB).

References:

Representation of planetary ephemerides by frequency analysis. Application to the five
outer planets. Astronomy & Astrophysics Supplement Series, 109, 191 (1995)

Chapter 13 – Ephemerides

307

Standish E. M., 1990, The observational basis for JPL's DE200, the planetary
ephemerides of the Astronomical Almanac. Astronomy & Astrophysics, 233, 252

 g a l _ h s a p v 8 7 [0.4]

Saturn heliocentric position and velocity.

void
gal_hsapv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h u r p v 8 7 [0.4]

Uranus heliocentric position and velocity.

void
gal_hurpv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

See gal_heapv87 for details.

 g a l _ h v e p v 8 7 [0.4]

Venus heliocentric position and velocity.

void
gal_hvepv87
 (
 double tt1,
 double tt2,
 int ref,
 double pv[2][3]
) ;

General Astrodynamics Library – Reference Manual

308

See gal_heapv87 for details.

 g a l _ p l a n 9 4 [0.1]

Approximate heliocentric position and velocity of a nominated major planet: Mercury,
Venus, Earth-Moon Barycenter, Mars, Jupiter, Saturn, Uranus or Neptune.

int
gal_plan94
 (
 double date1,
 double date2,
 int np,
 double pv[2][3]
) ;

On entry date1 and date2 contain the Barycentric Dynamical Time (TDB) Julian Date in
standard SOFA two-piece format, np contains the number of the required planet
(1=Mercury, 2=Venus, 3=EMB ... 8=Neptune). This routine uses non-GAL standard
constants for the planetʼs ID. This is for compatibility with the SOFA library. However, it
is planned for this to be changed in a future release of GAL, so that the planet IDs
match those used by the other GAL routines. On return pv contains the planetʼs
heliocentric J2000 position and velocity vectors (AU, AU per day). The routine returns
one of the following status codes:

-1 illegal NP (outside 1-8)
0 success
+1 warning: date outside 1000-3000 CE
+2 warning: solution failed to converge

If an np value outside the range 1-8 is supplied, an error status (-1) is returned and the
pv vector set to zeroes. For np=3 the result is for the Earth-Moon Barycenter. To obtain
the heliocentric position and velocity of the Earth, use instead the routine gal_epv00.
The reference frame is equatorial and is with respect to the mean equator and equinox
of epoch J2000. The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M.
Chapront-Touze, G. Francou and J. Laskar (Bureau des Longitudes, Paris, France).
From comparisons with JPL ephemeris DE102, they quote the following maximum
errors over the interval 1800-2050:

L (arcseconds) B (arcseconds) R (kilometers)

Mercury 4 1 300
Venus 5 1 800
EMB 6 1 1000

Chapter 13 – Ephemerides

309

Mars 17 1 7700
Jupiter 71 5 76000
Saturn 81 13 267000
Uranus 86 7 712000
Neptune 11 1 253000

Over the interval 1000-3000, they report that the accuracy is no worse than 1.5 times
that over 1800-2050. Outside 1000-3000 the accuracy declines.

Comparisons of this routine with the JPL DE200 ephemeris give the following RMS
errors over the interval 1960-2025:

position (kilometers) velocity (meters per second)

Mercury 334 0.437
Venus 1060 0.855
EMB 2010 0.815
Mars 7690 1.98
Jupiter 71700 7.70
Saturn 199000 19.4
Uranus 564000 16.4
Neptune 158000 14.4

Comparisons against DE200 over the interval 1800-2100 gave the following maximum
absolute differences. (The results using DE406 were essentially the same.)

L B R Rdot

Mercury 7 1 500 0.7
Venus 7 1 1100 0.9
EMB 9 1 1300 1.0
Mars 26 1 9000 2.5
Jupiter 78 6 82000 8.2
Saturn 87 14 263000 24.6
Uranus 86 7 661000 27.4
Neptune 11 2 248000 21.4

References:

Simon, J.L, Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., and Laskar,
J., Astronomy & Astrophysics 282, 663 (1994).

General Astrodynamics Library – Reference Manual

310

Chapter 13 – Astromomical Macros
The header file gal_astro.h defines the following constants and macros:

/*
 * ----------------------
 * Astronomical Constants
 * ----------------------
 */

#define GAL_KM2M (1000.0) /* Kilometers to meters */

#define GAL_AU03 (149597870691.0) /* Astronomical Unit IERS 2003 / DE405 meters */

#define GAL_AU09 (149597870700.0) /* Astronomical Unit IERS 2010 / IAU 2009 meters */

#define GAL_AUR (149597870000.0) /* Astronomical Unit rounded meters */
 /* Same as SOFA's December 2010 DAU */

#define GAL_RESU76 (6.96e8) /* Equatorial Radius of the Sun IAU76 meters */

#define GAL_SRP96 (4.56e-6) /* Solar Radiation Pressure @ 1 AU IERS 1996 */
 /* Newtons per meter^2 */

#define GAL_CM (299792458.0) /* Speed of Light meters per second */

/*
 * -------------------
 * Astronomical Macros
 * -------------------
 */

/*
 * Macro to calculate Speed of Light in AU per second
 * Requires the desired value for AU as parameter
 */

#define GAL_CAUS(AU) ((AU) / GAL_CM)

/*
 * Macro to calculate Speed of Light in AU per day
 * Requires the desired value for AU as parameter
 */

#define GAL_CAUD(AU) (GAL_D2S / GAL_CAUS((AU)))

/*
 * Speed of light (AU per day) rounded
 * This is the same as the SOFA December 2010 constant DC
 */

#define GAL_CAUDR (GAL_D2S / 499.004782)

Appendix A – GNU Free Documentation License

311

Appendix A – GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.

1. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.
2. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated

General Astrodynamics Library – Reference Manual

312

into another language. A "Secondary Section" is a named appendix or a front-
matter section of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them. The
"Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any
Invariant Sections then there are none. The "Cover Texts" are certain short
passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called
"Opaque". Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only. The "Title Page" means, for a printed book,
the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats
which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the
body of the text. A section "Entitled XYZ" means a named subunit of the
Document whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",

Appendix A – GNU Free Documentation License

313

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a
section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition. The Document may include Warranty
Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.
3. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3. You may also lend
copies, under the same conditions stated above, and you may publicly display
copies.
4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects. If the required
texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages. If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public. It is requested, but not required, that you contact the authors

General Astrodynamics Library – Reference Manual

314

of the Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
5. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as
the publisher. D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

Appendix A – GNU Free Documentation License

315

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be
included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section.
O. Preserve any Warranty Disclaimers. If the Modified Version includes new
front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles. You may add a section Entitled
"Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a
standard. You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one. The
author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.
6. COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers. The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of

General Astrodynamics Library – Reference Manual

316

Invariant Sections in the license notice of the combined work. In the combination,
you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must
delete all sections Entitled "Endorsements".
7. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of
the documents in all other respects. You may extract a single document from
such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
8. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the
individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document. If the Cover Text requirement of
section 3 is applicable to these copies of the Document, then if the Document is
less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.
9. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail. If a section in the
Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.
10. TERMINATION

Appendix A – GNU Free Documentation License

317

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.
11. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/. Each version of the License is given
a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software
Foundation.
12. ADDENDUM:
How to use this License for your documents To use this License in a document
you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page: Copyright (c)
YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled "GNU Free Documentation License".
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the "with...Texts." line with this: with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST. If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the situation. If your
document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

General Astrodynamics Library – Reference Manual

318

Index
angular separation 61
Arc seconds in a full circle.......................... 29
Arc seconds to radians 29
argument of latitude287, 289
argument of pericenter287, 289
azimuth ..191
Besselian Epoch102
canonical units241, 259
Cartesian .. 46, 59, 60
catalog coordinates...................................224
Celestial Intermediate Pole120, 208, 209,

210, 211, 213, 214, 215
celestial to intermediate frame of date

matrix ...125
celestial to intermediate matrix121, 122,

123, 124
celestial to terrestrial matrix127, 128, 129,

130, 131, 132, 137
Chebyshev...33, 34
CIO locator s ...208, 209, 210, 211, 214, 215
classical orbital elements286, 288
DAF

close ... 71
open ... 71
read block .. 72
seek.. 73

day of the year ..100
days to hours, minutes, seconds, and

fraction ... 36
declination ...127
Degrees to radians 29
Discard velocity component 46
Earth

atmospheric density242
barycentric position and velocity..296, 300
gravity model EGM96244
gravity model JGM-3.............................249

gravity model WGS66253
gravity model WGS72254
Harris-Priester Atmospheric Density

Model ..242
heliocentric position and velocity.300, 303
mean longitude150
rotation angle ...149

Earth-Moon Barycenter
barycentric position and velocity297
heliocentric position and velocity.304, 308

eccentric anomaly286, 287, 291
eccentricity ..287, 289
elevation ...191
ellipsoid model 143, 144, 145, 232
endian format ...74
equation of the equinoxes139, 140, 141,

148
equation of the origins......................146, 148
Euler angles ...184
excess length of day134, 135, 136, 169,

192, 194, 195, 196
Express an r-matrix as an r-vector.............57
Extend a p-vector to a pv-vector43
factorial ...37
FK5 220, 221, 222, 223
frame bias ...118, 119
Fukushima-Williams158, 159, 185
GAL_2PI ..29
gal_a2af ..31
gal_a2tf ..32
gal_accdrag ...238
gal_acch ..238
gal_accpm ...239
gal_accsrp ...239
gal_accsrps ...240
gal_anp ..32
gal_anpm ..33

Index

319

GAL_AS2R ... 29
gal_beapv87 ..296
gal_bebpv87 ..297
gal_bf2c ...117
gal_bf2me ...117
gal_bi00 ...118
gal_bjupv87 ..297
gal_bmapv87 ..298
gal_bmepv87 ..298
gal_bnepv87 ..298
gal_bp00 ...119
gal_bp06 ...119
gal_bplpv87 ..299
gal_bpn2xy...120
GAL_BRCKTD... 30
gal_bsapv87 ..299
gal_bsupv87 ..299
gal_burpv87 ..300
gal_bvepv87 ..300
gal_c2bf ...121
gal_c2i00a...121
gal_c2i00b...122
gal_c2i06a...123
gal_c2ibpn...124
gal_c2ixy ...125
gal_c2ixys...125
gal_c2me ...126
gal_c2radec ..127
gal_c2s.. 33
gal_c2t00a...128
gal_c2t00b...128
gal_c2t06a...129
gal_c2tceo...130
gal_c2tcio...131
gal_c2teqx...132
gal_c2tpe ...133
gal_c2tpv00a ..134
gal_c2tpv06a ..136
gal_c2txy ...137
gal_cal2jd... 98
gal_canpv ...241
gal_center... 71
gal_chbint... 33
gal_chbval... 34
gal_cp .. 35

gal_cpv ..35
gal_cr ..35
GAL_D2R ..29
gal_d2tf ..36
gal_dafclose...71
gal_dafopen ...71
gal_dafread ...72
gal_dafseek ...73
gal_dat ..98
gal_datenorm...99
gal_days2cal...100
gal_delete ...74
GAL_DNNT ..30
gal_dtdb ..101
gal_ea2ta ...286
gal_eaadhp ...242
gal_ee00 ..139
gal_ee00a ...140
gal_ee00b ...140
gal_ee06a ...141
gal_eect00 ...142
gal_emdetails143
gal_emname ...144
gal_emparams...145
gal_endian ...74
gal_eo06a ...146
gal_eors ..148
gal_epb ..102
gal_epb2jd ...102
gal_epj2jd ...103
gal_epv00 ...300
gal_eqeq94 ...148
gal_era00 ...149
gal_errc ..21
gal_errget ...21
gal_errisset...21
gal_errset ...22
GAL_EVEN ..29
gal_facexp_alloc37
gal_facexp_free....................................37
gal_facexp_t...37
gal_factorial237
gal_fad03 ...150
gal_fae03 ...150
gal_faf03 ...151

General Astrodynamics Library – Reference Manual

320

gal_faju03...151
gal_fal03 ...152
gal_falp03...152
gal_fama03...153
gal_fame03...154
gal_fane03...154
gal_faom03...155
gal_fapa03...155
gal_fasa03...156
gal_faur03...157
gal_fave03...157
gal_fk52h ...220
gal_fk5hip...221
gal_fk5hz ...221
gal_fscan ... 74
gal_fw2m ...158
gal_fw2xy ...159
gal_gmalloc ..242
gal_gmcpy ...243
gal_gmdenorm ..243
gal_gmfree...244
gal_gmnorm...255
gal_gmopv02 ..301
gal_gmst00...163
gal_gmst06...164
gal_gmst82...164
gal_gmuzh ...256
gal_gst00a...165
gal_gst00b...166
gal_gst06 ...166
gal_gst06a...167
gal_gst94 ...168
gal_gsupv00 ..302
gal_h2fk5 ...222
GAL_H2R.. 29
gal_ha2ta ...286
gal_heapv87 ..303
gal_hebpv87 ..304
gal_hfk5z ...223
gal_hjupv87 ..304
gal_hmapv87 ..305
gal_hmepv87 ..305
gal_hnepv87 ..305
gal_hplpv87 ..306
gal_hrmesp... 38

gal_hrmint ...39
gal_hsapv87 ...307
gal_hurpv87 ...307
gal_hvepv87 ...307
gal_i2tpv00 ...168
gal_ijk2pqw ...169
gal_illum ...170
gal_insert ...75
gal_instr ...76
gal_ir ..39
gal_jd2cal ...104
gal_jdcalf ...106
gal_justl ...76
gal_justr ...76
gal_kep2pv ...286
gal_lcase ...77
gal_leftstr ...77
gal_lgresp ...40
gal_lgrint ...40
gal_lstled ...41
gal_lstltd ...42
gal_ma2ea ...288
gal_ma2ha ...288
gal_mafms ...106
gal_maltst ...107
GAL_MAS2R ...29
gal_masudat ...108
GAL_MAX ..29
gal_me2bf ...171
gal_me2c ..171
gal_midstr ...77
GAL_MIN ..29
gal_minv6 ...42
gal_morotel00172
gal_morotel91173
gal_mtc2tt ...109
gal_num00a ...174
gal_num00b ...175
gal_num06a ...175
gal_numat ...176
gal_nut00a ...177
gal_nut00b ...179
gal_nut06a ...180
gal_nut80 ...181
gal_obl06 ...182

Index

321

gal_obl80 ...182
GAL_ODD.. 30
gal_p06e ...182
gal_p2pv ... 43
gal_p2s.. 43
gal_padl ... 78
gal_padr ... 78
gal_pap.. 43
gal_pas.. 44
gal_pb06 ...184
gal_pdp.. 44
gal_pfw06 ...185
GAL_PI .. 29
gal_plan94...308
gal_plrotel00186
gal_plrotel91188
gal_pm .. 44
gal_pmat00...196
gal_pmat06...197
gal_pmat76...197
gal_pmp.. 45
gal_pn .. 45
gal_pn00 ...198
gal_pn00a ...199
gal_pn00b ...200
gal_pn06 ...201
gal_pn06a ...203
gal_pnm00a...204
gal_pnm00b...204
gal_pnm06a...205
gal_pnm80 ...205
gal_pom00 ...206
gal_ppp.. 45
gal_ppsp ... 46
gal_pqw2ijk ..190
gal_pqw2ijkm ..190
gal_pr00 ...207
gal_pv2kep...288
gal_pv2p ... 46
gal_pv2s ... 46
gal_pvdpv ... 47
gal_pvm.. 47
gal_pvmpv ... 48
gal_pvppv ... 48
gal_pvstar...224

gal_pvt2pv ...290
gal_pvu ..48
gal_pvup ..48
gal_pvxpv ...49
gal_pxp ..49
GAL_R2AS ..29
GAL_R2D ..29
GAL_R2H ..29
GAL_R2S ..29
gal_replace ...79
gal_rightstr...79
gal_rint ..49
gal_rkf ..50
gal_rkfcks45...51
gal_rkfqs ...52
gal_rm2v ..57
gal_rv2m ..57
gal_rx ..57
gal_rxp ..58
gal_rxpv ..58
gal_rxr ..58
gal_ry ..59
gal_rz ..59
gal_s00 ..208
gal_s00a ..209
gal_s00b ..210
gal_s06 ..211
gal_s06a ..212
gal_s2c ..60
gal_s2p ..60
gal_s2pv ..60
GAL_S2R ..29
gal_s2xpv ...61
gal_sbod ..79
gal_sboda ...80
gal_sboi ..80
gal_sboia ...80
gal_sepp ..61
gal_seps ..61
gal_sezm ..191
gal_sgp4 ..275
gal_sgp4_t ...281
gal_sgp4gm ...276
gal_sgp4init...277
gal_sgp4rs ...277

General Astrodynamics Library – Reference Manual

322

GAL_SIGN ... 29
gal_sisd ... 84
gal_sisi ... 84
gal_sp00 ...212
gal_sseek ... 85
gal_starpm...226
gal_starpv...228
gal_stget ...257
gal_stnf ...257
gal_strn ... 85
gal_stsadd... 22
GAL_STSADD_BREAKPOINT.................. 22
gal_stsalloc .. 24
gal_stset ...258
gal_stsfree .. 24
gal_stsgetsym .. 24
gal_stsinit .. 25
gal_stsprn... 25
gal_stunf ...259
gal_sxp.. 62
gal_sxpv ... 62
gal_t2azel...191
gal_t2cpv00a ..192
gal_t2cpv00b ..193
gal_t2cpv06a ..194
gal_t2ipv00 ..195
gal_t2pa ...290
gal_ta2ea ...291
gal_ta2ha ...291
gal_tai2tt...109
gal_test_start...................................... 91
gal_test_stop .. 91
gal_tlechksum282
gal_tledec...282
gal_tr .. 62
gal_trim ... 85
gal_triml ... 86
gal_trimr ... 86
gal_trxp ... 63
gal_trxpv ... 63
gal_tt2mtc...110
gal_tu ..259
GAL_TURNAS... 29
GAL_U2R.. 29
gal_ucase ... 86

gal_uncanpv ...259
GAL_UNDEFINED ..30
gal_utc2tai ...111
gal_utc2tt ...111
gal_utc2ut1 ...112
gal_vcv ..91
gal_vdv ..92
gal_viv ..92
gal_vlcom ...63
gal_vlcom3 ...64
gal_vldv ..93
gal_vproj ...65
gal_vrotv ...65
gal_vsv ..93
gal_warnc ...25
gal_warnget ...26
gal_warnisset ..26
gal_warnset ...26
gal_xposeg ...66
gal_xy06 ..213
gal_xys00a ...214
gal_xys00b ...214
gal_xys06a ...215
gal_zp ..66
gal_zpv ..66
gal_zr ..67
general accumulated precession in

longitude ...155
gravitational parameter239, 287
gravity model236, 242, 243, 244, 257, 258,

276
Greenwich Apparent Sidereal Time 165,

166, 167, 168
Greenwich mean sidereal time........163, 164
Gregorian Calendar

Julian Date to ...105
to Julian Date ...98
year ...104

harmonic gravity field238
heliocentric position and velocity308
Hipparcos 220, 221, 222, 223
Hours to radians ..29
hyperbolic anomaly286, 288, 291
inclination ..287, 289
initializes the variables for gal_sgp4277
inverse flattening factor.............................144

Index

323

Julian Epoch ..102
Jupiter

barycentric position and velocity..........297
heliocentric position and velocity .304, 308
mean longitude151

longitude of the ascending mode.....287, 289
Mars

barycentric position and velocity..........298
equation of time.....................................106
ficititious mean sun angle106
gravity model MGM1025250
heliocentric distance108
heliocentric latitude108
heliocentric longitude108
heliocentric position and velocity .305, 308
local solar azimuth108
local solar elevation108
local true solar time...............................107
Mars Coordinated Time 107, 109, 110
mean longitude153
solar declination (planetographic)........108
sub-solar longitude................................108
Sun data...108

matrix
copy.. 35
identity.. 39
inversion... 42
null .. 66
product ... 58
rotation ...57, 59
transpose ... 62

mean anomaly.......................... 287, 288, 289
Mean obliquity of the ecliptic....................182
Mercury

barycentric position and velocity..........298
heliocentric position and velocity .305, 308
mean longitude154

Milliarcseconds to radians.......................... 29
Moon

declination of spin axis172, 174
geocentric position and velocity301
gravity model GLGM1 245, 246, 248
mean anomaly152
mean elongation from the Sun150
mean longitude151
mean longitude of ascending node......155
prime meridian angle172, 174

right ascension of spin axis172, 174
rotation rate172, 174
rotational elements172, 173

MTC See Mars Coordinated Time
Neptune

barycentric position and velocity298
heliocentric position and velocity.305, 308
mean longitude154

NORAD TLE checksum282
Normalize angle.................................... 32, 33
normalizes a gravity model's coefficients

...254, 255, 256
nutation............................. 177, 178, 180, 181
nutation, matrix of 174, 175, 176, 181
parabolic anomaly290
perturbational acceleration

atmospheric drag237
body fixed ...238
point mass ..239
solar radiation pressure239, 240

planet
declination of spin axis187, 189
prime meridian angle....................187, 189
right ascension of spin axis187, 189
rotation rate187, 189

Pluto
barycentric position and velocity299
heliocentric position and velocity..........305

polar coordinates. ..43
polar motion, matrix of206
polynomial

Hermite .. 38, 39
Lagrange ..40

position and velocity vectors15
position-angle 43, 44
precession...182, 207
precession-nutation118, 119, 184, 185, 196,

197, 198, 199, 200, 201, 203, 204, 205
precession-nutation, matrix of204
proper motion....................................221, 226
radians into degrees, arc-minutes, arc-

seconds, and fraction31
Radians to arc seconds29
Radians to degrees29
Radians to hours ...29
Radians to seconds.....................................29
range ...127, 191

General Astrodynamics Library – Reference Manual

324

range rate ..127, 191
reference frames

body fixed to mean equator..................117
Geocentric Celestial Reference Frame

(GCRF)127, 134, 135, 136, 192, 193,
194, 302

ICRF to mean equator126
ICRF to planet body fixed121
IJK to PQW ..169
International Terrestrial Reference Frame

(ITRF) ...191
ITRF to CIRS ...195
mean equator to body fixed..................171
mean equator to ICRF171
planet body fixed to ICRF.....................117
PQW to IJK ..190
SEZ transformation matrix....................191

right ascension ..127
rise and set parameters............................277
r-matrix corresponding to a given r-vector 57
rotational elements186, 188
round double ... 49
Runge-Kutte-Fehlberg50, 51, 52, 53, 54, 55,

56
Saturn

barycentric position and velocity..........299
heliocentric position and velocity .307, 308
mean longitude156

Seconds to radians 29
semi-latus rectum..............................287, 289
semi-major axis143, 289
SGP4 prediction model.............................275
spherical .. 60
spherical coordinates............... 44, 46, 59, 60
spherical terms..................................257, 258
spherical terms normalization factor257
star catalog coordinates228
star data ...222
star position 221, 223, 224
string

center in field ... 71
check is double.. 84
check is integer 84
copy left sub-string 77
copy middle sub-string............................ 77
copy right sub-string 79
delete characters..................................... 74

fill string with character85
find and replace78
find sub-string ..76
force lower case.......................................77
force to upper-case86
insert sub-string75
left justify ..76
pad on left ..78
pad on right ..78
right justify ..76
trim white-space 85, 86

Sun
barycentric position and velocity299
degree of occultation by body...............170
geocentric position and velocity302
mean anomaly152

swap byte order 79, 80
TAI .98. See Time:International Atomic Time
TDB..See Time:Barycentric Dynamical Time
terms un-normalization258
Terrestrial Intermediate Origin212
Test

run, start ...91
run, stop ...91
validate a double precision result...........92
validate an integer result.........................92
validate character result91
validate long double precision result......93
validate string result93

Time
Barycentric Dynamical Time101
Coordinated Universal Time98, 110, 111,

112
International Atomic Time98, 109, 110
Mars Coordinated Time110
Terrestrial Time.............................110, 111
Universal Time112

TIO locator s'..212
tle structure ..282
true anomaly 286, 287, 289, 291
true longitude287, 289
true longitude of periapsis287, 289
TTSee Time:Terrestrial Time
TU factor ..259
two line element cards282
Units of 0.1 microacrsecond to radians29
universal variables.....................................289

Index

325

un-normalized zonal harmonic.................256
un-normalizes a gravity model's coefficients

..243
Update a pv-vector 48
Uranus

barycentric position and velocity..........300
heliocentric position and velocity .307, 308
mean longitude157

UT1See Time:Universal Time
UTC..See Time:Coordinated Universal Time
vector

addition ..45, 48
copy.. 35
cross product ... 49
dot product...44, 47

matrix, product ...58
modulus44, 45, 47
scalar, addition...46
scalar, product 61, 62
subtraction... 45, 47
transpose-matrix, product63
zero ...66

Venus
barycentric position and velocity300
gravity model MGNP120PSAAP252
gravity model MGNP180U252
heliocentric position and velocity.307, 308
mean longitude157

VSOP87 ...296

