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Preface 
This manual documents the use of the General Astrodynamics Library, a numerical 
library for C, C++, and Objective C (Cocoa) programmers. The GAL Project is an 
attempt to gather a comprehensive set of astrodynamics routines in a single library and 
in a consistent form.  
 
The project started life as an extension to the GNU Scientific Library, however once the 
authors discovered the IAUʼs SOFA Library it was decided to drop GSL and adopt 
SOFA. Much of the core functionality of SOFA is directly applicable to Astrodynamics 
applications. The main reason for dropping GSL compatibility was the GSL approach to 
matrix and vector storage – an overly complicated scheme. The GAL implementations 
of the SOFA routines do differ from the official IAU versions. This is mainly due to the 
different mechanism for reporting error and warning codes. 
 
Starting with version 0.6, GAL contains some routines derived from NAIF SPICE Toolkit. 
The NAIF SPICE Toolkit is an excellent piece of work, and has been valuable in 
providing many test cases for GAL. A lot of SPICE overlaps with the functionality of 
GAL, and so only the value add routines have been included in GAL. SPICE is a 
complete eco-system, more like an application than a library. This is not a complaint 
merely an observation. GALʼs implementations of the SPICE routines are low level, and 
without the extensive SPICE safety net, and associated overheads. 
 
The test framework is central to GALʼs design, nearly all routines have a corresponding 
test routine. The test framework allows routines to be upgraded as new techniques are 
published, whilst ensuring that nothing gets broken in the process. Users of the library 
may also use the test routines as examples of how to use the main routines. 
 
The General Astrodynamics Library is free software. The term “free software” is 
sometimes misunderstood – it has nothing to do with price. It is about freedom. It refers 
to your freedom to run, copy, distribute, study, change and improve the software. With 
the General Astrodynamics Library you have all those freedoms. 
 
Paul Willmott 
Somerset, Bermuda 
March 8, 2010 
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The General Astrodynamics Library (GAL) is a collection of routines for numerical 
computing. The routines have been written in C, and present a modern Applications 
Programming Interface (API) for C, C++, and Objective C (Cocoa) programmers, 
allowing wrappers to be written for very high level languages. The source code is 
distributed under the GNU General Public License. 

 What is new in version 0.6? 
 

The GAL Team are sorry to announce that the interfaces for many routines have been 
changed from prior versions of GAL. Many attempts were made to provide for 
backwards compatibility between 0.6 and 0.5, but these attempts just created more 
pain. So it was decided to bite the bullet and fix those areas of GAL that have become 
strained since the release of version 0.1. 
A major change has been the introduction of a status recording mechanism. This 
mechanism replaces the simple integer return codes for a large number of routines. The 
mechanism provides a more robust status (error and warning) reporting mechanism for 
the user. This is particularly important now that routines are getting more complex, and 
the routine calls deeper. 
This change does mean that the GAL and corresponding SOFA routines now have 
different parameters in many cases. Given this fact the opportunity has been taken to 
make other SOFA derived routines more consistent with related but not SOFA derived 
routines. 
The implementation of gravity models have been changed from using global external 
variables to use provider routines. 
The header file gal_const.h has been removed, and itʼs functions split across several 
new header files. 
Version 0.6 sees the introduction of the following new features: 

• JPL and IMCCE ephemerides 
• NAIF SPICE SPK file support 
• Osculating to Mean Keplerian element conversion 
• US Strategic Command Satellite Catalog 
• Gravity model import/export 
• Earth orientation parameters import 
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 Routines available in GAL 
The library covers a wide range of topics in astrodynamics computing. Routines are 
available for the following areas: 

• Vector and Matrix Manipulation 
• Dates and Times 
• Ellipsoids 
• Earth Orientation 
• Reference Frames 
• Ephemerides 
• SGP4 Propagation 
• ODE Integrators 
• Force Models 
• Gravity Models 
• Classical Keplerian Propagators 

The use of these routines is described in this manual. Each chapter provides detailed 
definitions of the functions, including references to the articles upon which the 
algorithms are based. 
The header file gal.h will include all the header files for the complete library. 

 Standards for Fundamental Astronomy Library (SOFA) 
GAL is built upon an independent translation of the IAUʼs SOFA FORTRAN Library. The 
majority of the routines included in release 0.1 of GAL are translations of SOFA 
routines. These routines have not been verified by the IAU and are not supported by the 
IAU or the SOFA Review Board. Any errors introduced by the translation process are 
the responsibility of the GAL Team solely. That said, the GAL Team would like to thank 
Patrick Wallace, past Chair of the SOFA Review Board, for making the SOFA test suite 
available to the GAL Team, and for answering many questions and providing insight into 
the thinking behind the FORTRAN SOFA implementations. Since the release of version 
0.1 of GAL an authorized IAU SOFA C library has been written and released. The 
results of GAL and the IAU C version have been compared, and shown that identical 
results are computed. The entries in this document for the SOFA derived routines are 
based upon the comments in the original SOFA Fortran code. SOFA derived routines 
added from December 31, 2009 onwards are directly derived from the official C SOFA 
versions and are not independent translations of the FORTRAN versions. They have 
however been modified to confirm to GAL formatting standards, status recording 
mechanism, and constant consistency with other routines. The individual header files 
detail any other differences from the code upon which the routine was derived. The user 
should also comply with the SOFA licence for these routines, this licence is included in 
the file SOFA_LICENSE.TXT in the distribution. 
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 GAL is Free Software  
The subroutines in the General Astrodynamics Library are “free software”; this means 
that everyone is free to use them, and to redistribute them in other free programs. The 
library is not in the public domain; it is copyrighted and there are conditions on its 
distribution. These conditions are designed to permit everything that a good cooperating 
citizen would want to do. What is not allowed is to try to prevent others from further 
sharing any version of the software that they might get from you.  
Specifically, we want to make sure that you have the right to share copies of programs 
that you are given which use the General Astrodynamics Library, that you receive their 
source code or else can get it if you want it, that you can change these programs or use 
pieces of them in new free programs, and that you know you can do these things.  
To make sure that everyone has such rights, we have to forbid you to deprive anyone 
else of these rights. For example, if you distribute copies of any code which uses the 
General Astrodynamics Library, you must give the recipients all the rights that you have 
received. You must make sure that they, too, receive or can get the source code, both to 
the library and the code which uses it. And you must tell them their rights. This means 
that the library should not be redistributed in proprietary programs.  
Also, for our own protection, we must make certain that everyone finds out that there is 
no warranty for the General Astrodynamics Library. If these programs are modified by 
someone else and passed on, we want their recipients to know that what they have is 
not what we distributed, so that any problems introduced by others will not reflect on our 
reputation.  
The precise conditions for the distribution of software related to the General 
Astrodynamics Library are found in the GNU General Public License. 
Further information about this license is available from the GNU Project webpage 
Frequently Asked Questions about the GNU GPL,     

http://www.gnu.org/copyleft/gpl-faq.html 

 Obtaining GAL  
The source code for the library can be obtained in different ways, by copying it from a 
friend, or downloading it from the internet.    

http://www.homepage.mac.com/pclwillmott/GAL/index.html 

 No Warranty 
The software described in this manual has no warranty, it is provided “as is”. It is your 
responsibility to validate the behavior of the routines and their accuracy using the 
source code provided, or to purchase support and warranties from commercial 
redistributors. Consult the GNU General Public license for further details (see GNU 
General Public License).  
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Not all routines in the GAL library have corresponding test routines. This is 
usually due to the unavailability of independent third party test cases. Users 
should take particular care when using routines that do not have test routines. 
The GAL Team would greatly appreciate any worked examples that would fill 
some of these gaps. 

 Reporting Bugs  
A list of known bugs can be found in the BUGS file included in the GAL distribution. 
Details of compilation problems can be found in the INSTALL file. If you find a bug which 
is not listed in these files, please report it to vp9mu@amsat.org. All bug reports should 
include:     

• The version number of GAL     
• The hardware and operating system     
• The compiler used, including version number and compilation options     
• A description of the bug behavior     
• A short program which exercises the bug, showing actual and expected results  

It is useful if you can check whether the same problem occurs when the library is 
compiled without optimization. Thank you. Any errors or omissions in this manual can 
also be reported to the same address.  

 Compatibility with C++  
The library header files automatically define functions to have extern “C” linkage when 
included in C++ programs. This allows the functions to be called directly from C++.  

 Deprecated Functions  
From time to time, it may be necessary for the definitions of some functions to be 
altered or removed from the library. In these circumstances the functions will first be 
declared deprecated and then removed from subsequent versions of the library. 
Functions that are deprecated can be disabled in the current release by setting the 
preprocessor definition GAL_DISABLE_DEPRECATED. This allows existing code to be 
tested for forwards compatibility.  

 ANSI C Compliance  
The library is written in ANSI C and is intended to conform to the ANSI C standard 
(C89). It should be portable to any system with a working ANSI C compiler. The library 
does not rely on any non-ANSI extensions in the interface it exports to the user. 
Programs you write using GAL can be ANSI compliant. To avoid namespace conflicts all 
exported function names and variables have the prefix gal_, while exported macros 
have the prefix GAL_.  



General Astrodynamics Library 

14 
 

 Free Software Needs Free Documentation     
The following article was written by Richard Stallman, founder of the GNU Project. The 
biggest deficiency in the free software community today is not in the software - it is the 
lack of good free documentation that we can include with the free software. Many of our 
most important programs do not come with free reference manuals and free introductory 
texts. Documentation is an essential part of any software package; when an important 
free software package does not come with a free manual and a free tutorial, that is a 
major gap. We have many such gaps today. Consider Perl, for instance. The tutorial 
manuals that people normally use are non-free. How did this come about? Because the 
authors of those manuals published them with restrictive terms - no copying, no 
modification, source files not available - which exclude them from the free software 
world. That wasnʼt the first time this sort of thing happened, and it was far from the last. 
Many times we have heard a GNU user eagerly describe a manual that he is writing, his 
intended contribution to the community, only to learn that he had ruined everything by 
signing a publication contract to make it non-free. Free documentation, like free 
software, is a matter of freedom, not price. The problem with the non-free manual is not 
that publishers charge a price for printed copies - that in itself is fine. (The Free 
Software Foundation sells printed copies of manuals, too.) The problem is the 
restrictions on the use of the manual. Free manuals are available in source code form, 
and give you permission to copy and modify. Non-free manuals do not allow this. The 
criteria of freedom for a free manual are roughly the same as for free software. 
Redistribution (including the normal kinds of commercial redistribution) must be 
permitted, so that the manual can accompany every copy of the program, both on-line 
and on paper. Permission for modification of the technical content is crucial too. When 
people modify the software, adding or changing features, if they are conscientious they 
will change the manual too—so they can provide accurate and clear documentation for 
the modified program. A manual that leaves you no choice but to write a new manual to 
document a changed version of the program is not really available to our community. 
Some kinds of limits on the way modification is handled are acceptable. For example, 
requirements to preserve the original authorʼs copyright notice, the distribution terms, or 
the list of authors, are ok. It is also no problem to require modified versions to include 
notice that they were modified. Even entire sections that may not be deleted or changed 
are acceptable, as long as they deal with nontechnical topics (like this one). These 
kinds of restrictions are acceptable because they donʼt obstruct the communityʼs normal 
use of the manual. However, it must be possible to modify all the technical content of 
the manual, and then distribute the result in all the usual media, through all the usual 
channels. Otherwise, the restrictions obstruct the use of the manual, it is not free, and 
we need another manual to replace it. Please spread the word about this issue. Our 
community continues to lose manuals to proprietary publishing. If we spread the word 
that free software needs free reference manuals and free tutorials, perhaps the next 
person who wants to contribute by writing documentation will realize, before it is too 
late, that only free manuals contribute to the free software community. If you are writing 
documentation, please insist on publishing it under the GNU Free Documentation 
License or another free documentation license. Remember that this decision requires 
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your approval - you donʼt have to let the publisher decide. Some commercial publishers 
will use a free license if you insist, but they will not propose the option; it is up to you to 
raise the issue and say firmly that this is what you want. If the publisher you are dealing 
with refuses, please try other publishers. If youʼre not sure whether a proposed license 
is free, write to licensing@gnu.org. You can encourage commercial publishers to sell 
more free, copylefted manuals and tutorials by buying them, and particularly by buying 
copies from the publishers that paid for their writing or for major improvements. 
Meanwhile, try to avoid buying non-free documentation at all. Check the distribution 
terms of a manual before you buy it, and insist that whoever seeks your business must 
respect your freedom. Check the history of the book, and try reward the publishers that 
have paid or pay the authors to work on it. The Free Software Foundation maintains a 
list of free documentation published by other publishers:     

http://www.fsf.org/doc/other-free-books.html 

 SOFA Julian Date Format 
GAL uses Julian Dates stored in standard SOFA two-piece format. The Julian Date is 
apportioned in any convenient way between two arguments. For example, the Julian 
Date 2450123.7 could be expressed in any of these ways, among others:   

2450123.7      0.0     Julian Date method  
2451545.0     -1421.3    J2000 method  
2400000.5    50123.2    Modified Julian Date method 
2450123.5      0.2     date & time method  

The GAL routines are optimized assuming that the first date argument is of a greater 
magnitude than the second argument. The routines will work with either ordering, but 
greatest precision is obtained by using the recommended ordering. 

 Position & Velocity Vectors 
GAL stores position and velocity vectors in a single 2 by 3 array. This allows both 
vectors to be passed to functions as a single entity. The combined position and velocity 
vectorsʼ array is called a pv-vector.  
 pv[0][0] x position 
 pv[0][1] y position 
 pv[0][2] z position 
 
 pv[1][0] x velocity 
 pv[1][1] y velocity 
 pv[1][2] z velocity 
 
A pv-vector may be split into individual p-vectors (1 by 3 array).  
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 Status codes 
As of version 0.6 GAL provides a unified and consistent mechanism for recording and 
reporting errors and warnings to the routines that call the GAL routines. Prior to version 
0.6 errors and warnings were reported via integer function return values. As routines 
became more complex and deeper (i.e. layered calls to more and more GAL routines), 
this mechanism broke down.  
The mechanism introduced in version 0.6 is based upon linked lists encapsulated within 
the GAL status structure. More details about this mechanism can be found in Chapter 2 
– Status Routines. 

 Using GAL with Appleʼs Xcode 
 
By default GAL will be installed in the path /usr/local . Unfortunately this path is 
invisible to the Finder on OS-X systems. However the library is still usable in Xcode 
projects provided that a few steps are taken. 
Inside the Xcode project that you wish to link with GAL, select “Edit Project Settings” 
from the “Project” menu. Select the “Build” tab. Xcode stores separate configurations for 
build and release so you have to do the following in both the build and release 
configurations. Scroll down to the “Linking” section. Under “Other Linker Flags” enter     
–lgal, this tells Xcode to link the project to the GAL library. Under “Header Search 
Paths” enter /usr/local/include . Under “Library Search Paths” enter 
/usr/local/lib . If you installed GAL anywhere apart from the default then change 
the previous paths as necessary. 
When GAL is installed it is compiled for the host machine processor. Xcode by default 
compiles universal binaries, i.e. the same program can run on both Intel and PPC 
machines. GAL cannot be linked to a program compiled as a universal binary. Again in 
the Build tab near the top remove from “Valid Architectures” any references that do not 
refer to the host machine processor. For modern Intel machines you should just select 
“x86_64”. 
Save the changes and that is it, GAL should link correctly now. 
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Chapter 2 – Status Routines 
 
The routines detailed in this chapter are defined in the “gal_status.h” header file. The 
header file “gal_status_t.h” defines the status structure types. These structures should 
only be manipulated by the GAL status routines. Each status structure instance contains 
two lists one for errors and one for warnings. Errors indicate that the called routine did 
not complete successfully or that invalid parameters were passed to a routine. It is the 
responsibility of the user to monitor these and take appropriate actions. Warnings are an 
indication that the routines completed successfully but detected something that the user 
may wish to investigate further. The status recording mechanism allows a routine to 
report many errors and warnings back to the user, it also allows a routine to pass back 
any errors and warnings set by a routine that is called by the routine. The status 
structure also records the filename and the line number of when the error or warning 
was registered. The routine gal_stsprn is useful for debugging. 
 
For completeness the definitions of the structures are listed below: 
 
/* 
 * ----------------------------------------------- 
 * Type definitions for Status recoding structures 
 * ----------------------------------------------- 
 */ 
 
#define GAL_STS_MAXFILENAME (256) 
 
struct snode { 
  int status ; 
  int linenum ; 
  char filename[GAL_STS_MAXFILENAME] ; 
  struct snode *next ; 
} ; 
 
typedef struct snode gal_snode_t ; 
 
typedef struct { 
  int errc ; 
  gal_snode_t *errors ; 
  int warnc ; 
  gal_snode_t *warnings ; 
} gal_status_t ; 
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The header file gal_status.h defines the following constants to represent the GAL error 
and warning codes. The user should use these constants rather than the numeric 
values as the numeric values may be changed in subsequent releases of GAL. 
 
/* 
 * -------------------------------- 
 * Constants for Error Status Codes 
 * -------------------------------- 
 */ 
  
enum { 
 
  GAL_SUCCESS                   =  0,  
  GAL_FAILURE                   =  1, 
  GAL_NOT_FOUND                 =  2, 
  GAL_DISTANCE_OVERRIDEN        =  3, 
  GAL_EXCESSIVE_VELOCITY        =  4, 
  GAL_NO_CONVERGENCE            =  5, 
  GAL_BAD_YEAR                  =  6, 
  GAL_BAD_MONTH                 =  7, 
  GAL_BAD_DAY                   =  8, 
  GAL_BAD_FRACTION              =  9, 
  GAL_ALLOC_FAILED              = 10, 
  GAL_INVALID_ID                = 11, 
  GAL_OUTSIDE_DATE_RANGE        = 12, 
  GAL_STEPSIZE_UNDERFLOW        = 13, 
  GAL_STEPSIZE_TOO_SMALL        = 14, 
  GAL_OUT_OF_RANGE              = 15, 
  GAL_NULL_VECTOR               = 16, 
  GAL_SYSTEM_ERROR              = 17, 
  GAL_INVALID_ECCENTRICITY      = 18, 
  GAL_INVALID_SMA               = 19, 
  GAL_INVALID_SEMI_LATUS_RECTUM = 20, 
  GAL_EPOCH_SUB_ORBITAL         = 21, 
  GAL_SATELLITE_DECAYED         = 22, 
  GAL_NULL_POINTER              = 23, 
  GAL_INVALID_INDEX             = 24, 
  GAL_INVALID_ERROR_CODE        = 25, 
  GAL_INVALID_WARNING_CODE      = 26, 
  GAL_EXCESSIVE_FACTORIAL       = 27, 
  GAL_INVALID_FLATTENING        = 28, 
  GAL_ARITHMETIC_EXCEPTION      = 29, 
  GAL_INVALID_MEAN_MOTION       = 30, 
  GAL_MAX_STEPS_EXCEEDED        = 31, 
  GAL_NOT_GRAVITY_MODEL         = 32, 
  GAL_INVALID_DOUBLE            = 33, 
  GAL_INVALID_INTEGER           = 34, 
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  GAL_FILE_NOT_OPEN             = 35, 
  GAL_INVALID_DEGREE            = 36, 
  GAL_INVALID_ORDER             = 37, 
  GAL_INVALID_FORMAT            = 38, 
  GAL_INVALID_STRING            = 39, 
  GAL_UNEXPECTED_EOF            = 40, 
  GAL_DATES_NOT_CONTIGUOUS      = 41, 
  GAL_FILE_NOT_FOUND            = 42, 
  GAL_INVALID_DATA_TYPE_FORMAT  = 43, 
  GAL_INVALID_DATE_RANGE        = 44, 
  GAL_COEFFICIENTS_NOT_FOUND    = 45, 
  GAL_STSADD_BREAKPOINT         = 46, 
  GAL_OPEN_FILE_FAILED          = 47, 
  GAL_INVALID_COORDINATE        = 48, 
  GAL_CANNOT_INVERT_MATRIX      = 49, 
  GAL_UNKNOWN_SPK_TYPE          = 50, 
  GAL_INVALID_GM                = 51, 
  GAL_ZERO_POSITION             = 52, 
  GAL_ZERO_VELOCITY             = 53, 
  GAL_NON_CONIC_MOTION          = 54, 
  GAL_INVALID_SIZE              = 55, 
  GAL_INVALID_STEP_SIZE         = 56, 
  GAL_DIVIDE_BY_ZERO            = 57, 
  GAL_VECTORS_NOT_ORTHOGONAL    = 58, 
   
/* 
 * ---------------------------------- 
 * Constants for Warning Status Codes 
 * ---------------------------------- 
 */ 
   
  GAL_DUBIOUS_YEAR        = 10000, 
  GAL_NO_OCCULTATION      = 10001, 
  GAL_PARTIAL_OCCULTATION = 10002, 
  GAL_TOTAL_OCCULTATION   = 10003, 
  GAL_NEVER_SETS          = 10004, 
  GAL_NEVER_RISES         = 10005, 
  GAL_NOT_0_TO_9          = 10006, 
  GAL_MAX_DEGREE_SET      = 10007, 
  GAL_MAX_ORDER_SET       = 10008, 
  GAL_START_DATE_SET      = 10009, 
  GAL_END_DATE_SET        = 10010, 
  GAL_WARN_BAD_DAY        = 10011 
 
} ; 
 
#define GAL_MAXSYMLEN 64 
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g a l _ e r r c                               [0.6]  
 
Return the number of errors set in the error list of an initialized status structure instance.   

int 
gal_errc 
( 
  gal_status_t *status  
) ; 

 
This routine returns the count of the number of errors recorded in the status structure 
instance. 

 
Usage: 
… 
j = foo ( a, b, status ) ; 
if ( gal_errc ( status ) ) { 
/* handle error here */ 
} 
 

g a l _ e r r g e t                              [0.6]  
 
This routine returns the error code recorded at the specified index in the error list of an 
initialized status structure instance.  

int 
gal_errget 
( 
  int n, 
  gal_status_t *status  
) ; 

 
This routine returns the error code recorded at the specified index. The index of the first 
entry is one (1). 
 
g a l _ e r r i s s e t                           [0.6]  
 
This routine checks if a specific error code is set.  

int 
gal_errisset 
( 
  int err, 
  gal_status_t *status  
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) ;  
 

If the specified error code is set in the error list of the status structure instance then the 
routine returns 1, if the code is not set then 0 is returned. 

 
Usage: 
… 
j = foo ( a, b, status ) ; 
if ( gal_errisset ( GAL_INVALID_DOUBLE, status ) ) { 
/* handle invalid double error here */ 
} 
 
g a l _ e r r s e t                            [0.6]  
 
Set an error code in the error list of an initialized status structure instance.  

void 
gal_errset 
( 
  char *filename, 
  int linenum, 
  int err, 
  gal_status_t *status  
) ; 

 
This routine sets an error code in the error list of an initialized status structure instance. 
GAL error codes must be in the range 0-9999, user defined error codes must be in the 
range 20000-29999.  
 
The routine only records the filename and line number first occurrence of an error code. 
The exception to this rule is for the GAL_STSADD_BREAKPOINT  error code for which 
the most recent filename and line number are stored.  

 
Usage: 
 
/* Alloc failed, set error code */ 
gal_errset ( __FILE__, __LINE__, GAL_ALLOC_FAILED, status ) ; 
 
g a l _ s t s a d d                            [0.6]  
 
Add the contents of one status structure instance to another instance. 

void 
gal_stsadd 
( 
  gal_status_t *status1,  
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  gal_status_t *status2  
) ; 

 
This routine adds all the error and warning codes recorded in the STATUS1 instance to 
the error and warning lists in the structure instance STATUS2. Duplicates are 
discarded. It is recommended that the error code GAL_STSADD_BREAKPOINT is 
added to the returning status structure after the call to gal_stsadd. This enables the user 
to trace the source of the error. 

 
Usage: 
 
int 
foo_top 
( 
  int a, 
  int b, 
  gal_status_t *status 
) 
 
{ 
 
  gal_status_t *stat ; 
 
  int i ; 
 
/* Initialize status structure */ 
 
  gal_stsinit ( status ) ; 
 
/* Create status structure for calls */ 
 
  if ( (stat = gal_stsalloc () ) == NULL ) { 
    gal_errset ( GAL_ALLOC_FAILED, status ) ; 
    return 0 ; 
  } 
 
/* Call a routine */ 
 
  i = foo ( a, b, stat ) ; 
 
/* Add all errors reported by foo to status */ 
 
  if ( gal_errc ( stat ) ) { 
    gal_stsadd ( stat, status ) ;  
    gal_errset ( __FILE__, __LINE,  
    GAL_STSADD_BREAKPOINT, status ) ; 
  } 
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/* Free private status structure */ 
 
  gal_stsfree ( stat ) ; 
 
  return i ; 
 
} 
 

g a l _ s t s a l l o c                              [0.6]  
 
Creates an empty status recording structure.   

gal_status_t * 
gal_stsalloc 
( 
) ;   

 
This routine creates a new GAL status structure instance. The instance is initialized as 
empty. Each routine that is passed a pointer to the structure as a parameter should 
initialize the instance with a call to gal_stsinit. 
 
The status instance must be de-allocated by using the gal_stsfree routine. 
 
g a l _ s t s f r e e                            [0.6]  
 
Free status structure created by gal_stsalloc. 

void 
gal_stsfree 
( 
  gal_status_t *status  
) ; 

 
This routine de-allocates the specified status structure instance. This routine must be 
called instead of free as the status instance allocates the error and warning lists 
dynamically which must also be de-allocated. 
 
g a l _ s t s g e t s y m                           [0.6]  
 
This routine gets a symbolic string for the specified error or warning code. 

int 
gal_stsgetsym 
( 
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  int n, 
  char *sym 
) ; 

 
This routine gets a symbolic string for the specified error or warning code N. The symbol 
is the GAL constant name for the error or warning code. The routine returns 
GAL_SUCCESS if it found the specified error or warning code, and GAL_NOT_FOUND 
otherwise. Also see the routine gal_stsprn. 
 
g a l _ s t s i n i t                            [0.6]  
 
This routine initializes a previously created status structure instance. 

void 
gal_stsinit 
( 
  gal_status_t *status  
) ; 

 
This routine initializes a status structure instance previously created with gal_stsalloc. If 
the instance contains any error or warning codes then they are removed. 
 
g a l _ s t s p r n                            [0.6]  
 
This routine writes the contents of the error and warning lists of a status structure 
instance to the selected file. 

int 
gal_stsprn 
( 
  FILE *file,  
  gal_status_t *status  
) ;  

 
This routine writes the contents of the error and warning lists to the selected file. The file 
must be open for writing on entry to the routine, and closed after the call to gal_stsprn 
completes. The errors are written first in symbolic form (see gal_stsgetsym) , followed 
by the warnings again in symbolic form. If no errors or warnings are recorded in the 
status structure instance then nothing is written. This routine is intended as a debugging 
tool, and when used as such stderr would be the logical choice for the file. 
 
g a l _ w a r n c                            [0.6]  
 
Return number of warnings set in the warning list of an initialized status structure 
instance.   
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int 
gal_warnc 
( 
  gal_status_t *status  
) ;  

 
This routine returns the count of the number of warnings recorded in the status structure 
instance. 
 
g a l _ w a r n g e t                            [0.6]  
 
This routine returns the warning code recorded at the specified index in the warning list 
of an initialized status structure instance. 

int 
gal_warnget 
( 
  int n, 
  gal_status_t *status  
) ;  

 
This routine returns warning code recorded at the specified index. The index of the first 
entry is one (1). 
 
g a l _ w a r n i s s e t                            [0.6]  
 
This routine checks if a specific warning code is set. 

int 
gal_warnisset 
( 
  int warn, 
  gal_status_t *status  
) ;   

 
If the specified warning code is set in the warning list of the status structure instance 
then the routine returns 1, if the code is not set then 0 is returned. 
 
g a l _ w a r n s e t                            [0.6]  
 
Set an warning code in the warning list of an initialized status structure instance. 

void 
gal_warnset 
( 
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  int warn, 
  gal_status_t *status  
) ; 

 
This routine sets a warning code in the warning list of an initialized status structure 
instance. GAL warning codes must be in the range 10000-19999, user defined warning 
codes must be in the range 30000-39999. 
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Chapter 3 – Math Routines 
 
The routines detailed in this chapter are defined in the gal_math.h header file. 
 
The header file gal_math_macros.h (included by gal_math.h) defines the following 
constants and commonly used macros: 
 
/* 
 * ------------------- 
 * Numerical Constants 
 * ------------------- 
 */ 
 
#define GAL_PI     (3.141592653589793238462643)    /* Pi                                       */   
#define GAL_2PI    (6.283185307179586476925287)    /* 2 * Pi                                   */   
#define GAL_R2H    (3.819718634205488058453210)    /* Radians to hours                         */   
#define GAL_R2D    (57.29577951308232087679815)    /* Radians to degrees                       */   
#define GAL_R2S    (13750.98708313975701043156)    /* Radians to seconds                       */   
#define GAL_R2AS   (206264.8062470963551564734)    /* Radians to arc seconds                   */   
#define GAL_H2R    (0.2617993877991494365385536)   /* Hours to radians                         */   
#define GAL_D2R    (1.745329251994329576923691e-2) /* Degrees to radians                       */   
#define GAL_S2R    (7.272205216643039903848712e-5) /* Seconds to radians                       */   
#define GAL_AS2R   (4.848136811095359935899141e-6) /* Arc seconds to radians                   */   
#define GAL_TURNAS (1296000.0)                     /* Arc seconds in a full circle             */   
#define GAL_U2R    ( GAL_AS2R / 1e7 )              /* Units of 0.1 microarcsecond to radians   */   
#define GAL_MAS2R  ( GAL_AS2R / 1e3 )              /* Milliarcseconds to radians                      
*/ 
 
/*   
 * Macro to simulate the FORTRAN SIGN function   
 */   
 
#define GAL_SIGN( a, b) fabs ( a ) * ( ( ( b ) >= 0.0 ) ? 1.0 : -1.0 )   
 
/* 
 * Macro for Maximum value 
 */ 
 
#define GAL_MAX( a, b ) ( a ) >= ( b ) ? ( a ) : ( b ) 
 
 
/* 
 * Macro for Minimum value 
 */ 
 
#define GAL_MIN( a, b ) ( a ) <= ( b ) ? ( a ) : ( b ) 
 
 
/* 
 * Macro for Even check 
 */ 
  
#define GAL_EVEN( a ) ( ( a ) % 2 == 0 )  
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/* 
 * Macro for Odd check 
 */ 
  
#define GAL_ODD( a ) ( ( a ) % 2 != 0 )  
 
 
/* 
 * Macro for DNNT 
 */ 
  
#define GAL_DNNT( x ) ( ( int ) ( ( x ) >= 0.0 ? floor ( ( x ) + 0.5 ) : -floor ( 0.5 - ( x ) ) )  
) 
 
/* 
 * Macro for BRCKTD 
 */ 
 
#define GAL_BRCKTD( number, end1, end2 ) \ 
( ( end1 ) < ( end2 ) ) ? \ 
 GAL_MAX ( ( end1 ), GAL_MIN ( ( end2 ), ( number ) ) ) \ 
: \ 
 GAL_MAX ( ( end2 ), GAL_MIN ( ( end1 ), ( number ) ) )  
 
 
/* 
 * Constant for undefined results 
 */ 
 
#define GAL_UNDEFINED DBL_MAX 
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g a l _ a 2 a f                               [0.1]  
 
Decompose angle in radians into degrees, arc-minutes, arc-seconds, and fraction.   

void   
gal_a2af   
(   
  int ndp,   
  double angle,   
  char *sign,   
  int idmsf[4]   
) ;     

 
On entry NDP specifies the required resolution, and is interpreted as follows:   
    
      NDP        resolution  
  
       :      ...0000 00 00   
      -7         1000 00 00   
      -6          100 00 00   
      -5           10 00 00   
      -4            1 00 00   
      -3            0 10 00   
      -2            0 01 00   
      -1            0 00 10   
       0            0 00 01   
       1            0 00 00.1   
       2            0 00 00.01   
       3            0 00 00.001   
       :            0 00 00.000...   
    
The largest positive useful value for NDP is determined by the size of angle, the format 
of double precision floating-point numbers on the target platform, and the risk of 
overflowing IDMSF[3]. On a typical platform, for angles up to 2π, the available floating-
point precision might correspond to NDP equals 12. However, the practical limit is 
typically NDP equals 9, set by the capacity of a 32-bit IDMSF[3]. ANGLE is the angle in 
radians. On return SIGN contains '+' or '-', and IDMSF contains degrees, arc-minutes, 
arc-seconds, and fraction. The absolute value of ANGLE may exceed 2π. In cases 
where it does not, it is up to the caller to test for and handle the case where ANGLE is 
very nearly 2π and rounds up to 360 degrees, by testing for IDMSF[0] equals 360 and 
setting IDMSF[0-3] to zero.   
 
g a l _ a 2 t f               [0.1] 
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Decompose angle in radians into hours, minutes, seconds, and fraction.   

void   
gal_a2tf   
(   
  int ndp,   
  double angle,   
  char *sign,   
  int ihmsf[4]   
) ;   

 
On entry NDP specifies required resolution, and is interpreted as follows:   
    
      NDP        resolution  
  
       :      ...0000 00 00   
      -7         1000 00 00   
      -6          100 00 00   
      -5           10 00 00   
      -4            1 00 00   
      -3            0 10 00   
      -2            0 01 00   
      -1            0 00 10   
       0            0 00 01   
       1            0 00 00.1   
       2            0 00 00.01   
       3            0 00 00.001   
       :            0 00 00.000...   
 
ANGLE is the angle in radians. On return SIGN contains '+' or '-', and IHMSF contains 
hours, minutes, seconds, and fraction. The largest useful value for NDP is determined 
by the size of angle, the format of double floating-point numbers on the target platform, 
and the risk of overflowing IHMSF[3]. On a typical platform, for angle up to 2π, the 
available floating-point precision might correspond to NDP equals 12. However, the 
practical limit is typically NDP equals 9, set by the capacity of a 32-bit IHMSF[3]. The 
absolute value of ANGLE may exceed 2π. In cases where it does not, it is up to the 
caller to test for and handle the case where ANGLE is very nearly 2π and rounds up to 
24 hours, by testing for IHMSF[0] equals 24 and setting IHMSF[0-3] to zero.   
 
g a l _ a n p            [0.1] 
 
Normalize angle into the range 0 <= a < 2π.   

double   
gal_anp   
(   



Chapter 3 – Math Routines 

33 
 

  double a   
) ;   

On entry A is the angle in radians. The routine returns the normalized angle.  
 
g a l _ a n p m           [0.1]  
 
Normalize angle into the range -π <= A < +π.   

double   
gal_anpm   
(   
  double a   
) ;   

A is the angle in radians.  
  
 g a l _ c 2 s            [0.1] 
 
p-vector to spherical coordinates.   

void   
gal_c2s   
(   
  double p[3],   
  double *theta,   
  double *phi   
) ;   

On return THETA and PHI contain the longitude and latitude angles in radians 
respectively. P can have any magnitude; only its direction is used. If P is null, zero 
THETA and PHI are returned. At either pole, zero THETA is returned.   
 
 g a l _ c h b i n t         [0.6] 
 
Given the coefficients for the Chebyshev expansion of a polynomial, this returns the 
value and derivative of the polynomial evaluated at the input X. 

void  
gal_chbint 
( 
  double *cp,  
  int degp,  
  double *x2s,  
 double x,  
  double *p, 
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  double *dpdx  
) ; 
 

 On entry: 
   
  *CP  Pointer DEGP+1 Chebyshev polynomial coefficients.  
 DEGP Degree of polynomial.  
 *X2S Transformation parameters of polynomial.  
 X  Value for which the polynomial is to be evaluated  
 
Returned: 
 
  *P  Value of the polynomial at X.  
 *DPDX Derivative of the polynomial at X.  
 
References: 
  
 "The Chebyshev Polynomials" by Theodore J. Rivlin  
  
  "CRC Handbook of Tables for Mathematics"  
 
 g a l _ c h b v a l           [0.6] 
 
Given the coefficients for the Chebyshev expansion of a polynomial, this returns the 
value of the polynomial evaluated at the input X. 

void  
gal_chbval 
( 
  double *cp,  
  int degp,  
  double *x2s,  
 double x,  
  double *p 
) ; 

 On entry: 
   
  *CP  Pointer DEGP+1 Chebyshev polynomial coefficients.  
 DEGP Degree of polynomial.  
 *X2S Transformation parameters of polynomial.  
 X  Value for which the polynomial is to be evaluated  
 
Returned: 
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  *P  Value of the polynomial at X.  
 
References: 
  
 "The Chebyshev Polynomials" by Theodore J. Rivlin  
  
  "CRC Handbook of Tables for Mathematics"  
 
 g a l _ c p            [0.1] 
 
Copy a P vector. 

void   
gal_cp   
(   
  double p[3],   
  double c[3]   
) ;   

On return C contains a duplicate of P. 
 
 g a l _ c p v            [0.1] 
 
Copy a PV vector   

void   
gal_cpv   
(   
  double pv[2][3],   
  double c[2][3]   
) ;   

On return C contains a duplicate of PV. 
 
 g a l _ c r             [0.1] 
 
Copy an R matrix.   

void   
gal_cr   
(   
  double r[3][3],   
  double c[3][3]   
) ;   
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On return C contains a duplicate of R. 
 
 g a l _ d 2 t f            [0.1] 
 
Decompose days to hours, minutes, seconds, and fraction.   

void   
gal_d2tf   
(   
  int ndp,   
  double days,   
  char *sign,   
  int ihmsf[4]   
) ;   

On entry NDP contains the resolution, and DAYS contain the interval in days. On return 
SIGN contains ʻ+ʼ or ʻ-ʻ, and IHMSF contain the hours, minutes, seconds, and fraction. 
NDP is interpreted as follows: 
   
      NDP        resolution  
  
       :      ...0000 00 00   
      -7         1000 00 00   
      -6          100 00 00   
      -5           10 00 00   
      -4            1 00 00   
      -3            0 10 00   
      -2            0 01 00   
      -1            0 00 10   
       0            0 00 01   
       1            0 00 00.1   
       2            0 00 00.01   
       3            0 00 00.001   
       :            0 00 00.000... 
  
The largest positive useful value for NDP is determined by the size of DAYS, the format 
of double floating-point numbers on the target platform, and the risk of overflowing 
IHMSF[3].  On a typical platform, for DAYS up to 1.0, the available floating-point 
precision might correspond to NDP equals 12. However, the practical limit is typically 
NDP equals 9, set by the capacity of a 32-bit IHMSF[3]. The absolute value of days may 
exceed 1.0. In cases where it does not, it is up to the caller to test for and handle the 
case where days is very nearly 1.0 and rounds up to 24 hours, by testing for IHMSF[0] 
equals 24 and setting IHMSF[0-3] to zero.  
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g a l _ f a c e x p _ a l l o c         [0.3] 
 
This routine computes the factorial exponent lookup table required by the gal_factorial 
routine. 

gal_facexp_t * 
gal_facexp_alloc 
( 
  int max_factorial, 
  gal_status_t *status 
) ; 

Returns a pointer to the factorial exponent lookup table if successful, returns NULL 
otherwise. MAX_FACTORIAL determines the maximum factorial for which exponents 
are determined. If an error occurs then the applicable error code is set. 
 
 g a l _ f a c e x p _ f r e e          [0.3] 
 
Free factorial exponent lookup table. 

void 
gal_facexp_free 
( 
  gal_facexp_t *facexp 
) ; 

This routine frees a factorial exponent lookup table previously allocated by the 
gal_facexp_alloc routine. On entry the pointer FACEXP contains a pointer to a table 
previously allocated by gal_facexp_alloc. 
 
 g a l _ f a c t o r i a l             [0.3] 
 
Computes the factorial N!, or the value of N! / M!, or N! x M!. 

void 
gal_factorial 
( 
  gal_facexp_t *facexp, 
  int n, 
  int m, 
  int s, 
  long double *f, 
  gal_status_t *status  
) ; 

If the requested factorial is beyond the range of the lookup table then the error code 
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GAL_OUT_OF_RANGE is set. If the requested factorial is greater than 1754!, then the 
error code GAL_EXCESSIVE_FACTORIAL is set. The pointer FACEXP points to a 
lookup table allocated by gal_facexp_alloc. Parameters N and M must be greater than 
or equal to zero. On return when S equals 0, F contains N!, when S equals -1, f contains 
N! divided by M!, and when S equals +1, F contains the product of N! and M!. On 
compilers that define long double to be the same precision as double the maximum 
factorial or result that can be returned is 170!, otherwise it is 1754!. 
  
References: 
 
Calculation of Factorials, M. L. Charnow and Jesse L. Maury, Jr., NASA TM X-55733 
GSFC X-542-66-460, September 1966 
 
 g a l _ h r m e s p           [0.6] 
 
Evaluate, at a specified point, an Hermite interpolating polynomial for a specified set of 
coordinate pairs whose abscissas are equally spaced.    

void 
gal_hrmesp  
( 
  int n,  
  double first,  
  double step,  
 double *yvals,  
  double x,  
  double *work,  
  double *f,  
 double *df, 
  gal_status_t *status 
) ;   

Given: 
   
  N   Number of points defining the polynomial.  
 FIRST  First abscissa value.  
 STEP  Step size.  
 *YVALS  Ordinate and derivative values.  
 X   Point at which to interpolate the polynomial.  
 *WORK  Work space array.  
 
Returned: 
 
 *F   Interpolated function value at X.  
 *DF   Interpolated function's derivative at X.  
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 *STATUS  Pointer to status structure 
 
 g a l _ h r m i n t           [0.6] 
 
Evaluate, at a specified point, an Hermite interpolating polynomial for a specified set of 
coordinate pairs whose abscissas are unequally spaced.   

void 
gal_hrmint  
( 
  int n,  
  double *xvals,  
 double *yvals,  
  double x,  
  double *work,  
  double *f,  
 double *df, 
  gal_status_t *status 
) ; 

 Given: 
   
  N   Number of points defining the polynomial. 
 *XVALS  Abscissa values.  
 *YVALS  Ordinate and derivative values.  
 X   Point at which to interpolate the polynomial.  
 *WORK  Work space array.  
 
Returned: 
 
 *F   Interpolated function value at X.  
 *DF   Interpolated function's derivative at X.  
 *STATUS  Pointer to status structure 
 
 g a l _ i r             [0.1] 
 
Initialize an r-matrix to the identity matrix.   

void   
gal_ir   
(   
  double r[3][3]   
) ;   

On return R contains an identity matrix. 
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 g a l _ l g r e s p           [0.6] 
 
Evaluate a Lagrange interpolating polynomial for a specified set of coordinate pairs 
whose first components are equally spaced, at a specified abcissisa value.  

double  
gal_lgresp 
( 
  int n,  
  double first,  
  double step,  
 double *yvals,  
  double *work,  
  double x, 
  gal_status_t *status 
) ; 

 Given: 
   
  N   Number of points defining the polynomial.  
 FIRST  First abscissa value.  
 STEP  Step size.  
 *YVALS  Ordinate and derivative values.  
 X   Point at which to interpolate the polynomial.  
 *WORK  Work space array.  
 
Returned: 
 
 *STATUS  Pointer to status structure 
 GAL_LGRESP Result   
 
 g a l _ l g r i n t           [0.6] 
 
Evaluate a Lagrange interpolating polynomial for a specified set of coordinate pairs, at a 
specified abcissisa value.  

double 
gal_lgrint  
( 
  int n,  
  double *xvals,  
  double *yvals,  
 double *work,  
  double x, 
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  gal_status_t *status 
) ; 

 Given: 
   
  N   Number of points defining the polynomial.  
 *XVALS  Abscissa values.  
 *YVALS  Ordinate values.  
 X   Point at which to interpolate the polynomial.  
 *WORK  Work space array.  
 
Returned: 
 
 *STATUS  Pointer to status structure 
  GAL_LGRINT Result 
 
 g a l _ l s t l e d           [0.6] 
 
Given a number X and an array of non-decreasing numbers, find the index of the largest 
array element less than or equal to X.  

int  
gal_lstled 
( 
  double x,  
  int n,  
  double *array 
) ; 

Given: 
 
 X   value to search against 
 N   number of elements in array 
 *ARRAY  array to search   
    
Returned: 
 
 GAL_LSTLED  Index of element found, -1 if not found   
 
An array of double precision numbers is given. The array ARRAY[I] (0 <= I < N ) forms a 
non-decreasing sequence of numbers. Given a real number X, there will be a last one of 
these numbers that is less than or equal to X. This routine finds the index LSTLED such 
that ARRAY[LSTLED] is that number. If X is not greater than ARRAY[0], LSTLED will be 
set to -1.  
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 g a l _ l s t l t d            [0.6] 
 
Given a number X and an array of non-decreasing numbers, find the index of the largest 
array element less than X.  

int  
gal_lstltd 
( 
  double x,  
  int n,  
  double *array 
) ; 

Given: 
 
 X   value to search against 
 N   number of elements in array 
 *ARRAY  array to search   
    
Returned: 
 
 GAL_LSTLTD  Index of element found, -1 if not found   
 
An array of double precision numbers is given. The array ARRAY[I] (0 <= I < N ) forms a 
non-decreasing sequence of numbers. Given a real number X, there will be a last one of 
these numbers that is less than X. This routine finds the index LSTLTD such that 
ARRAY[LSTLTD] is that number. If X is not greater than ARRAY[0], LSTLTD will be set 
to -1.  
 
 g a l _ m i n v 6           [0.6] 
 
6 x 6 matrix inversion.   

void   
gal_minv6     
(   
  double m[6][6], 
  double r[6][6], 
  gal_status_t *status   
) ;  

On return R contains the inversion of matrix M. 
 
 g a l _ p 2 p v            [0.1] 
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Extend a p-vector to a pv-vector by appending a zero velocity.   

void   
gal_p2pv   
(   
  double p[3],   
  double pv[2][3]   
) ;    

On return PV[0][0-2] contains P[0-2], and PV[1][0-2] contains zero. 
 
 g a l _ p 2 s            [0.1] 
 
p-vector to spherical polar coordinates.   

void   
gal_p2s   
(   
  double p[3],   
  double *theta,   
  double *phi,   
  double *r   
) ;   

On return THETA and PHI contain the longitude and latitude angles in radians 
respectively, and R contains the radial distance. If P is null, zero THETA, PHI and R are 
returned. At either pole, zero THETA is returned.   
 
 g a l _ p a p            [0.1] 
 
Position-angle from two p-vectors.   

double   
gal_pap   
(   
  double a[3],   
  double b[3]   
) ;   

Given A the direction of the reference point, and B the direction of the point whose 
position angle is required, the function returns the position angle of B with respect to A 
in radians. The result is the position angle, in radians, of direction B with respect to 
direction A. It is in the range -π to +π. The sense is such that if B is a small distance 
"north" of A the position  angle is approximately zero, and if B is a small distance "east" 
of A the position angle is approximately + π/2. A and B need not be unit vectors. Zero is 
returned if the two directions are the same or if either vector is null. If A is at a pole, the 
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result is ill-defined.   
 
 g a l _ p a s          [0.1]    
 
Position-angle from spherical coordinates.   

double  
gal_pas   
(   
  double al,   
  double ap,   
  double bl,   
  double bp  
) ;   

Given AL the longitude of point A (e.g. right ascension), AP the latitude of point A (e.g. 
declination), BL the longitude of point B, and BP the latitude of point B. All angles in 
radians. The result is the bearing (position angle), in radians, of point B with respect to 
point A. It is in the range -π to +π. The sense is such that if B is a small distance "east" of 
point A, the bearing is approximately + π/2. Zero is returned if the two points are 
coincident.   
 
 g a l _ p d p          [0.1]   
 
p-vector dot product.   

double   
gal_pdp   
(   
  double a[3],   
  double b[3]   
) ;   

Returns the dot product of vectors A and B. 
 
 g a l _ p m          [0.1]   
 
Modulus of p-vector.   

double   
gal_pm   
(   
  double p[3] 
) ;   
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Returns the modulus of the p-vector P.  
 
 g a l _ p m p          [0.1]   
 
p-vector subtraction.   

void   
gal_pmp   
(   
  double a[3],   
  double b[3],   
  double amb[3]   
) ;   

On return p-vector AMB contains p-vector A minus p-vector B.  
 
 g a l _ p n           [0.1]   
 
Convert a p-vector into modulus and unit vector.   

void   
gal_pn   
(   
  double p[3],   
  double *r,   
  double u[3]   
) ;   

On return the p-vector U contains the unit vector of p-vector P, and R contains the 
modulus of p-vector P. If P is null, the result is null. Otherwise the result is a unit vector.   
 
 g a l _ p p p             [0.1]   
 
p-vector addition.   

void   
gal_ppp   
(   
  double a[3],   
  double b[3],   
  double apb[3]   
) ;   

On return p-vector APB contains the sum of p-vectors A and B. 
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 g a l _ p p s p            [0.1]   
 
p-vector plus scaled p-vector.   

void   
gal_ppsp   
(   
  double a[3],   
  double s,   
  double b[3],   
  double apsb[3]   
) ; 

On return p-vector APSB contains the sum of p-vector A and the product of scalar S and 
p-vector B. 
 
 g a l _ p v 2 p            [0.1]   
 
Discard velocity component of a pv-vector.   

void   
gal_pv2p   
(   
  double pv[2][3],   
  double p[3]   
) ;   

On return the p-vector P contains a copy of the position vector portion of pv-vector PV. 
 
 g a l _ p v 2 s            [0.1]   
 
Convert position/velocity from Cartesian to spherical coordinates.   

void   
gal_pv2s   
(   
  double pv[2][3],   
  double *theta,   
  double *phi,   
  double *r,   
  double *td,   
  double *pd,   
  double *rd   
) ;   

On return THETA contains the longitude angle, PHI contains the latitude angle, R 



Chapter 3 – Math Routines 

47 
 

contains the radial distance, TD contains the rate of change of THETA, PD contains the 
rate of change of PHI, and RD contains the rate of change of R. All angles are in 
radians. If the position part of PV is null, THETA, PHI, TD and PD are indeterminate. 
This is handled by extrapolating the position through unit time by using the velocity part 
of PV. This moves the origin without changing the direction of the velocity component. If 
the position and velocity components of PV are both null, zeroes are returned for all six 
results. If the position is a pole, THETA, TD and PD are indeterminate. In such cases 
zeroes are returned for THETA, TD and PD.   
 
 g a l _ p v d p v            [0.1]   
 
Dot product of two pv-vectors.   

void   
gal_pvdpv   
(   
  double a[2][3],   
  double b[2][3],   
  double adb[2]   
) ;   

On return pv-vector ADB contains the dot product of pv-vectors A and B. If the position 
and velocity components of the two pv-vectors are (AP, AV) and (BP, BV), the result, A . 
B, is the pair of numbers (AP . BP, AP . BV + AV . BP). The two numbers are the dot-
product of the two p-vectors and its derivative.   
 
 g a l _ p v m             [0.1]  
 
Modulus of pv-vector.   

void   
gal_pvm   
(   
  double pv[2][3],   
  double *r,   
  double *s   
) ;   

On return R and S contain the modulus of the position and velocity components of the 
pv-vector PV respectively. 
 
 g a l _ p v m p v            [0.1]   
 
Subtract one pv-vector from another.   
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void   
gal_pvmpv   
(   
  double a[2][3],   
  double b[2][3],   
  double amb[2][3]   
) ;   

On return the pv-vector AMB contains pv-vector A minus pv-vector B. 
 
 g a l _ p v p p v            [0.1]   
 
Add one pv-vector to another.   

void   
gal_pvppv   
(   
  double a[2][3],   
  double b[2][3],   
  double apb[2][3]   
) ;   

On return the pv-vector APB contains the sum of pv-vectors A and B. 
 
 g a l _ p v u             [0.1]   
 
Update a pv-vector.   

void   
gal_pvu   
(   
  double dt,   
  double pv[2][3],   
  double upv[2][3]   
) ;   

"Update" means refer the position component of the vector to a new epoch DT time 
units from the existing epoch. The time units of DT must match those of the velocity. 
The velocity component is unchanged.  
 
 g a l _ p v u p            [0.1]   
 
Update a pv-vector, discarding the velocity component.   

void   
gal_pvup   
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(   
  double dt,   
  double pv[2][3],   
  double p[3]   
) ;    

"Update" means refer the position component of the vector to a new epoch DT time 
units from the existing epoch. The time units of DT must match those of the velocity.   
 
 g a l _ p v x p v            [0.1]   
 
Cross product of two pv-vectors.   

void   
gal_pvxpv   
(   
  double a[2][3],   
  double b[2][3],   
  double axb[2][3]   
) ;    

On return the pv-vector AXB contains the cross product of pv-vectors A and B. If the 
position and velocity components of the two pv-vectors are (AP, AV) and (BP, BV), the 
result, A x B, is the pair of vectors (AP x BP, AP x BV + AV x BP). The two vectors are 
the cross-product of the two p-vectors and its derivative.   
 
 g a l _ p x p             [0.1]   
 
p-vector cross product.   

void   
gal_pxp   
(   
  double a[3],   
  double b[3],   
  double axb[3]   
) ;   

On return the p-vector AXB contains the cross product of p-vectors A and B. 
 
 g a l _ r i n t             [0.6]   
 
Round double to nearest integer value.   

double 
gal_rint 
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( 
  double d 
) ; 

This routine returns the double D rounded to the nearest integer value .  
 
 g a l _ r k f             [0.3]   
 
This routine integrates an ordinary deferential equation using the Runge-Kutte-Fehlberg 
method. 

void gal_rkf 
( 
  double ystart[], 
  int nvar, 
  double x1, 
  double x2, 
  double eps, 
  double h1, 
  double hmin, 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  void ( *rkfs ) ( double [], double [], int, double, double, 
double [], double [], void ( * ) ( double, double [], double [], 
int *, gal_status_t * ), int *, gal_status_t * ) , 
  int *derivsp, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 YSTART   Starting y values 
 NVAR     Number of equations to integrate 
 X1       Starting X value 
 X2       Ending X value 
 EPS     Accuracy 
 H1      First guess step-size 
 HMIN   Minimum step-size 
 DERIVS    User defined function for calculating the right hand side derivatives 
 RKFS      Required Runge-Kutte-Fehlberg stepper routine 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return YSTART contains the ending Y values. If an error occurs then the applicable 
error code is set in STATUS. 
 
References: 
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NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg October 1970 
 
 g a l _ r k f c k s 4 5            [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg-Cash-Karp 4(5) step 

void  
gal_rkfcks45 
( 
  double y[], 
  double dydx[], 
  int n, 
  double x, 
  double h, 
  double yout[], 
  double yerr[], 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 Y     Dependent variable vector 
 DYDX     Derivative of dependent variable vector 
 N        Number of equations to integrate 
 X       Independent variable value 
 H       Step size 

DERIVS    User defined function for calculating the right hand side derivatives 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return the variables are set as follows: 
 
 YOUT    Ending Y values 
 YERR      Errors 
 
If an error occurs then the applicable error code is set in STATUS. 
 
The parameters (but not the code) (Cash-Karp version) are from “Numerical Recipes” 
for RKF45. These values are taken from the c code and not from the table on page 717 
which has different values. The Cash-Karp values seem to make the routine a bit faster 
compared to the Fehlberg values. 
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References: 
 
Numerical Recipes in C The Art of Scientific Computing Second Edition by William H. 
Press, Saul A. Teukolsky, William T. Vettering & Brian P. Flannery Pages 710 - 722 
 
 
 g a l _ r k f q s            [0.3] 
 
This routine takes one "quality-controlled" Runge-Kutte-Fehlberg step 

void 
gal_rkfqs 
( 
  double y[], 
  double dydx[], 
  int n, 
  double *x, 
  double htry, 
  double eps, 
  double yscal[], 
  double *hdid, 
  double *hnext, 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  void ( *rkfs ) ( double [], double [], int, double, double, 
double [], double [], void ( * ) ( double, double [], double [], 
int *, gal_status_t * ), int *, gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

On entry the variables are set as follows: 
 
 Y     Dependent variable vector 
 N     Number of equations to integrate 
 X     Independent variable value 
 HTRY   Step size to attempt 
 EPS     Accuracy 

DERIVS   User defined function for calculating the right hand side derivatives 
  RKFS   Required Runge-Kutte-Fehlberg stepper routine 
  DERIVSP   Pointer to parameters structure for derivs routine 
 
On return the variables are set as follows: 
 
 DYDX   Derivative of dependent variable vector 
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 YSCAL   Used for error scaling 
 HDID    Step size accomplished 
 HNEXT   Estimated next step size 
 
If an error occurs then the applicable error code is set in STATUS. 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 
 g a l _ r k f s 4 5          [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 4(5) step 

void 
gal_rkfs45 
( 
  double y[], 
  double dydx[], 
  int n, 
  double x, 
  double h, 
  double yout[], 
  double yerr[], 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
 Y     Dependent variable vector 
 DYDX     Derivative of dependent variable vector 
 N        Number of equations to integrate 
 X       Independent variable value 
 H       Step size 

DERIVS    User defined function for calculating the right hand side derivatives 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return the variables are set as follows: 
 
 YOUT    Ending Y values 
 YERR      Errors 
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If an error occurs then the applicable error code is set in STATUS. 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 
 g a l _ r k f s 5 6          [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 5(6) step 

void  
gal_rkfs56 
( 
  double y[], 
  double dydx[], 
  int n, 
  double x, 
  double h, 
  double yout[], 
  double yerr[], 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

 
On entry the parameters are set as follows: 
 
 Y     Dependent variable vector 
 DYDX     Derivative of dependent variable vector 
 N        Number of equations to integrate 
 X       Independent variable value 
 H       Step size 

DERIVS    User defined function for calculating the right hand side derivatives 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return the variables are set as follows: 
 
 YOUT    Ending Y values 
 YERR      Errors 
 
If an error occurs then the applicable error code is set in STATUS. 
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References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 
 g a l _ r k f s 6 7         [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 6(7) step 

 
void 
gal_rkfs67 
( 
  double y[], 
  double dydx[], 
  int n, 
  double x, 
  double h, 
  double yout[], 
  double yerr[], 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
 Y     Dependent variable vector 
 DYDX     Derivative of dependent variable vector 
 N        Number of equations to integrate 
 X       Independent variable value 
 H       Step size 

DERIVS    User defined function for calculating the right hand side derivatives 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return the variables are set as follows: 
 
 YOUT    Ending Y values 
 YERR      Errors 
 
If an error occurs then the applicable error code is set in STATUS. 
 
References: 
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NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
 
 g a l _ r k f s 7 8         [0.3] 
 
This routine takes a Runge-Kutte-Fehlberg 7(8) step 

void 
gal_rkfs78 
( 
  double y[], 
  double dydx[], 
  int n, 
  double x, 
  double h, 
  double yout[], 
  double yerr[], 
  void ( *derivs ) ( double, double [], double [], int *, 
gal_status_t * ), 
  int *derivsp, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
 Y     Dependent variable vector 
 DYDX     Derivative of dependent variable vector 
 N        Number of equations to integrate 
 X       Independent variable value 
 H       Step size 

DERIVS    User defined function for calculating the right hand side derivatives 
 DERIVSP   Pointer to parameters structure for DERIVS routine 
 
On return the variables are set as follows: 
 
 YOUT    Ending Y values 
 YERR      Errors 
 
If an error occurs then the applicable error code is set in STATUS. 
 
References: 
 
NASA Technical Report TR R-352, Some Experimental Results Concerning The Error 
Propagation in Runge-Kutte type integration formulas by Erwin Fehlberg, October 1970 
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 g a l _ r m 2 v            [0.1]   
 
Express an r-matrix as an r-vector.   

void   
gal_rm2v   
(   
  double r[3][3],   
  double w[3]   
) ;    

 
On return W contains the rotation vector. A rotation matrix describes a rotation through 
some angle about some arbitrary axis called the Euler axis. The "rotation vector" 
returned by this routine has the same direction as the Euler axis, and its magnitude is 
the angle in radians. The magnitude and direction can be separated by means of the 
routine gal_pn. If R is null, so is the result. If R is not a rotation matrix the result is 
undefined. R must be proper (i.e. have a positive determinant) and real orthogonal 
(inverse equals transpose). The reference frame rotates clockwise as seen looking 
along the rotation vector from the origin.   
 
 g a l _ r v 2 m            [0.1]   
 
Form the r-matrix corresponding to a given r-vector.   

void   
gal_rv2m   
(   
  double w[3],   
  double r[3][3]   
) ;   

 
On return the r-matrix R contains the rotation matrix. A rotation matrix describes a 
rotation through some angle about some arbitrary axis called the Euler axis. The 
rotation vector supplied to this routine has the same direction as the Euler axis, and its 
magnitude is the angle in radians. If W is null, the unit matrix is returned. The reference 
frame rotates clockwise as seen looking along the rotation vector from the origin.   
 
 g a l _ r x             [0.1]   
 
Rotate an r-matrix about the X-axis.   

void   
gal_rx   
(   
  double phi,   
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  double r[3][3]   
) ;   

On return the r-matrix R has been rotated by the angle PHI about the X axis. The angle 
PHI is in radians. Sign convention: the matrix can be used to rotate the reference frame 
of a vector. Calling this routine with positive phi incorporates in the matrix an additional 
rotation, about the X-axis, anticlockwise as seen looking towards the origin from positive 
X. 
 
 g a l _ r x p              [0.1]  
 
Multiply a p-vector by an r-matrix.   

void   
gal_rxp   
(   
  double r[3][3],   
  double p[3],   
  double rp[3]   
) ;     

On return the p-vector RP contains the product of the r-matrix R and the p-vector P. 
 
 g a l _ r x p v            [0.1]   
 
Multiply a pv-vector by an r-matrix.   

void   
gal_rxpv   
(   
  double r[3][3],   
  double pv[2][3],   
  double rpv[2][3]   
) ;   

On return the pv-vector RPV contains the product of the r-matrix R and the pv-vector 
PV. 
 
 g a l _ r x r             [0.1]   
 
Multiply two r-matrices.   

void   
gal_rxr   
(   
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  double a[3][3],   
  double b[3][3],   
  double atb[3][3]   
) ; 

On return the r-matrix ATB contains the product of the r-matrix A and the r-matrix B. 
 
 g a l _ r y             [0.1]   
 
Rotate an r-matrix about the y-axis.   

void   
gal_ry   
(   
  double theta,   
  double r[3][3]   
) ;   

On return the r-matrix R has been rotated by the angle THETA about the y-axis. The 
angle THETA is in radians. Sign convention: the matrix can be used to rotate the 
reference frame of a vector. Calling this routine with positive theta incorporates in the 
matrix an additional rotation, about the y-axis, anticlockwise as seen looking towards the 
origin from positive y. 
 
 g a l _ r z             [0.1]   
 
Rotate an r-matrix about the z-axis.  

void   
gal_rz   
(   
  double psi,   
  double r[3][3]   
) ;   

On return the r-matrix R has been rotated by the angle PSI about the z-axis. The angle 
PSI is in radians. Sign convention: the matrix can be used to rotate the reference frame 
of a vector. Calling this routine with positive psi incorporates in the matrix an additional 
rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive 
z.  
 
 g a l _ s 2 c             [0.1]   
  
Convert spherical coordinates to Cartesian.   
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void   
gal_s2c   
(   
  double theta,   
  double phi,   
  double c[3]   
) ;   

On return the p-vector C contains the direction cosines, given THETA the longitude 
angle, and PHI the latitude angle. All angles in radians. 
 
g a l _ s 2 p             [0.1]   
 
Convert spherical polar coordinates to p-vector.   

void   
gal_s2p   
(   
  double theta,   
  double phi,   
  double r,   
  double p[3]   
) ;   

On return the p-vector P contains the polar coordinates given THETA the longitude 
angle, PHI the latitude angle, and R the radial distance. The angles are both in radians. 
 
g a l _ s 2 p v            [0.1]   
 
Convert position/velocity from spherical to Cartesian coordinates.   

void   
gal_s2pv   
(   
  double theta,   
  double phi,   
  double r,   
  double td,   
  double pd,   
  double rd,   
  double pv[2][3]   
) ;    

On return the pv-vector PV contains the position and velocity in Cartesian coordinates 
given THETA the longitude angle, PHI the latitude angle, R the radial distance, TD the 
rate of change of THETA, PD the rate of change of PHI, and RD the rate of change of R. 
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g a l _ s 2 x p v            [0.1]   
 
Multiply a pv-vector by two scalars.   

void   
gal_s2xpv   
(   
  double s1,   
  double s2,   
  double pv[2][3],   
  double spv[2][3]   
) ;   

On return the position component of pv-vector SPV contains the product of the scalar 
S1 and the position component of pv-vector PV, and the velocity component of pv-
vector SPV contains the product of scalar S2 and the velocity component of pv-vector 
PV. 
 
g a l _ s e p p              [0.1] 
 
Angular separation between two p-vectors.   

double   
gal_sepp   
(   
  double a[3],   
  double b[3] 
) ;   

The routine returns the angular separation between the p-vectors A and B in radians 
(always positive). If either vector is null, a zero result is returned. The angular separation 
is most simply formulated in terms of scalar product. However, this gives poor accuracy 
for angles near zero and π. The algorithm uses both cross product and dot product, to 
deliver full accuracy whatever the size of the angle.   
 
g a l _ s e p s            [0.1]   
 
Angular separation between two sets of spherical coordinates.   

double   
gal_seps   
(   
  double al,   
  double ap,   
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  double bl,   
  double bp   
) ; 

Returns the angular separation between first longitude and latitude (AL, AP) and the 
second longitude and latitude (BL, BP). All angles in radians. 
 
g a l _ s x p              [0.1]  
 
Multiply a p-vector by a scalar.   

void   
gal_sxp   
(   
  double s,   
  double p[3],   
  double sp[3]   
) ;   

On return the p-vector SP contains the product of the scalar S and the p-vector P. 
 
g a l _ s x p v             [0.1]  
   
Multiply a pv-vector by a scalar.   

void   
gal_sxpv   
(   
  double s,   
  double pv[2][3],   
  double spv[2][3]   
) ;   

On return the pv-vector SPV contains the product of the scalar S and the pv-vector PV. 
 
g a l _ t r             [0.1]   
 
Transpose an r-matrix.   

void   
gal_tr   
(   
  double r[3][3],   
  double rt[3][3]   
) ;   
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On return the r-matrix RT contains the transpose of the r-matrix R. 
 
g a l _ t r x p             [0.1]   
  
Multiply a p-vector by the transpose of an r-matrix.   

void   
gal_trxp   
(   
  double r[3][3],   
  double p[3],   
  double trp[3]   
) ;    

On return the p-vector TRP contains the product of the transpose of the r-matrix R and 
the p-vector P. 
 
g a l _ t r x p v             [0.1]  
 
Multiply a pv-vector by the transpose of an r-matrix.   

void   
gal_trxpv   
(   
  double r[3][3],   
  double pv[2][3],   
  double trpv[2][3]   
) ;   

On return the pv-vector TRPV contains the product of the transpose of the r-matrix R 
and the pv-vector PV. 
 
 g a l _ v l c o m            [0.6]   
 
Compute a vector linear combination of two p-vectors.   

void 
gal_vlcom  
( 
  double a,  
  double v1[3],  
  double b,  
 double v2[3],  
  double sum[3] 
) ; 
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Given: 
 

A  Coefficient of V1  
 V1  Vector in 3-space  
 B  Coefficient of V2  
 V2  Vector in 3-space  
 
Returned: 
 
 SUM Linear Vector Combination A*V1 + B*V2  
 
 g a l _ v l c o m 3           [0.6]   
 
Compute a vector linear combination of three p-vectors.   

void 
gal_vlcom3  
( 
  double a,  
  double v1[3],  
  double b,  
  double v2[3],  
  double c,  
  double v3[3],  
  double sum[3] 
) ; 

Given: 
 

A  Coefficient of V1  
 V1  Vector in 3-space  
 B  Coefficient of V2  
 V2  Vector in 3-space  
 C  Coefficient of V3  
 V3  Vector in 3-space  
 
Returned: 
 
 SUM Linear Vector Combination A*V1 + B*V2 + C*V3 
 
 g a l _ v p r o j            [0.6]   
 
Find the projection of one p-vector onto another p-vector.   

void 
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gal_vproj 
( 
  double a[3],  
  double b[3],  
  double p[3] 
) ; 

Given: 
 
A  The vector to be projected.  

 B  The vector onto which A is to be projected.  
  
Returned: 

 
P  The projection of A onto B.  

 
 g a l _ v r o t v            [0.6]   
 
Rotate a vector about a specified axis vector by a specified angle and return the rotated 
vector

void   
gal_vrotv  
(  
  double v[3],  
  double axis[3],  
  double theta,  
  double r[3] 
) ; 

 
Given: 
 
 V  Vector to be rotated.  
 AXIS Axis of the rotation.  
 THETA Angle of rotation (radians).  
 
Returned: 
 
 R  Result of rotating V about AXIS by THETA.  
 
 g a l _ x p o s e g           [0.6]   
 
Transpose a matrix of arbitrary size (in place, the matrix need not be square).  

void 
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gal_xposeg  
( 
  double *matrix,  
  int nrow,  
  int ncol, 
  double *xposem 
) ; 

Given: 
 
 *MATRIX  Matrix to be transposed 
 NROW  number of rows 
 NCOL  number of columns 
 
Returned: 
 
 *XPOSEM  Transposed matrix (can overwrite MATRIX)  
 
 g a l _ z p             [0.1]   
 
Zero a p-vector.   

void   
gal_zp   
(   
  double p[3]   
) ;   

On return the all elements of the p-vector P are set to zero. 
 
 g a l _ z p v             [0.1]   
 
Zero a pv-vector.   

void   
gal_zpv   
(   
  double pv[2][3]   
) ;   

On return all the elements of the pv-vector PV are set to zero. 
 
 g a l _ z r             [0.1]   
 
Initialize an r-matrix to the null matrix.   
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void   
gal_zr   
(   
  double r[3][3]   
) ;    

On return all elements of the r-matrix R are set to zero.  
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Chapter 4 - File Manipulation 
 
The routines detailed in this chapter are defined in the gal_pstrings.h header file. The 
gal_pstrings sub-library was originally simply a set string manipulation routines. 
However, starting with version 0.6 of GAL the scope has been extended to file 
manipulation. Due to a lack on consensus on a better name for the expanded sub-
library, the pstrings name has been retained.  
 
The pstrings sub-library provides the low level support for NAIF DAF files. Double 
Precision Array File, DAF, is an architecture for files that stores arrays of double 
precision data. The NAIF SPICE SPK, CK, and binary PCK files use the DAF 
architecture. DAF files may be stored in big or little endian format, the GAL routines will 
convert the endian format automatically as necessary to match the machineʼs native 
endian format. 
 
The header file gal_daf_t.h defines the following types used by the DAF support 
routines: 
 
/* 
 * DAF summary structure definition 
 */ 
  
struct sum_t 
{ 
  char         *aname      ; /* Array name                                */ 
  int          istart      ; /* Start address ( index )                   */ 
  int          iend        ; /* End address   ( index )                   */ 
  int          count       ; /* Number of elements in array               */ 
  int          *icon       ; /* Integer summary constants                 */ 
  double       *dcon       ; /* Double summary constants                  */ 
  struct sum_t *next       ; /* Pointer to next summary record            */ 
  struct sum_t *previous   ; /* Pointer to previous summary record        */ 
} ; 
 
typedef struct sum_t gal_dafsum_t ; 
 
/* 
 * DAF workspace structure definition 
 */ 
  
typedef struct { 
  FILE         *fp         ; /* File pointer                              */ 
  char         idw[9]      ; /* Identification word                       */ 
  char         *reserved   ; /* Pointer to reserved blocks ( maybe text ) */ 
  int          rsize       ; /* Size of reserved blocks in bytes          */ 



General Astrodynamics Library 

70 
 

  int          nd          ; /* Number of doubles in summary              */ 
  int          ni          ; /* Number of integers in summary             */ 
  int          nc          ; /* Number of summary block in bytes          */ 
  int          ss          ; /* Length of summary block in words ( dbl )  */ 
  int          maxs        ; /* Maximum number of summaries per block     */ 
  char         inam[61]    ; /* Internal name of array file               */  
  int          fsb         ; /* First summary block                       */ 
  int          lsb         ; /* Last summary bock                         */ 
  int          nfb         ; /* Next free block                           */ 
  int          swapbytes   ; /* 1 if endian format different from machine */ 
  gal_dafsum_t *fsum       ; /* Pointer to first summary structure        */   
  gal_dafsum_t *lsum       ; /* Pointer to last summary structure         */   
} gal_daf_t ; 
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g a l _ c e n t e r             [0.1] 
 
Center string in field. 

char * 
gal_center 
( 
  char *s1, 
  char *s2, 
  int  l 
) ; 

This routine copies the source string S2 to S1, then centers the trimmed string in a field 
of length L. Returns a pointer to the start of the target string. The target string S1 must 
be at least the same length as the source string S2.  
 
 g a l _ d a f c l o s e            [0.6] 
 
Close an open NAIF DAF file. 

void 
gal_dafclose 
( 
  gal_daf_t *daf 
) ; 

Given:   
 
 *DAF Pointer to DAF structure 
 
The routine gal_dafclose must be used to close the DAF file and deallocate memory. 
 
 g a l _ d a f o p e n            [0.6] 
 
Open a NAIF DAF file and create linked list lookup mechanism. 

gal_daf_t * 
gal_dafopen  
( 
  char *filename, 
  gal_status_t *status  
) ; 

Given:   
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 *FILENAME  Pointer to filename 
  
Returned:   
 
 *STATUS   Pointer to status structure 
 *GAL_DAFOPEN  Pointer to DAF instance 
 
The routine gal_dafclose must be used to close the DAF file and deallocate memory. 
This routine handles files on both big and little endian format.  Any changes in format 
are transparent to the user. The data structure returned is defined and described in the 
gal_daf_t.h header file. This also describes the structure of the double linked list that 
can be used to locate the required array within the file. The structure of the reserved 
blocks is application specific and may contain text or data. For this reason no endian 
format change is done for these blocks. 
 
References: 
 

Reference for the low-level file structure known as Double Precision Array File, which 
is used to implement the high-level SPICE SPK and CK kernels. Last revised on 
2008 JAN 17 by B. V. Semenov. 

 
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html 

 
 g a l _ d a f r e a d            [0.6] 
 
Read a block from an array in a NAIF DAF file. 

int 
gal_dafread 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  int address, 
  int num, 
  double *block, 
  gal_status_t *status  
) ;    

Given:   
 
 *DAF  Pointer to the DAF structure 
 *SUM  Pointer to summary for required array 
 ADDRESS  Index of first element required in array  
 NUM  Maximum number of elements to return 
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Returned:   
 
 *BLOCK  Array to hold required elements 
 *STATUS  Pointer to status structure 
 GAL_DAFREAD Number of elements returned 
 
The index number follows the C language convention, the first element of an array has 
an index value of zero. This routine handles files on both big and little endian format. 
Any changes in format are transparent to the user. 
 
References: 
 

Reference for the low-level file structure known as Double Precision Array File, which 
is used to implement the high-level SPICE SPK and CK kernels. Last revised on 
2008 JAN 17 by B. V. Semenov. 

 
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html 

 
 g a l _ d a f s e e k            [0.6] 
 
Seek for a particular word in a NAIF DAF file. 

void 
gal_dafseek 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  int address, 
  gal_status_t *status  
) ; 

Given:   
 
 *DAF  Pointer to the DAF structure 
 *SUM  Pointer to summary for required array 
 ADDRESS  Index of first element required in array  
 
Returned:   
 
 *STATUS  Pointer to status structure 
 
The index number follows the C language convention, the first element of an array has 
an index value of zero.  
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References: 
 

Reference for the low-level file structure known as Double Precision Array File, which 
is used to implement the high-level SPICE SPK and CK kernels. Last revised on 
2008 JAN 17 by B. V. Semenov. 

 
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html 

 
 g a l _ d e l e t e             [0.1] 
 
Delete characters from string. 

char * 
gal_delete 
( 
  char *s, 
  int  n, 
  int  l 
) ;    

This routine deletes a sequence of characters of length L, starting a position N. A 
pointer to the start of the target string S is returned. 
 
 g a l _ e n d i a n            [0.6] 
 
Determine the endian format of the machine. 

int 
gal_endian 
( 
) ; 

If the machine is big-endian then the routine returns the constant GAL_ENDIAN_BIG, 
otherwise it returns the constant GAL_ENDIAN_LITTLE 
 
 g a l _ f s c a n             [0.6] 
 
This routine unpacks a data record using a FORTRAN style format definition. 

void 
gal_fscan 
( 
  char *form, 
  char *source, 
  gal_status_t *status, 
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  ... 
);  

On entry FORMAT contains the format definition, SOURCE the data string. If the format 
contains errors then the error code GAL_INVALID_FORMAT is set. On return the 
decoded data is stored in the variables pointed to by the parameters that follow the 
STATUS parameter. The FORMAT string follows the FORTRAN conventions (but not 
precisely or comprehensively: 
 
In means integer in field of size n 
 
Dn.d means double in field of size n with implied d decimal places. 
 
En.d means double in exponent form in field of size n with implied d decimal places for 
mantissa. The routine will also process D exponents in the same way. 
 
Gn.d if the string contains an 'E' exponent then means the same as En.d, otherwise it 
means that same as Dn.d 
 
An means a character string of length n 
 
Xn means skip n characters 
 
C means character 
 
Nothing else is allowed in the format definition. Where the data contains a decimal point 
in a different place than the format, then the data takes precedence over the format. 
Spaces in numeric values are assumed to mean zero. The destination variables must 
only be double, integer, or character array. Any character arrays must be large enough 
to hold the string and the string terminator character. 
 
 g a l _ i n s e r t              [0.1] 
 
Insert sub-string into string. 

char * 
gal_insert 
( 
  char *s1, 
  char *s2, 
  int  n 
) ;    

This routine inserts the sub-string S2 into string S1 at the specified character position N. 
Returns a pointer to the start of the target string. 
 



General Astrodynamics Library 

76 
 

 g a l _ i n s t r            [0.1]   
 
Find sub-string in string. 

int   
gal_instr 
( 
  char *s1, 
  char *s2 
) ;    

This routine finds the first occurrence of the sub-string S2 in the string S1. It returns the 
position of the first character of the sub-string in S1. If the sub-string cannot be found 
then -1 is returned. 
 
 g a l _ j u s t l            [0.1] 
 
Left justify string. 

char * 
gal_justl 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    

This routine copies the source string S2 to S1, then trims white-space from the 
beginning and end of the string. If the resultant string length is less than L then spaces 
are added on the right hand side to bring the string to length L. If the resultant string 
length is greater than L then the left-most L characters of the resultant string are 
returned in S1. 
 
 g a l _ j u s t r            [0.1] 
 
Right justify string. 

char * 
gal_justr 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    
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This routine copies the source string S2 to S1, then trims white-space from the 
beginning and end of the string. If the resultant string length is less than L then spaces 
are added on the left hand side to bring the string to length L. If the resultant string 
length is greater than L then the right-most L characters of the resultant string are 
returned in S1. The target string S1 must be at least the same length as the source. 
 
 g a l _ l c a s e            [0.6] 
 
Convert string to lower case. 

char * 
gal_lcase 
( 
  char *s1, 
  char *s2 
) ;    

This routine copies the source string S2 to S1, then converts all upper case characters 
to lower case. The target string S1 must be at least the same length as the source. 
 
 g a l _ l e f t s t r            [0.1] 
 
Copy sub-string from left of string. 

char * 
gal_leftstr 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    

This routine copies the left-most L characters from S2 to S1. If the length of S2 is less 
than or equal to L then S2 is copied to S1 unchanged. The target string S1 must be at 
least the same length as the source string S2. 
 
 g a l _ m i d s t r            [0.1] 
 
Copy sub-string from middle of string. 

char * 
gal_midstr 
( 
  char *s1, 
  char *s2, 
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  int  n, 
  int  l 
) ;    

This routine copies the L characters from S2 to S1 starting at character position N in S2. 
If there are less than L characters remaining in the string S2 from position N onwards 
then all the available characters are returned. 
 
 g a l _ p a d l            [0.1] 
 
Pad string with spaces on left. 

char * 
gal_padl 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    

This routine copies a maximum of L characters from the right side of S2 to S1. If the 
length of S2 is less than L then the left hand side is padded with spaces up to the 
required length. The target string S1 must be at least the same length as the source 
string S2. 
 
 g a l _ p a d r            [0.1] 
 
Pad string with spaces on right. 

char * 
gal_padr 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    

This routine copies a maximum of L characters from the left side of S2 to S1. If the 
length of S2 is less than L then the right hand side is padded with spaces up to the 
required length L. The target string S1 must be at least the same length as the source 
string S2. 
 
 g a l _ r e p l a c e           [0.1] 
  
Find and replace sub-string in string. 
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char * 
gal_replace 
( 
  char *s1, 
  char *s2, 
  char *s3, 
  char *s4 
) ;    

This routine copies the source string S2 to the target string S1. Then replaces all 
occurrences of the sub-string S3 in S1 with sub-string S4. 
 
  g a l _ r i g h t s t r           [0.1]  
 
Copy right sub-string from string. 

char * 
gal_rightstr 
( 
  char *s1, 
  char *s2, 
  int  l 
) ;    

This routine copies the right-most L characters from S2 to S1. If the length of S2 is less 
than or equal to L then S2 is copied to S1 unchanged. The target string S1 must be at 
least the same length as the source string S2. 
 
  g a l _ s b o d            [0.6]  
 
Swap byte order of double variable. 

void 
gal_sbod 
( 
  double *d 
) ;    

This routine swaps the byte ordering of the double variable D, i.e. change from big 
endian to little endian format and vice versa. 
 
 g a l _ s b o d a            [0.6]  
 
Swap byte order of an array of double variables. 
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void 
gal_sboda 
( 
  double *d, 
  int n 
) ;    

This routine swaps the byte ordering of a double variable array D, i.e. change from big 
endian to little endian format and vice versa. On entry N contains the number of 
elements in the array 
 
  g a l _ s b o i            [0.6]   
 
Swap byte order of integer variable. 

void 
gal_sboi 
( 
  int *i 
) ;    

This routine swaps the byte ordering of the integer variable I, i.e. change from big 
endian to little endian format and vice versa. 
 
  g a l _ s b o i a            [0.6]   
 
Swap byte order of an array of integer variables. 

void 
gal_sboia 
( 
  int *i, 
  int n 
) ;    

This routine swaps the byte ordering of a double variable array I, i.e. change from big 
endian to little endian format and vice versa. On entry N contains the number of 
elements in the array 
 
 g a l _ s g f c o n            [0.6] 
 
Given the descriptor for a generic segment in a DAF file associated with DAF, fetch 
from the constants partition of the segment the double precision numbers from FIRST to 
LAST.

void 
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gal_sgfcon 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  int first,  
  int last,  
  double *values, 
  gal_status_t *status 
) ;   

Given: 
    
  *DAF  Pointer to open DAF work space  
  *SUM  Pointer to selected DAF segment summary 
 FIRST Index of the first value to fetch from the constants section of the 

generic segment 
 LAST Index of the last value to fetch from the constants section of the 

generic segment 
  
Returned: 
  
 *VALUES  Array of constant values obtained from the constants section of the 

 generic segment  
 *STATUS  Pointer to status structure 
 
References: 
 

The NAIF Web site providing SPICE data for various missions, additional SPICE 
utilities and documentation can be found here: 
  
http://naif.jpl.nasa.gov  

 
 g a l _ s g f p k t            [0.6] 
 
Given the descriptor for a generic segment in a DAF file associated with HANDLE, fetch 
the data packets indexed from FIRST to LAST from the packet partition of the generic 
segment.  

void 
gal_sgfpkt 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  int first,  
  int last,  
  double *values, 
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  int *ends, 
  gal_status_t *status 
) ;   

Given: 
    
  *DAF  Pointer to open DAF work space  
  *SUM  Pointer to selected DAF segment summar 
 FIRST  The index of the first data packet to fetch 
 LAST  The index of the last data packet to fetch 
  
Returned: 
  
 *VALUES  The data packets that have been fetched  
 *ENDS   An array of pointers to the ends of the packets  
 *STATUS  Pointer to status structure 
 
References: 
 

The NAIF Web site providing SPICE data for various missions, additional SPICE 
utilities and documentation can be found here: 
  
http://naif.jpl.nasa.gov  

 
 g a l _ s g f r v i            [0.6] 
 
Given the handle of a DAF and the descriptor associated with a generic DAF segment 
in the file, find the reference value associated with the value X and it's index.  

void 
gal_sgfrvi 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  double x,  
  double *value,  
  int *indx,  
  gal_status_t *status 
) ; 

Given: 
    
  *DAF  Pointer to open DAF work space  
 
  *SUM  Pointer to selected DAF segment summary 
 
 X Value for which the associated reference value and reference index 
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is requested.  
  
Returned: 
 
 VALUE  Reference value associated with the input value X 
  
 INDX Index of VALUE within the set of reference values for the generic 

segment. This value may be used to obtain a particular packet of 
data from the generic segment. 

  
 *STATUS Pointer to status structure. If the value is not found then the error 

code GAL_NOT_FOUND is set. 
 
References: 
 

The NAIF Web site providing SPICE data for various missions, additional SPICE 
utilities and documentation can be found here: 
  
http://naif.jpl.nasa.gov  

 
 g a l _ s g m e t a           [0.6] 
 
Obtain the value of a specified generic segment meta data item.  

void 
gal_sgmeta 
( 
  gal_daf_t *daf, 
  gal_dafsum_t *sum, 
  int mnemon,  
  int *value, 
  gal_status_t *status 
) ; 

Given: 
    
  *DAF  Pointer to open DAF work space  
 
  *SUM  Pointer to selected DAF segment summary 
 
 MNEMON Mnemonic used to represent the desired piece of meta data.  
  
Returned: 
 
 VALUE Value of the meta data item associated with the mnemonic 

MNEMON that is in the generic segment specified by DAF and 
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SUM.  
  
 *STATUS  Pointer to status structure 
 
References: 
 

The NAIF Web site providing SPICE data for various missions, additional SPICE 
utilities and documentation can be found here: 
  
http://naif.jpl.nasa.gov  

 
 g a l _ s i s d            [0.6] 
 
Check that string could represent a double value. 

char * 
gal_sisd 
( 
  char *source, 
  gal_status_t *status 
) ;   

If the string does not contain a valid representation of a double value then the error code 
GAL_INVALID_DOUBLE is set. On return all white space is trimmed from both ends of 
the source string. On return any 'D', 'd', or 'E' characters in the source string are 
replaced with 'e'. In the event of an internal error NULL is returned. This routine only 
checks for valid characters. It does not check for number components that are out of 
sequence, e.g. "6-7e89+e99" would pass the test. 
 
 g a l _ s i s i             [0.6] 
 
Check that string could represent an integer value. 

char * 
gal_sisi 
( 
  char *source, 
  gal_status_t *status 
) ;   

If the string does not contain a valid representation of a integer value then the error 
code GAL_INVALID_INTEGER is set. On return all white space is trimmed from both 
ends of the source string. In the event of an internal error NULL is returned.  
 
 g a l _ s s e e k            [0.6] 
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This routine seeks for the specified string in a text file then skips the specified number of 
lines. 

void 
gal_sseek 
( 
  FILE *fp, 
  char *token, 
  int  skip, 
  gal_status_t *status 
) ;   

Given:   
 
 *FP   Pointer to an open text file 
 *TOKEN  Token string to find 
 SKIP  Number of lines to skip 
 
If the specified token string is not found in the file then the error code 
GAL_NOT_FOUND is set. If the file pointer does not point to an open file then the error 
code GAL_FILE_NOT_OPEN is set. If the end of file is reached before all the requested 
number of lines are skipped then the error code GAL_UNEXPECTED_EOF is set. The 
routine starts searching from the current file position. The maximum line length is 2048. 
 
 g a l _ s t r n            [0.1] 
 
Fill string with character. 

char * 
gal_strn 
( 
  char *s, 
  char c, 
  int  l 
) ;   

This routine fills the target string with L characters of value C.    
 
 g a l _ t r i m            [0.1] 
 
Trim white-space from left and right of string. 

char * 
gal_trim 
( 



General Astrodynamics Library 

86 
 

  char *s1, 
  char *s2 
) ;    

This routine copies S2 to S1, then deletes any leading or trailing white-space characters 
at the beginning or end of S1. The target string S1 must be at least the same length as 
the source string S2. 
 
 g a l _ t r i m l            [0.1] 
 
Trim white-space from left side of string. 

char * 
gal_triml 
( 
  char *s1, 
  char *s2 
) ;    

This routine copies S2 to S1, then deletes any leading white-space characters at the 
beginning of S1. The target string S1 must be at least the same length as the source 
string S2. 
 
 g a l _ t r i m r            [0.1] 
 
Trim white-space from right of string. 

char * 
gal_trimr 
( 
  char *s1, 
  char *s2 
) ;    

This routine copies S2 to S1, then deletes any trailing white-space characters at the end 
of S1. The target string S1 must be at least the same length as the source string S2. 
 
 g a l _ u c a s e             [0.1] 
 
Force string to upper-case. 

char * 
gal_ucase 
( 
  char *s1, 
  char *s2 
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) ;    

This routine copies S2 to S1, then forces all lower case characters in S1 to upper case.  
The target string S1 must be at least the same length as the source string S2. 



General Astrodynamics Library 

88 
 



Chapter 5 – Test Framework 

89 
 

 
Chapter 5 - Test Framework 
The routines detailed in this chapter are defined in the gal_test.h header file. The test 
framework is central to the GAL development methodology. These routines are the 
primitives upon which the test framework is constructed. The following is an extract from 
the test program for the pstrings sub-library, this illustrates the structure of a test 
program, note the inclusion of the “gal_test_common.h” header file. 
 
#include "gal_test_common.h" 
#include "gal_test.h" 
#include "gal_instr_test.h" 
#include "gal_insert_test.h" 
#include "gal_delete_test.h" 
#include "gal_leftstr_test.h" 
#include "gal_rightstr_test.h" 
#include "gal_midstr_test.h" 
#include "gal_trimr_test.h" 
#include "gal_triml_test.h" 
#include "gal_trim_test.h" 
#include "gal_strn_test.h" 
#include "gal_padr_test.h" 
#include "gal_padl_test.h" 
#include "gal_justr_test.h" 
#include "gal_justl_test.h" 
#include "gal_center_test.h" 
#include "gal_replace_test.h" 
#include "gal_ucase_test.h" 
#include "gal_sisd_test.h" 
#include "gal_sisi_test.h" 
#include "gal_fscan_test.h" 
#include "gal_dafopen_test.h" 
 
int 
main 
( 
) 
   
{ 
 
/*   
 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   
 */   
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  gal_test_start ( "P Strings", 0 ) ; 
   
  gal_sisd_test     () ;  
  gal_sisi_test     () ;  
  gal_instr_test    () ; 
  gal_insert_test   () ; 
  gal_delete_test   () ; 
  gal_leftstr_test  () ; 
  gal_rightstr_test () ; 
  gal_midstr_test   () ; 
  gal_trimr_test    () ; 
  gal_triml_test    () ; 
  gal_trim_test     () ; 
  gal_strn_test     () ; 
  gal_padr_test     () ; 
  gal_padl_test     () ; 
  gal_justr_test    () ; 
  gal_justl_test    () ; 
  gal_center_test   () ; 
  gal_replace_test  () ; 
  gal_ucase_test    () ; 
  gal_fscan_test    () ; 
  gal_dafopen_test  () ;  
   
  return gal_test_stop () ; 
   
/*   
 * Finished.   
 */   
 
} 
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g a l _ t e s t _ s t a r t           [0.1] 
 
Start test run. 

void 
gal_test_start 
( 
  char *libname, 
  int verbose 
) ;    

This starts a test run and resets the various statistics. On entry LIBNAME contains the 
name of the sub-library under test. If VERBOSE is set to 1 then both success and failure 
messages are output by the test routines, and when set to 0 then only failure messages 
are output. On return the external variables GAL_TPASS, GAL_TFAIL, and 
GAL_TFUNC are set to zero. The external variable GAL_TVERB is set to the value of 
the parameter VERBOSE. The library name is copied to the external variable gal_tlibn 
to be used later by gal_test_stop.        
 
 g a l _ t e s t _ s t o p            [0.1] 
 
Stop test run and print statistics. 

int 
gal_test_stop 
( 
) ; 

This stops a test run and prints the statistics. If no tests failed during the run then 0 is 
returned, otherwise 1 is returned. 
 
 g a l _ v c v              [0.1] 
 
Validate character result. 

void    
gal_vcv   
(   
  char cval,   
  char cvalok, 
  char *func,   
  char *test   
) ;   
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This routine validates a character result. On entry CVAL contains the value computed 
by the routine under test, CVALOK contains the correct value, FUNC contains the name 
of the routine under test, and TEST contains the name of the individual test. The 
external variables GAL_TPASS and GAL_TFAIL are incremented depending upon the 
outcome of the test. If the external variable GAL_TVERB is set to 1 then both test 
success and test failure messages are sent to the standard output. If set to 0 then only 
test failure messages are sent to the standard output. 
 
 g a l _ v d v              [0.1] 
 
Validate a double precision result. 

void     
gal_vdv   
(   
  double dval,   
  double dvalok, 
  double dtol,   
  char   *func,   
  char   *test   
) ;   

This routine validates a double precision result. On entry DVAL contains the value 
computed by the routine under test, DVALOK contains the correct value, DTOL the 
tolerance, FUNC contains the name of the routine under test, and TEST contains the 
name of the individual test. The external variables GAL_TPASS and GAL_TFAIL are 
incremented depending upon the outcome of the test. If the external variable 
GAL_TVERB is set to 1 then both test success and test failure messages are sent to the 
standard output. If set to 0 then only test failure messages are sent to the standard 
output. 
 
 g a l _ v i v               [0.1] 
 
Validate an integer result. 

void    
gal_viv   
(   
  int  ival,   
  int  ivalok,   
  char *func,   
  char *test  
) ;   

This routine validates an integer result. On entry IVAL contains the value computed by 
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the routine under test, IVALOK contains the correct value, FUNC contains the name of 
the routine under test, and TEST contains the name of the individual test. The external 
variables GAL_TPASS and GAL_TFAIL are incremented depending upon the outcome 
of the test. If the external variable GAL_TVERB is set to 1 then both test success and 
test failure messages are sent to the standard output. If set to 0 then only test failure 
messages are sent to the standard output. 
 
 g a l _ v l d v              [0.1] 
 
Validate long double precision result. 

void     
gal_vldv   
(   
  long double dval,   
  long double dvalok, 
  double dtol,   
  char   *func,   
  char   *test   
) ;   

This routine validates a long double precision result. On entry DVAL contains the value 
computed by the routine under test, DVALOK contains the correct value, DTOL contains 
the tolerance, FUNC contains the name of the routine under test, and TEST contains 
the name of the individual test. The external variables GAL_TPASS and GAL_TFAIL are 
incremented depending upon the outcome of the test. If the external variable 
GAL_TVERB is set to 1 then both test success and test failure messages are sent to the 
standard output. If set to 0 then only test failure messages are sent to the standard 
output. 
 
 g a l _ v s v              [0.1] 
 
Validate string result. 

void     
gal_vsv   
(   
  char *sval,   
  char *svalok,   
  char *func,   
  char *test 
) ;    

This routine validates a string result. On entry SVAL points to the value computed by the 
routine under test, SVALOK contains the correct value, FUNC contains the name of the 
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routine under test, and TEST contains the name of the individual test. The external 
variables GAL_TPASS and GAL_TFAIL are incremented depending upon the outcome 
of the test. If the external variable GAL_TVERB is set to 1 then both test success and 
test failure messages are sent to the standard output. If set to 0 then only test failure 
messages are sent to the standard output. 
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Chapter 6 - Date & Time 
The GAL date and time routines are largely based upon the IAUʼs SOFA date & time 
support. In GAL releases prior to 0.6 additional routines were included for those areas 
not handled by SOFA, with the December 2010 release of SOFA many of those gaps 
have been filled. Additionally the December 2010 release of SOFA added an additional 
nuance to the SOFA date format has been added specifically to handle the leap second 
in UTC dates. GAL now implements the new SOFA date format, and new GAL 
interpretations of the new SOFA routines. Where there is an existing GAL routine 
functionally equivalent to a new SOFA routine, the existing GAL routine has been 
retained but the code updated, if necessary, to match the SOFA implementation. In 
these cases the notes have been updated to detail the SOFA routine that it is equivalent 
to. The IAU has published a very good cookbook that both explains the different time 
scales and shows how to use the date and time routines. As GAL parallels SOFA 
closely here, the cookbook is recommended reading for all users of GAL. It can be 
downloaded from here for free: 
 
    http://www.iausofa.org/cookbooks.html 
 
The routines detailed in this chapter are defined in the gal_datetime.h header file. The 
gal_date_macros.h header file defines the following constants: 
 
/* 
 * --------------------- 
 * Date & Time Constants 
 * --------------------- 
 */ 
  
#define GAL_DJM    (365250.0)             /* Days per Julian millennium                      */   
 
#define GAL_DJC    (36525.0)              /* Days per Julian century                         */   
 
#define GAL_DJY    (365.25)               /* Days per Julian year                            */   
 
#define GAL_D2S    (86400.0)              /* Days to Seconds, same as SOFA's DAYSEC          */   
 
#define GAL_D2M    (1440.0)               /* Days to Minutes                                 */ 
 
#define GAL_D2H    (24.0)                 /* Days to Hours                                   */ 
 
#define GAL_J2000  (2451545.0)            /* Reference epoch (J2000.0), Julian date          */   
 
#define GAL_MJD0   (2400000.5)            /* Julian Date of Modified Julian Date zero        */ 
                                          /* Same as SOFA's DJM0                             */   
 
#define GAL_MJ2000 (51544.5)              /* Reference epoch (J2000.0), Modified Julian Date */   
                                          /* Same as SOFA's DJM00                            */   
 
#define GAL_DTY    (365.242198781)        /* Length of tropical year B1900 (days)            */ 
 
#define GAL_DJM77  (43144.0)              /* 1977 Jan 1.0 as MJD                             */ 
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#define GAL_TTMTAI (32.184)               /* TT minus TAI (s)                                */ 
 
#define GAL_ELG    (6.969290134e-10)      /* L_G = 1 - d(TT)/d(TCG)                          */ 
                                          /* This is SOFA's December 2010 value              */ 
 
#define GAL_ELB    (1.550519768e-8)       /* L_B = 1 - d(TDB)/d(TCB)                         */ 
                                          /* This is SOFA's December 2010 value              */ 
 
#define TDB0       (-6.55e-5)             /* TDB (s) at TAI 1977/1/1.0                       */ 
                                          /* This is SOFA's December 2010 value              */ 
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g a l _ c a l 2 j d            [0.1]   
 
Gregorian Calendar to Julian Date.   

void  
gal_cal2jd   
(   
  int iy,   
  int im,   
  int id,   
  double *djm0,   
  double *djm, 
  gal_status_t *status 
) ;   

On entry IY contains the year, IM the month, and ID the day in the Gregorian calendar. 
On return DJM0 contains the Modified Julian Date zero-point of 2400000.5, and DJM 
contains the Modified Julian Date for 0 hours. If an invalid year and/or month are 
specified then the error code GAL_BAD_YEAR and/or GAL_MONTH are set and the 
routine sets DJM0 and DJM to zero. If an invalid day is specified then the error code 
GAL_BAD_DAY is set, however the date is computed and returned in DJM0 and DJM. 
The algorithm used is valid from -4800 March 1, but this implementation rejects dates 
before -4799 January 1. The Julian Date is returned in the standard SOFA two-piece 
format, which is designed to preserve time resolution. The Julian Date is available as a 
single number by adding DJM0 and DJM. In early eras the conversion is from the 
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the 
Gregorian Calendar, nor is the CE/BCE numbering convention observed.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 
 g a l _ d a t               [0.1] 
 
Calculate difference between International Atomic Time (TAI) and Coordinated 
Universal Time (UTC): TAI - UTC 

void   
gal_dat   
(   
  int iy,   
  int im,   
  int id,   
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  double fd,   
  double *deltat, 
  gal_status_t *status 
) ;   

This routine for a given Coordinated Universal Time (UTC) date, calculates delta(AT) = 
TAI-UTC. On entry IY, IM, ID, and FD contain the UTC year, month, day, and fractional 
part of day. On return DELTAT contains International Atomic Time (TAI) minus 
Coordinated Universal Time (UTC) in seconds. UTC began at 1960 January 1.0 (JD 
2436934.5) and it is improper to call the routine with an earlier date. If this is attempted, 
zero is returned and the error code GAL_OUTSIDE_DATE_RANGE is set. Because 
leap seconds cannot, in principle, be predicted in advance, a reliable check for dates 
beyond the valid range is impossible. To guard against gross errors, a year five or more 
after the release year of this routine (see parameter IYV) is considered dubious. In this 
case a warning code GAL_DUBIOUS_YEAR is set but the result is computed in the 
normal way. If an invalid year, month, day or fraction of a day are specified then any of 
the following error codes are set: GAL_BAD_YEAR, GAL_BAD_MONTH, 
GAL_BAD_DAY, or GAL_BAD_FRACTION. If the specified date is for a day which ends 
with a leap second, the UTC-TAI value returned is for the period leading up to the leap 
second. If the date is for a day which begins as a leap second ends, the UTC-TAI 
returned is for the period following the leap second. The day number must be in the 
normal calendar range, for example 1 through 30 for April. The "almanac" convention of 
allowing such dates as January 0 and December 32 is not supported in this routine, in 
order to avoid confusion near leap seconds. The fraction of day is used only for dates 
before the introduction of leap seconds, the first of which occurred at the end of 1971. It 
is tested for validity (zero to less than 1 is the valid range) even if not used; if invalid, 
zero is used and status GAL_BAD_FRACTION is returned. For many applications, 
setting FD to zero is acceptable; the resulting error is always less than 3 ms (and occurs 
only pre-1972).  
 
References:   
 
For dates from 1961 January 1 onwards, the expressions from the file: 
ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.   
 
The 5ms time step at 1961 January 1 is taken from the Explanatory Supplement to the 
Astronomical Almanac, P. Kenneth Seidelmann (ed.), University Science Books (1992), 
Section 2.58.1 (p87).   
 
 g a l _ d a t e n o r m            [0.6] 
  
Normalize a two piece SOFA date for maximum precision.   

void 
gal_datenorm  
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(   
  double base, 
  double *date1, 
  double *date2 
) ;   

On entry BASE contains the pivot Julian Date, e.g. J2000 or MJD0. DATE1 and DATE2 
contain a standard SOFA two piece Julian date. On return DATE1 and DATE2 have 
been normalized such that DATE1 contains the BASE value and DATE2 the remainder. 
The normalization process ensures the maximum retention of precision throughout.  
 
 g a l _ d a y s 2 c a l            [0.1] 
  
Convert the day of the year, and year, to Gregorian year, month, day, and fraction of a 
day.   

void   
gal_days2cal   
(   
  int year,   
  double days,   
  int *iy,   
  int *im,   
  int *id,   
  double *fd, 
  gal_status_t *status   
) ;   

On entry YEAR contains the year number between 1900 and 2100, and DAYS contains 
the day count including fraction of day. On return IY, IM, ID, and FD contain the 
Gregorian year, month, day, and fractional part of day respectively. In early eras the 
conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the date(s) 
of adoption of the Gregorian Calendar, nor is the CE/BCE numbering convention 
observed.  January 1 is day number 1. 
 
 g a l _ d a y s 2 j d             [0.6] 
  
Convert the day of the year, and year, to a Julian date.   

void   
gal_days2jd   
(   
  int year,   
  double days,   
  double *djm0, 
  double *djm, 
  gal_status_t *status 
) ; 
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On entry YEAR contains the year number between 1900 and 2100, and DAYS contains 
the day count including fraction of day. On return DJM0 and DJM contain the Julian date 
in standard two-piece SOFA format. January 1 is day number 1. 
 
 g a l _ d t d b              [0.1] 
 
An approximation to TDB-TT, the difference between Barycentric Dynamical Time and 
Terrestrial Time, for an observer on the Earth.   

double   
gal_dtdb   
(   
  double date1,   
  double date2,   
  double ut,   
  double elong,       
  double u,   
  double v   
) ;   

On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) in standard 
SOFA two-piece format, UT contains Universal Time (UT1) in fraction of one day, 
ELONG contains longitude (east positive in radians), U contains the distance from Earth 
spin (kilometers), and V contains distance north of equatorial plane (kilometers). The 
function returns TDB-TT in seconds. Although the date is, formally, Barycentric 
Dynamical Time (TDB), the Terrestrial Time (TT) can be used with no practical effect on 
the accuracy of the prediction.   
 
References:   
 
Fairhead, L., & Bretagnon, P., Astronomy & Astrophysics, 229, 240-247 (1990).   
 
IAU 2006 Resolution 3. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),  
IERS Technical Note No. 32, BKG (2004)   
 
Moyer, T.D., Celestial Mechanics, 23, 33 (1981).   
 
Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).   
 
Seidelmann, P.K. et al., Explanatory Supplement to the Astronomical Almanac, Chapter 
2, University Science Books (1992).   
 
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., 
Astronomy & Astrophysics, 282, 663-683 (1994).   
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 g a l _ e p b              [0.1] 
 
Julian Date to Besselian Epoch.   

double   
gal_epb   
(   
  double dj1,   
  double dj2   
) ;   

On entry DJ1 and DJ2 contain the Julian Date, the Besselian Epoch is returned. The 
Julian Date is supplied in standard SOFA two-piece format. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 
 g a l _ e p b 2 j d            [0.1] 
  
Besselian Epoch to Julian Date.

void   
gal_epb2jd   
(   
  double epb,   
  double *djm0,   
  double *djm   
) ;   

On entry EPB contains the date in the Besselian Epoch (e.g. 1957.3), on return DJM0 
contains the Modified Julian Date zero-point of 2400000.5, and DJM contains the date 
as a Modified Julian Date in standard SOFA two-piece format. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 
 g a l _ e p j               [0.1] 
 
Julian Date to Julian Epoch.   

double   
gal_epj   
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(   
  double dj1,   
  double dj2   
) ;   

This routine returns the Julian epoch for the given Julian Date. On entry DJ1 and DJ2 
contain the Julian Date in standard SOFA two-piece format. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 
 g a l _ e p j 2 j d             [0.1] 
 
Julian Epoch to Julian Date.   

void   
gal_epj2jd   
(   
  double epj,   
  double *djm0,   
  double *djm   
) ;   

On entry EPJ contains the Julian Epoch (e.g. 1996.8). On return DJM0 contains the 
Modified Julian Date zero-point of 2400000.5, and DJM contains the Modified Julian 
Date. 
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282.   
 
 g a l _ f d a t e              [0.6] 
 
Convert a date to a string in specified format.   

char * 
gal_fdate 
( 
  char *format, 
  double date1, 
  double date2, 
  char *result, 
  gal_status_t *status 
) ; 
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On entry FORMAT contains the format string, DATE1 and DATE2 contain a Julian date 
in standard two-piece SOFA format. On return RESULT contains the date in string 
format. If an error occurs then the applicable error code is set and the function returns 
NULL. If successful then the function returns a pointer to RESULT. 
 
The format string contains a list of tokens which will converted into the date elements in 
a similar way as printf. The tokens can be in any order, and any non-token characters 
will be returned unchanged in the result string. The valid tokens are: 
 
 %yyyy or %YYYY        year number e.g. 1972 
 %yy or %YY            last two digits of year e.g. 05 
 %mmmm                 month full English name in lower case e.g. january 
 %MMMM                 month full English name in upper case e.g. JANUARY 
 %Mmmm                 month full English name with leading upper case  
     e.g. January 
 %mmm                  short form English month name in lower cas e.g. jan 
 %MMM                  short form English month name in upper case e.g. JAN 
 %Mmm                  short form English month name with leading upper case  
     e.g. Jan 
 %mm or %MM            number of month with leading zeroes e.g. 01 
 %m or %M              number of month with no leading zeroes e.g. 1 
 %dd or %DD            day number with leading zeroes e.g. 01 
 %d or %D              day number with no leading zeroes e.g. 1 
 %hh                    hour number in 12 hour format and leading zeroes  
     e.g. 01 for 13hrs 
 %h                     hour number in 12 hour format with no leading zeroes 
 %HH                    hour number in 24 hour format with leading zeros  
     e.g. 01 for 1hrs 
 %H                     hour number in 24 hour format with no leading zeroes  
     e.g. 1 for 1hrs 
 %NN or %nn            minute number with leading zeroes e.g. 02 
 %N or %n              minute number with no leading zeroes e.g. 2 
 %SS or %ss            second number with leading zeroes e.g. 02 
 %s or %S               second number with no leading zeroes e.g. 2 
 %ampm                 am or pm depending on the hour 
 %AMPM                 AM or PM depending on the hour                     
 
 g a l _ j d 2 c a l             [0.1] 
 
Julian Date to Gregorian year, month, day, and fraction of a day.   

void  
gal_jd2cal   
(   
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  double dj1,   
  double dj2,   
  int *iy,   
  int *im,   
  int *id,   
  double *fd, 
  gal_status_t *status 
) ;   

On entry DJ1 and DJ2 contain the Julian Date in standard SOFA two-piece format. On 
return IY contains the year, IM the month, ID the day, and FD the fractional part of day. 
The earliest valid date is -68569.5 (-4900 March, 1), and the largest value accepted is 
109. If the date is outside of this range then the error code 
GAL_OUTSIDE_DATE_RANGE is set. In early eras the conversion is from the 
"Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the 
Gregorian Calendar, nor is the CE/BCE numbering convention observed.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 
 g a l _ j d 2 d a y s             [0.6] 
 
This routine converts a JD date to year and day of year.   

void   
gal_jd2days   
(   
  double jd1, 
  double jd2, 
  int *year,   
  double *days, 
  gal_status_t *status 
) ;  

On entry JD1 and JD2 contain the Julian Date in standard two-piece SOFA format, on 
return YEAR contains the year number, and DAYS contains the day number. If an 
internal error occurs then the applicable error code is set, and YEAR and DAYS are set 
to zero.  
 
 g a l _ j d c a l f             [0.1]  
 
Julian Date to Gregorian Calendar, expressed in a form convenient for formatting 
messages: rounded to a specified precision, and with the fields stored in a single array.   
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void   
gal_jdcalf   
(   
  int ndp,   
  double dj1,   
  double dj2,   
  int iymdf[4], 
  gal_status_t *status 
 ) ;   

On entry DJ1 and DJ2 contain the Julian Date to be converted in standard SOFA two-
piece format, NDP contains the required number of decimal places of days in fraction. 
On return IYMDF contain the year, month, day, and fraction in Gregorian calendar. If an 
error occurs then the applicable error code is set. In early eras the conversion is from 
the "Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the 
Gregorian Calendar, nor is the CE/BCE numbering convention observed. Refer to the 
routine gal_jd2cal. NDP should be 4 or less if internal overflows are to be avoided on 
machines which use 16-bit integers.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 12.92 (p604).   
 
 g a l _ m a f m s             [0.5] 
 
This routine calculates the parameters for the Mars Fictitious Mean Sun and related 
parameters.  

void  
gal_mafms   
(   
  double tt1, 
  double tt2, 
  double *m, 
  double *fms, 
  double *pbs, 
  double *ls, 
  double *eot 
) ; 

On entry TT1 and TT2 contain the Terrestrial Time (TT) Julian Date in standard SOFA 
two-piece format. On return M contains the mean anomaly of Mars, FMS the Fictitious 
Mean Sun Angle, PBS the sum of angular perturbations in longitude, LS the areocentric 
solar longitude, and EOT the equation of time. All angles are in radians. LS may be 
used to determine the seasons of Mars: 0, π/2, π, 3π/2 equates to the start of spring, 
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summer, fall, and winter respectively. The referenced URL contains corrections to the 
referenced article. 
 
References: 
 
A post-Pathfinder evaluation of areocentric solar coordinates with improved timing 
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen, 
Planetary and Space Science 48 (2000) 215-235  
 
Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html 
 
 g a l _ m a l t s t             [0.5] 
 
This routine converts a Mars Coordinated Time (MTC) date to Mars Local True Solar 
Time. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.  

double  
gal_maltst   
(   
  double mtc1, 
  double mtc2, 
  double lambda, 
  double eot 
) ;   

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date in standard 
SOFA two-piece format, LAMBDA the longitude, and EOT the equation of time. The 
routine returns the Local True Solar Time. All angles are in radians. As defined, 
consistent with the terrestrial convention for Mean Solar Time, JD 2451549.5 (2000 
January 6 00:00:00) corresponds to a near coincidence of the terrestrial Greenwich 
mean solar midnight and the Martian mean solar (prime meridian) midnight. The 
addition of the integer number 44796 assures a positive result for any date since JD 
2405522 (1873 December 29.5). Longitude is measured westwards from the prime 
meridian (0 to 2π). The referenced URL contains corrections to the referenced article. 
 
References: 
 
A post-Pathfinder evaluation of areocentric solar coordinates with improved timing 
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen, 
Planetary and Space Science 48 (2000) 215-235  
 
Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html   
 
 g a l _ m a s u d a t             [0.5] 
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This routine calculates a number of Sun data values for the planet Mars.  

void  
gal_masudat   
(   
  double mtc1,   
  double mtc2,    
  double m,     
  double ls,        
  double eot,              
  double lon,               
  double lat,               
  double *ssl,            
  double *sdec,              
  double *mhd,              
  double *mhlon,            
  double *mhlat,            
  double *sel,               
  double *saz                
) ;    

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date in standard 
SOFA two-piece format, M the Mars mean anomaly, LS the Areocentric solar longitude, 
EOT the equation of time, LON and LAT the longitude and latitude of the local observer. 
On return SSL contains the sub-solar longitude, SDEC the solar declination 
(planetographic), MHD the Mars heliocentric distance (AU), MHLON and MHLAT Marsʼ 
heliocentric longitude and latitude, and SEL and SAZ the local solar elevation and 
azimuth. All angles are in radians. As defined, consistent with the terrestrial convention 
for Mean Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds to a near 
coincidence of the terrestrial Greenwich mean solar midnight and the Martian mean 
solar (prime meridian) midnight. The addition of the integer number 44796 assures a 
positive result for any date since JD 2405522 (1873 December 29.5). Longitude is 
measured westwards from the prime meridian (0-2π). The referenced URL contains 
corrections to the referenced article. 
 
References: 
 
A post-Pathfinder evaluation of areocentric solar coordinates with improved timing 
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen, 
Planetary and Space Science 48 (2000) 215-235  
 
Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html   
   
 g a l _ m t c 2 t t             [0.5] 
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This routine converts a Mars Coordinated Time (MTC) date to a Terrestrial Time (TT) 
date. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.  

void  
gal_mtc2tt   
(   
  double mtc1, 
  double mtc2, 
  double *tt1, 
  double *tt2 
) ;   

On entry MTC1 and MTC2 contain the Mars Coordinated Time (MTC) date. On return 
TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in standard 
SOFA two-piece format As defined, consistent with the terrestrial convention for Mean 
Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds to a near 
coincidence of the terrestrial Greenwich mean solar midnight and the Martian mean 
solar (prime meridian) midnight. The addition of the integer number 44796 assures a 
positive result for any date since JD 2405522 (1873 December 29.5). The referenced 
URL contains corrections to the referenced article. 
 
References: 
 
A post-Pathfinder evaluation of areocentric solar coordinates with improved timing 
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen, 
Planetary and Space Science 48 (2000) 215-235  
 
Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html     
 
 g a l _ t a i 2 t t              [0.2] 
 
This routine converts an International Atomic Time (TAI) Julian Date to a Terrestrial 
Time (TT) Julian Date.   

void  
gal_tai2tt   
(   
  double tai1, 
  double tai2, 
  double *tt1, 
  double *tt2 
) ;   

On entry TAI1 and TAI2 contain an International Atomic Time (TAI) Julian Date. On 
return TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in 
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standard SOFA two-piece format. 
 
References: 
 
Explanatory Supplement to the Astronomical Supplement, Seidelmann P. Kenneth 
1992, Pages 47-48 
 
 g a l _ t t 2 m t c             [0.5] 
 
This routine converts a Terrestrial Time (TT) date to a Mars Coordinated Time (MTC) 
date. Mars Coordinated Time is the Mean Solar Time on the Mars prime meridian.  

void  
gal_tt2mtc   
(   
  double tt1, 
  double tt2, 
  double *mtc1, 
  double *mtc2 
) ;   

On entry TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. On return MTC1 
and MTC2 contain the Mars Coordinated Time (MTC) date. Both dates are in standard 
SOFA two-piece format. MTC1 contains the sol number, and MTC2 the fractional part of 
the sol. A Mars "day" is called a "sol". As defined, consistent with the terrestrial 
convention for Mean Solar Time, JD 2451549.5 (2000 January 6 00:00:00) corresponds 
to a near coincidence of the terrestrial Greenwich mean solar midnight and the Martian 
mean solar (prime meridian) midnight. The addition of the integer number 44796 
assures a positive result for any date since JD 2405522 (1873 December 29.5). The 
referenced URL contains corrections to the referenced article. 
 
References: 
 
A post-Pathfinder evaluation of areocentric solar coordinates with improved timing 
recipes for Mars seasonal/diurnal climate studies by Michael Allison, Megan McEwen, 
Planetary and Space Science 48 (2000) 215-235  
 
Mars24 URL: http://www.giss.nasa.gov/tools/mars24/help/algorithm.html     
   
g a l _ u t c 2 t a i             [0.2] 
 
This routine converts a Coordinated Universal Time (UTC) Julian Date to an 
International Atomic Time (TAI) Julian Date.   

void 
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gal_utc2tai   
 (   
  double utc1, 
  double utc2, 
  double *tai1, 
  double *tai2, 
  gal_status_t *status 
 ) ;   

 
On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date. 
On return TAI1 and TAI2 contain the International Atomic Time (TAI) Julian Date. All 
dates are in standard SOFA two-piece format. TAI began at 1960 January 1.0 (JD 
2436934.5) and it is improper to call the routine with an earlier date. If this is attempted, 
zero is returned together with a warning status. Because leap seconds cannot, in 
principle, be predicted in advance, a reliable check for dates beyond the valid range is 
impossible. To guard against gross errors, a year five or more after the release year of 
this routine is considered dubious. In this case the warning status 
GAL_DUBIOUS_DATE is set but the result is computed in the normal way. If an error 
occurs then the applicable error code is set.  
 
 g a l _ u t c 2 t t             [0.2] 
 
This routine converts a Coordinated Universal Time (UTC) Julian Date to a Terrestrial 
Time (TT) Julian Date.   

void  
gal_utc2tt  
(   
  double utc1, 
  double utc2, 
  double *tt1, 
  double *tt2, 
  gal_status_t *status 
) ;   

 
On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date. 
On return TT1 and TT2 contain the Terrestrial Time (TT) Julian Date. Both dates are in 
standard SOFA two-piece format. TAI began at 1960 January 1.0 (JD 2436934.5) and it 
is improper to call the routine with an earlier epoch. If this is attempted, zero is returned 
together with a warning status. Because leap seconds cannot, in principle, be predicted 
in advance, a reliable check for dates beyond the valid range is impossible. To guard 
against gross errors, a year five or more after the release year of this routine is 
considered dubious. In this case the warning code GAL_DUBIOUS_DATE is set but the 
result is computed in the normal way. If an error occurs then the applicable error code is 
set.  
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 g a l _ u t c 2 u t 1             [0.2] 
 
This routine converts a Coordinated Universal Time (UTC) Julian Date to a Universal 
Time (UT1) Julian Date.   

void  
gal_utc2ut1   
(   
  double utc1, 
  double utc2, 
  double dut1, 
  double *ut1a, 
  double *ut1b 
) ;    

On entry UTC1 and UTC2 contain the Coordinated Universal Time (UTC) Julian Date in 
standard SOFA two-piece format, DUT1 contains the UT1-UTC offset in seconds. On 
return UT1A and UT1B contain the Universal Time (UT1) Julian Date in standard SOFA 
two-piece format. 
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Chapter 7 – Reference Frames 
The routines detailed in this chapter are defined in the gal_frames.h header file. The 
header file gal_frame_macros.h ( included by gal_frames.h ) defines the following 
constants: 
 
/* 
 * --------------------------------------------- 
 * Constants for the Ellipsoid Model Identifiers 
 * --------------------------------------------- 
 */ 
  
enum { 
  GAL_EMEA_DEL1800    =  0,  /* Delambre 1800                  */ 
  GAL_EMEA_AIRY1830   =  1,  /* Airy 1830                      */ 
  GAL_EMEA_EVER1830   =  2,  /* Everest 1830                   */ 
  GAL_EMEA_EVER1830BA =  3,  /* Everest 1830 Boni Alt          */ 
  GAL_EMEA_BESL1841   =  4,  /* Bessel 1841                    */ 
  GAL_EMEA_CL1866     =  5,  /* Clarke 1866                    */ 
  GAL_EMEA_CL1880     =  6,  /* Clarke 1880                    */ 
  GAL_EMEA_CLA1880M   =  7,  /* Clarke 1880 Modified           */ 
  GAL_EMEA_HEL1906    =  8,  /* Helmert 1906                   */ 
  GAL_EMEA_INTL1909   =  9,  /* International 1909             */ 
  GAL_EMEA_KRSV       = 10,  /* Krassovsky                     */ 
  GAL_EMEA_MERC1960   = 11,  /* Mercury 1960                   */ 
  GAL_EMEA_WGS1960    = 12,  /* World Geodetic System 1960     */ 
  GAL_EMEA_IAU1964    = 13,  /* IAU 1964                       */ 
  GAL_EMEA_AUSNAT1965 = 14,  /* Australian National 1965       */ 
  GAL_EMEA_WGS1966    = 15,  /* World Geodetic System 1966     */ 
  GAL_EMEA_MERC1968M  = 16,  /* Modified Mercury 1968          */ 
  GAL_EMEA_SA1969     = 17,  /* South American 1969            */ 
  GAL_EMEA_GRS1967    = 18,  /* Geodetic Reference System 1967 */ 
  GAL_EMEA_WGS1972    = 19,  /* World Geodetic System 1972     */ 
  GAL_EMEA_IAG1975    = 20,  /* IAG 1975                       */ 
  GAL_EMEA_IAU1976    = 21,  /* IAU 1976                       */ 
  GAL_EMEA_GRS1980    = 22,  /* Geodetic Reference System 1980 */ 
  GAL_EMEA_MERIT1983  = 23,  /* MERIT 1983                     */ 
  GAL_EMEA_WGS1984    = 24,  /* World Geodetic System 1984     */ 
  GAL_EMEA_IERS1989   = 25,  /* IERS 1989                      */ 
  GAL_EMEA_IERS2000   = 26,  /* IERS 2000                      */ 
  GAL_EMME_IAU1991    = 27,  /* IAU/IAG/COSPAR 1991 Mercury    */ 
  GAL_EMVE_IAU1991    = 28,  /* IAU/IAG/COSPAR 1991 Venus      */ 
  GAL_EMEA_IAU1991    = 29,  /* IAU/IAG/COSPAR 1991 Earth      */ 
  GAL_EMMA_IAU1991    = 30,  /* IAU/IAG/COSPAR 1991 Mars       */ 
  GAL_EMJU_IAU1991    = 31,  /* IAU/IAG/COSPAR 1991 Jupiter    */ 
  GAL_EMSA_IAU1991    = 32,  /* IAU/IAG/COSPAR 1991 Saturn     */ 
  GAL_EMUR_IAU1991    = 33,  /* IAU/IAG/COSPAR 1991 Uranus     */ 
  GAL_EMNE_IAU1991    = 34,  /* IAU/IAG/COSPAR 1991 Neptune    */ 
  GAL_EMPL_IAU1991    = 35,  /* IAU/IAG/COSPAR 1991 Pluto      */ 
  GAL_EMSU_IAU1991    = 36   /* IAU/IAG/COSPAR 1991 Sun        */ 
} ; 
 
/* 
 * ------------------------------ 
 * Constants for Reference Frames 
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 * ------------------------------ 
 */ 
  
enum { 
  GAL_RF_J2000      =  1, /* Earth mean equator, dynamical equinox of J2000  */ 
  GAL_RF_B1950      =  2, /* Earth mean equator, dynamical equinox of B1950  */ 
  GAL_RF_FK4        =  3, /* Fundamental Catalog (4)                         */ 
  GAL_RF_DE118      =  4, /* JPL Developmental Ephemeris (118)               */ 
  GAL_RF_DE96       =  5, /* JPL Developmental Ephemeris (96)                */ 
  GAL_RF_DE102      =  6, /* JPL Developmental Ephemeris (102)               */ 
  GAL_RF_DE108      =  7, /* JPL Developmental Ephemeris (108)               */ 
  GAL_RF_DE111      =  8, /* JPL Developmental Ephemeris (111)               */ 
  GAL_RF_DE114      =  9, /* JPL Developmental Ephemeris (114)               */ 
  GAL_RF_DE122      = 10, /* JPL Developmental Ephemeris (122)               */ 
  GAL_RF_DE125      = 11, /* JPL Developmental Ephemeris (125)               */ 
  GAL_RF_DE130      = 12, /* JPL Developmental Ephemeris (130)               */ 
  GAL_RF_GALACTIC   = 13, /* Galactic System II                              */ 
  GAL_RF_DE200      = 14, /* JPL Developmental Ephemeris (200)               */ 
  GAL_RF_DE202      = 15, /* JPL Developmental Ephemeris (202)               */ 
  GAL_RF_MARSIAU    = 16, /* Mars Mean Equator and IAU vector of J2000       */ 
  GAL_RF_ECLIPJ2000 = 17, /* Ecliptic coordinates based upon the J2000 frame */ 
  GAL_RF_ECLIPB1950 = 18, /* Ecliptic coordinates based upon the B1950 frame */ 
  GAL_RF_DE140      = 19, /* JPL Developmental Ephemeris (140)               */ 
  GAL_RF_DE142      = 20, /* JPL Developmental Ephemeris (142)               */ 
  GAL_RF_DE143      = 21  /* JPL Developmental Ephemeris (143)               */ 
} ; 
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 g a l _ b f 2 c             [0.5]  
 
This routine transforms a pv-vector from the planet body fixed reference frame to the 
alignment of the International Celestial Reference frame (ICRF). 

void   
gal_bf2c   
(  
  double bfrf[2][3], 
  double alpha, 
  double delta, 
  double w, 
  double omega, 
  double icrf[2][3] 
) ;   

 
On entry the variables are set as follows: 
 
 BFRF    pv-vector in planet mean equator frame (meters, meters per second) 
 ALPHA   Right ascension of planet spin axis (radians) 
 DELTA     Declination of planet spin axis (radians) 
 W       Prime meridian angle (radians) 
 OMEGA   Planet rotation rate (radians per second) 
 
On return ICRF contains the pv-vector in the ICRF inertial frame. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5 
 
 g a l _ b f 2 m e             [0.5]  
 
This routine transforms a pv-vector from the planet body fixed reference frame to the 
planet mean equator reference frame. 

void   
gal_bf2me   
(  
  double bfrf[2][3], 
  double w, 
  double omega, 
  double merf[2][3] 
) ; 
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On entry the parameters are set as follows: 
 
 BFRF   pv-vector in planet body fixed frame (meters, meters per second) 
 W       Prime meridian angle (radians) 
 OMEGA   Planet rotation rate (radians per second) 
 
On return MERF contains the pv-vector in planet mean equator frame. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5  
 
g a l _ b i 0 0             [0.1]  
 
Frame bias components of IAU 2000 precession-nutation models (part of MHB2000 
with additions).   

void   
gal_bi00   
(   
  double *dpsibi,   
  double *depsbi,   
  double *dra   
) ;   

On return DPSIBI and DEPSBI contain the longitude and obliquity corrections and DRA 
the ICRS right ascension of the J2000 mean equinox. The frame bias corrections in 
longitude and obliquity (radians) are required in order to correct for the offset between 
the GCRS pole and the mean J2000 pole. They define, with respect to the GCRS frame, 
a J2000 mean pole that is consistent with the rest of the IAU 2000A precession-nutation 
model. In addition to the displacement of the pole, the complete description of the frame 
bias requires also an offset in right ascension. This is not part of the IAU 2000A model, 
and is from Chapront et al. (2002). It is returned in radians. This is a supplemented 
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the 
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).   
    
References:   
    
Chapront, J., Chapront-Touze, M. & Francou, G., Astronomy & Astrophysics, 387, 700, 
2002.   
   
Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New 
nutation series for non-rigid Earth and insights into the Earth's interior", Journal 
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Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th 
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.   
 
 g a l _ b p 0 0              [0.1] 
 
Frame bias and precession, IAU 2000.   

void   
gal_bp00   
(   
  double date1,   
  double date2,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RB contains the frame bias matrix, RP the 
precession matrix, and RBP the bias-precession matrix. The matrix RB transforms 
vectors from GCRS to mean J2000 by  applying frame bias. The matrix RP transforms 
vectors from J2000 mean equator and  equinox to mean equator and equinox of date by 
applying precession. The matrix RBP transforms vectors from GCRS to mean equator 
and equinox of date by applying frame bias then precession. It is the product RP x RB. 
The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) 
by IAU 2006 Resolution 2.    
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
 g a l _ b p 0 6              [0.1] 
 
Frame bias and precession, IAU 2006.   

void   
gal_bp06   
(   
  double date1,   
  double date2,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3]   
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) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RB contains the frame bias matrix, RP the 
precession matrix, and RBP the bias-precession matrix. The matrix RB transforms 
vectors from GCRS to mean J2000 by applying frame bias. The matrix RP transforms 
vectors from mean J2000 to mean of date by applying precession. The matrix RBP 
transforms vectors from GCRS to mean of date by applying frame bias then precession. 
It is the product RP x RB.   
 
References:   
  
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ b p n 2 x y             [0.1] 
 
Extract from the bias-precession-nutation matrix the X,Y coordinates of the Celestial 
Intermediate Pole.   

void   
gal_bpn2xy   
(   
  double rbpn[3][3],   
  double *x,   
  double *y   
) ;   

On entry RBPN contains the celestial-to-true matrix. On return X and Y contain the 
Celestial Intermediate Pole. The matrix rbpn transforms vectors from GCRS to true 
equator (and CIO or equinox) of date, and therefore the Celestial Intermediate Pole unit 
vector is the bottom row of the matrix. X and Y are components of the Celestial 
Intermediate Pole unit vector in the Geocentric Celestial Reference System. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.    
    
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)  
 
 g a l _ c 2 b f             [0.5]  
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This routine transforms a pv-vector from the alignment of the ICRF reference frame to 
the planet body fixed reference frame. 

void   
gal_c2bf   
(  
  double icrf[2][3], 
  double alpha, 
  double delta, 
  double w, 
  double omega, 
  double bfrf[2][3] 
) ;   

 
On entry the parameters are set as follows: 
 
 ICRF    pv-vector in ICRF inertial frame (meters, meters per second) 
 ALPHA Right ascension of planet spin axis (radians) 
 DELTA  Declination of planet spin axis (radians) 
 W        Prime meridian angle (radians) 
 OMEGA  Planet rotation rate (radians per second) 
 
On return BFRF contains the pv-vector in planet mean equator frame. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5 
  
 g a l _ c 2 i 0 0 a            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2000A 
precession-nutation model.   

void   
gal_c2i00a   
(   
  double date1,   
  double date2,   
  double rc2i[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix. 
The matrix RC2I is the first stage in the transformation from celestial to terrestrial 
coordinates:   
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 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
    
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. A faster, but 
slightly less accurate result (about 1 mas), can be obtained by using instead the 
gal_c2i00b routine. The celestial ephemeris origin (CEO) was renamed "celestial 
intermediate origin" (CIO) by IAU 2006 Resolution 2.   
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
    
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ c 2 i 0 0 b            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2000B 
precession-nutation model.   

void   
gal_c2i00b   
(   
  double date1,   
  double date2,   
  double rc2i[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix. 
The matrix RC2I is the first stage in the transformation from celestial to terrestrial 
coordinates:   
 
 [ITRS]  =  RPOM * R_3(ERA) * RC2I * [GCRS]   
  
   =   RC2T * [GCRS]   
  
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
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ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. This routine is 
faster, but slightly less accurate (about 1 mas), than the gal_c2i00a routine. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.    
 
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).  
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ c 2 i 0 6 a            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date using the IAU 2006 precession 
and IAU 2000A nutation models.   

void   
gal_c2i06a   
(   
  double date1,   
  double date2,   
  double rc2i[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RC2I contains the celestial-to-intermediate matrix. 
The matrix RC2I is the first stage in the transformation from celestial to terrestrial 
coordinates:   
    
 [ITRS]   =  RPOM * R_3(ERA) * RC2I * [GCRS]   
  
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.   
 
References:   
    
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
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Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
    
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ c 2 i b p n            [0.1]  
 
Form the celestial-to-intermediate matrix for a given date given the bias – precession - 
nutation matrix. IAU 2000. 

void   
gal_c2ibpn   
(   
  double date1,   
  double date2,   
  double rbpn[3][3],   
  double rc2i[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, and RBPN contains the celestial-to-true matrix. On return RC2I 
contains the celestial-to-intermediate matrix. The matrix RBPN transforms vectors from 
GCRS to true equator (and CIO or equinox) of date. Only the CIP (bottom row) is used. 
The matrix RC2I is the first stage in the transformation from celestial to terrestrial 
coordinates:   
    
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
    
    =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its 
name does not include "00", this routine is in fact specific to the IAU 2000 models. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
   
References:   
    
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003).   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
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 g a l _ c 2 i x y             [0.1]  
 
Form the celestial to intermediate-frame-of-date matrix for a given date when the CIP 
X,Y coordinates are known. IAU 2000.   

void   
gal_c2ixy   
(   
  double date1,   
  double date2,   
  double x,   
  double y,   
  double rc2i[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, X and Y contain the Celestial Intermediate Pole. On return 
RC2I contain the celestial-to-intermediate matrix. The Celestial Intermediate Pole 
coordinates are the X and Y components of the unit vector in the Geocentric Celestial 
Reference System. The matrix RC2I is the first stage in the transformation from celestial 
to terrestrial coordinates:   
 
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
 
   =   RC2T * [GCRS]   
  
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its 
name does not include "00", this routine is in fact specific to the IAU 2000 models.   
  
References:   
 
McCarthy D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, 
BKG (2004). 
 
 g a l _ c 2 i x y s             [0.1] 
 
Form the celestial to intermediate-frame-of-date matrix given the CIP x,y and the CIO 
locator s.   

void   
gal_c2ixys   
(   
  double x,   
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  double y,   
  double s,   
  double rc2i[3][3]   
) ;   

 
On entry X and Y contain the coordinates of the Celestial Intermediate Pole, and S 
contains the CIO locator. On return RC2I contains the celestial-to-intermediate matrix. 
The Celestial Intermediate Pole coordinates are the X and Y components of the unit 
vector in the Geocentric Celestial Reference System. The CIO locator (radians) 
positions the Celestial Intermediate Origin on the equator of the CIP. The matrix RC2I is 
the first stage in the transformation from celestial to terrestrial coordinates:   
 
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
 
   =   RC2T * [GCRS]   
 
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)  
 
g a l _ c 2 m e             [0.5]  
 
This routine transforms a pv-vector from the alignment of the International Celestial 
Reference Frame (ICRF) to the planet mean equator reference frame. 

void   
gal_c2me   
(  
  double icrf[2][3], 
  double alpha, 
  double delta, 
  double merf[2][3] 
) ;   

 
On entry the parameters are set as follows: 
 
 ICRF     pv-vector in ICRF inertial frame (meters, meters per second) 
 ALPHA   Right ascension of planet spin axis (radians) 
 DELTA   Declination of planet spin axis (radians) 
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On return MERF contains the pv-vector in planet mean equator frame. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5 
     
g a l _ c 2 r a d e c            [0.2]  
 
This routine converts a position and velocity vector in the Geocentric Celestial 
Reference Frame (GCRF) to right ascension and declination.   

void   
gal_c2radec   
(  
  double gcrf[2][3], 
  double *ra, 
  double *dec, 
  double *range, 
  double *radot, 
  double *decdot, 
  double *rangedot 
) ;   

On entry GCRF contains the GCRF position and velocity vector (meters, meters per 
second). On return the variables are set as follows: 
 
 RA      Right ascension (radians) 
 DEC        Declination (radians) 
 RANGE      Range (meters)   
 RADOT       Rate of change of right ascension (radians per second) 
 DECDOT       Rate of change of declination (radians per second) 
 RANGEDOT   Rate of change of range (range rate) (meters per second)   
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 248-250 
 
 g a l _ c 2 t 0 0 a             [0.1] 
 
Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the 
polar motion, using the IAU 2000A nutation model.   

void   
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gal_c2t00a   
(   
  double tta,   
  double ttb,   
  double uta,   
  double utb,   
  double xp,   
  double yp,   
  double rc2t[3][3]   
) ;   

 
On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the 
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole 
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains 
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is 
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at 
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in 
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are 
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole 
in the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T 
transforms from celestial to terrestrial coordinates:   
 
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
 
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM 
is the polar motion matrix. A faster, but slightly less accurate result (about 1 mas), can 
be obtained by using instead the gal_c2t00b routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
  
 g a l _ c 2 t 0 0 b            [0.1]  
 
Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the 
polar motion, using the IAU 2000B nutation model.   

void   
gal_c2t00b   
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(   
  double tta,   
  double ttb,   
  double uta,   
  double utb,   
  double xp,   
  double yp,   
  double rc2t[3][3]   
) ;   

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the 
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole 
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains 
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is 
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at 
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in 
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are 
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole 
in the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T 
transforms from celestial to terrestrial coordinates:   
 
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
    
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM 
is the polar motion matrix. This routine is faster, but slightly less accurate (about 1 mas), 
than the gal_c2t00a routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ c 2 t 0 6 a            [0.1]  
 
Form the celestial to terrestrial matrix given the date, the Universal Time (UT1) and the 
polar motion, using the IAU 2006 precession and IAU 2000A nutation models.   

void   
gal_c2t06a   
(   
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  double tta,   
  double ttb,   
  double uta,   
  double utb,   
  double xp,   
  double yp,   
  double rc2t[3][3]   
) ;   

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the 
Universal Time (UT1) Julian Date, and XP and YP contain the coordinates of the pole 
(radians). All dates are in standard SOFA two-piece format. On return RC2T contains 
the celestial-to-terrestrial matrix. In the case of UTA and UTB, the date & time method is 
best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at 
least, minimum noise) is delivered when the UTA argument is for 0hrs UT1 on the day in 
question and the UTB argument lies in the range 0 to 1, or vice versa. XP and YP are 
the "coordinates of the pole", in radians, which position the Celestial Intermediate Pole 
in the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T 
transforms from celestial to terrestrial coordinates:   
 
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
    
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM 
is the polar motion matrix.  
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 
 g a l _ c 2 t c e o             [0.1] 
 
Assemble the celestial to terrestrial matrix from CIO-based components (the celestial-to-
intermediate matrix, the Earth Rotation Angle and the polar motion matrix).   

#define gal_c2tceo( rc2i, era, rpom, rc2t ) gal_c2tcio( rc2i, ( 
era ), rpom, rc2t )   

On entry RC2I contains the celestial-to-intermediate matrix, ERA the Earth rotation 
angle, and RPOM the polar-motion matrix. On return RC2T contains the celestial-to-
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terrestrial matrix. The name of this routine, gal_c2tceo, reflects the original name of the 
celestial intermediate origin (CIO), which before the adoption of IAU 2006 Resolution 2 
was called the "celestial ephemeris origin" (CEO). When the name change from CEO to 
CIO occurred, a new routine called gal_c2tcio was introduced as the successor to the 
existing gal_c2tceo. This routine is merely a front end to the new one. The routine is 
included in the collection only to support existing applications. It should not be used in 
new applications. The routine is a candidate for deprecation.   
 
 g a l _ c 2 t c i o             [0.1] 
 
Assemble the celestial to terrestrial matrix from CIO-based components (the celestial-to-
intermediate matrix, the Earth Rotation Angle and the polar motion matrix).   

void   
gal_c2tcio   
(   
  double rc2i[3][3],   
  double era,   
  double rpom[3][3],   
  double rc2t[3][3]   
) ;   

On entry RC2I contains the celestial-to-intermediate matrix, ERA the Earth rotation 
angle, and RPOM the polar-motion matrix. On return RC2T contains the celestial-to-
terrestrial matrix. This routine constructs the rotation matrix that transforms vectors in 
the celestial system into vectors in the terrestrial system. It does so starting from pre-
computed components, namely the matrix which rotates from celestial coordinates to 
the intermediate frame, the Earth rotation angle and the polar motion matrix. One use of 
this routine is when generating a series of celestial-to-terrestrial matrices where only the 
Earth Rotation Angle changes, avoiding the considerable overhead of re-computing the 
precession-nutation more often than necessary to achieve given accuracy objectives. 
The relationship between the arguments is as follows:   
    
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
    
   =   RC2T * [GCRS]   
 
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
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 g a l _ c 2 t e q x             [0.1] 
 
Assemble the celestial to terrestrial matrix from equinox-based components (the 
celestial-to-true matrix, the Greenwich Apparent Sidereal Time and the polar motion 
matrix).   

void   
gal_c2teqx   
(   
  double rbpn[3][3],   
  double gst,   
  double rpom[3][3],   
  double rc2t[3][3]   
) ;   

On entry RBPN contains the celestial-to-true matrix, GST the Greenwich (Apparent) 
Sidereal Time, and RPOM the polar-motion matrix. On return RC2T contains the 
celestial-to-terrestrial matrix. This routine constructs the rotation matrix that transforms 
vectors in the celestial system into vectors in the terrestrial system. It does so starting 
from pre-computed components, namely the matrix which rotates from celestial 
coordinates to the true equator and equinox of date, the Greenwich Apparent Sidereal 
Time and the polar motion matrix. One use of the routine is when generating a series of 
celestial-to-terrestrial matrices where only the Sidereal Time changes, avoiding the 
considerable overhead of re-computing the precession-nutation more often than 
necessary to achieve given accuracy objectives. The relationship between the 
arguments is as follows:   
    
 [ITRS]   =   RPOM * R_3(GST) * RBPN * [GCRS]   
 
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ c 2 t p e              [0.1] 
 
Form the celestial to terrestrial matrix given the date, the Universal Time (UT1), the 
nutation and the polar motion. IAU 2000.   

void   
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gal_c2tpe   
(   
  double tta,   
  double ttb,   
  double uta,   
  double utb,   
  double dpsi,   
  double deps,   
  double xp,   
  double yp,   
  double rc2t[3][3]   
) ;   

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB 
contain the Universal Time (UT1) Julian Date, DPSI and DEPS the nutation, and XP and 
YP the coordinates of the pole (radians). All dates are in standard SOFA two-piece 
format. On return RC2T contains the celestial-to-terrestrial matrix. In the case of UTA 
and UTB, the date & time method is best matched to the Earth rotation angle algorithm 
used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA 
argument is for 0hrs UT1 on the day in question and the UTB argument lies in the range 
0 to 1, or vice versa. The caller is responsible for providing the nutation components; 
they are in longitude and obliquity, in radians and are with respect to the equinox and 
ecliptic of date. For high-accuracy applications, free core nutation should be included as 
well as any other relevant corrections to the position of the CIP. XP and YP are the 
"coordinates of the pole", in radians, which position the Celestial Intermediate Pole in 
the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The matrix RC2T 
transforms from celestial to terrestrial coordinates:   
    
 [ITRS]   =   RPOM * R_3(GST) * RBPN * [GCRS]   
 
   =   RC2T * [GCRS]   
    
where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
RBPN is the bias-precession-nutation matrix, GST is the Greenwich (Apparent) Sidereal 
Time and RPOM is the polar motion matrix. Although its name does not include "00", 
this routine is in fact specific to the IAU 2000 models.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
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 g a l _ c 2 t p v 0 0 a            [0.2] 
 
This routine converts a position & velocity vector in the Geocentric Celestial Reference 
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2000A 
Resolutions).   

void   
gal_c2tpv00a   
(  
  double gcrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double itrf[2][3], 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 GCRF    GCRF position & velocity vector (meters, meters per second) 
 UTC1     Date part 1 (UTC) 
 UTC2    Date part 2 (UTC)  
 DUT1    UT1 - UTC (seconds) 
 LOD     Excess length of day (seconds) 
 XP      X coordinate of the pole (radians)  
 YP       Y coordinate of the pole (radians) 
 
On return ITRF contains the ITRF position & velocity vector (meters, meters per 
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003, measured along the meridians to 0 
and 90 deg west respectively. If any internal errors occur the applicable error code is 
set. 
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
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2004, Pages 217-219 
  
 g a l _ c 2 t p v 0 0 b            [0.2] 
 
This routine converts a position & velocity vector in the Geocentric Celestial Reference 
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2000B 
Resolutions).   

void   
gal_c2tpv00b   
(  
  double gcrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double itrf[2][3], 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 GCRF    GCRF position & velocity vector (meters, meters per second) 
 UTC1     Date part 1 (UTC) 
 UTC2    Date part 2 (UTC)  
 DUT1    UT1 - UTC (seconds) 
 LOD     Excess length of day (seconds) 
 XP      X coordinate of the pole (radians)  
 YP       Y coordinate of the pole (radians) 
 
On return ITRF contains the ITRF position & velocity vector (meters, meters per 
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003, measured along the meridians to 0 
and 90 deg west respectively. If any internal errors occur then the applicable error code 
is set.  
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007  
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http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 
 g a l _ c 2 t p v 0 6 a            [0.2] 
 
This routine converts a position & velocity vector in the Geocentric Celestial Reference 
Frame (GCRF) to the International Terrestrial Reference Frame (ITRF) (IAU 2006A 
Resolutions).   

void   
gal_c2tpv06a   
(  
  double gcrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double itrf[2][3], 
  gal_status_t *status 
) ;   

 On entry the parameters are set as follows: 
 
 GCRF    GCRF position & velocity vector (meters, meters per second) 
 UTC1     Date part 1 (UTC) 
 UTC2    Date part 2 (UTC)  
 DUT1    UT1 - UTC (seconds) 
 LOD     Excess length of day (seconds) 
 XP      X coordinate of the pole (radians)  
 YP       Y coordinate of the pole (radians) 
 
On return ITRD contains the ITRF position & velocity vector (meters, meters per 
second). The date UTC1 and UTC2 is a Coordinated Universal Time Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003, measured along the meridians to 0 
and 90 deg west respectively. If any internal errors occur then the applicable error 
codes is set. 
 
References: 
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SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 
 g a l _ c 2 t x y              [0.1] 
 
Form the celestial to terrestrial matrix given the date, the Universal Time (UT1), the CIP 
coordinates and the polar motion. IAU 2000.   

void   
gal_c2txy   
(   
  double tta,   
  double ttb,   
  double uta,   
  double utb,   
  double x,   
  double y,   
  double xp,   
  double yp,   
  double rc2t[3][3]   
) ;   

On entry TTA and TTB contain the Terrestrial Time (TT) Julian Date, UTA and UTB the 
Universal Time (UT1) Julian Date, X and Y the Celestial Intermediate Pole, and XP and 
YP the coordinates of the pole (radians). All dates are in standard SOFA two-piece 
format. On return RC2T contains the celestial-to-terrestrial matrix. In the case of UTA 
and UTB, the date & time method is best matched to the Earth rotation angle algorithm 
used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA 
argument is for 0hrs UT1 on the day in question and the UTB argument lies in the range 
0 to 1, or vice versa. The Celestial Intermediate Pole coordinates are the X and Y 
components of the unit vector in the Geocentric Celestial Reference System. XP and YP 
are the "coordinates of the pole", in radians, which position the Celestial Intermediate 
Pole in the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The matrix rc2t 
transforms from celestial to terrestrial coordinates:   
    
 [ITRS]   =   RPOM * R_3(ERA) * RC2I * [GCRS]   
  
   =   RC2T * [GCRS]   
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where [GCRS] is a vector in the Geocentric Celestial Reference System and [ITRS] is a 
vector in the International Terrestrial Reference System (see IERS Conventions 2003), 
ERA is the Earth Rotation Angle and RPOM is the polar motion matrix. Although its 
name does not include "00", this routine is in fact specific to the IAU 2000 models.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ c h g i r f             [0.6] 
  
Form rotation matrix to change from one inertial reference frame to another.  

void 
gal_chgirf  
( 
  int refa,  
  int refb,  
 double rotab[3][3], 
  gal_status_t *status 
) ;   

On entry REFA contains the identifier code of the inertial reference frame to change 
from, and REFB contains the identifier code of the inertial reference frame to change to. 
On return ROTAB contains the rotation matrix such that B = ROTAB * A. If an error 
occurs then the applicable error codes are set. The header file gal_frame_macros.h 
defines the  constants for the identifier codes. 
 
References: 
 
[1] Jay Lieske, ``Precession Matrix Based on IAU (1976)  
System of Astronomical Constants,'' Astron. Astrophys.  
73, 282-284 (1979).  
 
[2] E.M. Standish, Jr., ``Orientation of the JPL Ephemerides,  
DE 200/LE 200, to the Dynamical Equinox of J2000,''  
Astron. Astrophys. 114, 297-302 (1982).  
 
[3] E.M. Standish, Jr., ``Conversion of Ephemeris Coordinates  
from the B1950 System to the J2000 System,'' JPL IOM  
314.6-581, 24 June 1985.  
 
[4] E.M. Standish, Jr., ``The Equinox Offsets of the JPL  
Ephemeris,'' JPL IOM 314.6-929, 26 February 1988.  
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[5] Jay Lieske, ``Expressions for the Precession Quantities  
Based upon the IAU (1976) System of Astronomical  
Constants'' Astron. Astrophys. 58, 1-16 (1977).  
 
[6] Laura Bass and Robert Cesarone "Mars Observer Planetary  
Constants and Models" JPL D-3444 November 1990.  
 
[7] "Explanatory Supplement to the Astronomical Almanac"  
edited by P. Kenneth Seidelmann. University Science  
Books, 20 Edgehill Road, Mill Valley, CA 94941 (1992)  
 
 g a l _ e e 0 0              [0.1] 
  
The equation of the equinoxes, compatible with IAU 2000 resolutions, given the nutation 
in longitude and the mean obliquity.   

double   
gal_ee00   
(   
  double date1,   
  double date2,   
  double epsa,   
  double dpsi   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, EPSA contains the mean obliquity, and DPSI the nutation in 
longitude. The routine returns the equation of the equinoxes. The obliquity (radians), is 
mean of date. The result, which is in radians, operates in the following sense:   
    

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation 
of the equinoxes   

 
The result is compatible with the IAU 2000 resolutions. For further details, see IERS 
Conventions 2003 and Capitaine et al. (2002).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ e e 0 0 a              [0.1] 
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Equation of the equinoxes, compatible with IAU 2000 resolutions.   

double   
gal_ee00a   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the equation of the equinoxes. The result, 
which is in radians, operates in the following sense:   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation 
of the equinoxes   

 
The result is compatible with the IAU 2000 resolutions. For further details, see IERS 
Conventions 2003 and Capitaine et al. (2002).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ e e 0 0 b              [0.1] 
 
Equation of the equinoxes, compatible with IAU 2000 resolutions but using the truncated 
nutation model IAU 2000B.   

double   
gal_ee00b   
(   
  double date1,   
  double date2   
) ;   

 
On entry DATE1 and DATE2 contains the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the equation of the equinoxes. The result, 
which is in radians, operates in the following sense:   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation 
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of the equinoxes   
 
The result is compatible with the IAU 2000 resolutions except that accuracy has been 
compromised for the sake of speed. For further details, see McCarthy & Luzum (2001), 
IERS Conventions 2003 and Capitaine et al. (2003).   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004) 
 
 g a l _ e e 0 6 a              [0.1] 
  
Equation of the equinoxes, compatible with IAU 2000 resolutions and IAU 2006/2000A 
precession-nutation.   

double   
gal_ee06a   
(   
  double date1,   
  double date2   
) ; 

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the equation of the equinoxes. The result, 
which is in radians, operates in the following sense:   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation 
of the equinoxes   

  
References:   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 
 g a l _ e e c t 0 0             [0.1] 
  
Equation of the equinoxes complementary terms, consistent with IAU 2000 resolutions.   
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double   
gal_eect00   
(   
  double date1,   
  double date2   
) ;   

 
On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the complementary terms. The 
"complementary terms" are part of the equation of the equinoxes (EE), classically the 
difference between apparent and mean Sidereal Time:   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + EE.   
 
 with:   
 
 EE = DPSI * cos(EPS)   
 
where DPSI is the nutation in longitude and EPS is the obliquity of date. However, if the 
rotation of the Earth were constant in an inertial frame the classical formulation would 
lead to apparent irregularities in the UT1 timescale traceable to side-effects of 
precession-nutation. In order to eliminate these effects from UT1, "complementary 
terms" were introduced in 1994 (IAU, 1994) and took effect from 1997 (Capitaine and 
Gontier, 1993):   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + 
complementary terms + equation of the equinoxes   

 
By convention, the complementary terms (CT) are included as part of the equation of 
the equinoxes rather than as part of the mean Sidereal Time. This slightly compromises 
the "geometrical" interpretation of mean sidereal time but is otherwise inconsequential. 
This routine computes CT in the above expression, compatible with IAU 2000 
resolutions (Capitaine et al., 2002, and IERS Conventions 2003).   
 
References:   
 
Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
IAU Resolution C7, Recommendation 3 (1994)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)  
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 g a l _ e f o r m              [0.6] 
 
Get Earth ellipsoid parameters. 

void 
gal_eform  
(  
  int n,  
  double *a, 
  double *f, 
  gal_status_t *status 
) ; 

On entry N contains the identifier code of the requested ellipsoid model. On return the 
variables are set as follows: 
 
 A Equatorial radius 
 F Flattening factor 
 
The ellipsoid parameters are returned in the form of equatorial radius in meters (A) and 
flattening (F). The latter is a number around 0.00335, i.e. around 1/298. For the case 
where an unsupported N value is supplied, zero A and F are returned, and the error 
status GAL_INVALID_ID is set. 
 
 g a l _ e m d e t a i l s            [0.2] 
 
This routine returns the full details of the requested ellipsoid model. 

void 
gal_emdetails   
( 
  const int em, 
  int *body, 
  char *name, 
  double *sma, 
  double *inf, 
  gal_status_t *status 
) ; 

On entry EM contains the identifier code of the requested ellipsoid model. On return the 
variables are set as follows: 
 
 BODY  Solar System Body Identifier 
 NAME   Ellipsoid Model name 
 SMA   Semi-major axis (meters) 
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 INF    Inverse flattening factor  
 
If  value of the ellipsoid identifer EM is unknown to the routine then the error code 
GAL_INVALID_ID is set and SMA and INF are set to zero.  

 
The header file gal_frame_macros.h defines the constants for the valid values of EM.  
 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth 
Seidelmann, 1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
 
McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al. 
 
 g a l _ e m n a m e             [0.2] 
 
This routine returns the name of the requested ellipsoid model. 

char * 
gal_emname  
( 
  const int em, 
  char *name, 
  gal_status_t *status 
 ) ; 

On entry EM contains the identifier code of the required ellipsoid model. On return 
NAME contains the model name. The header file gal_frame_macros.h defines constants 
for the supported model identifiers. The routine returns a pointer to the string name. If 
the value of EM is unsupported by the routine then the error code GAL_INVALID_ID is 
set, and the routine returns NULL. 
 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth 
Seidelmann, 1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
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McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al. 
 
 g a l _ e m p a r a m s            [0.2] 
 
This routine returns the parameters of the requested ellipsoid model. 

int 
gal_emparams   
( 
  const int em, 
  double *sma, 
  double *inf, 
  gal_status_t *status 
) ; 

On entry EM contains the identifier code of the requested ellipsoid model. The header 
file gal_frame_macros.h defines constants for the supported model identifiers. On return 
the variables are set as follows: 
 
 SMA   Semi-major axis (meters) 
 INF    Inverse flattening factor  
 
If  value of the ellipsoid identifer EM is unknown to the routine then the error code 
GAL_INVALID_ID is set and SMA and INF are set to zero.  
 
References: 
 
Explanatory Supplement to the Astronomical Almanac Edited by P. Kenneth 
Seidelmann, 1992 Page 220 
 
Map Projection Transformations by Qihe Yang, John P. Snyder and Waldo R. Tobler 
Page 14 
 
McCarthy, D.D., IERS Conventions 2000, Chapter 4 (2002). 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites: 1991 M. E. Davis et al. 
 
 g a l _ e o 0 6 a              [0.1] 
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Equation of the origins, IAU 2006 precession and IAU 2000A nutation.   

double   
gal_eo06a   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the equation of the origins in radians. The 
equation of the origins is the distance between the true equinox and the celestial 
intermediate origin and, equivalently, the difference between Earth rotation angle and 
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since 
J2000.0) in right ascension plus the equation of the equinoxes (including the small 
correction terms).   
 
References:   
    
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ e o p              [0.6]  
 
Read Earth Orientation Parameters from CSSI data file.    

void  
gal_eop  
(   
  char *filename, 
  double date1,   
  double date2, 
  int buffer, 
  double *xp, 
  double *yp, 
  double *dut1, 
  double *lod, 
  double *dpsi, 
  double *deps, 
  double *dx, 
  double *dy, 
  int *dat, 
  int *dtype, 
  gal_status_t *status   
) ;   

Given: 
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 *FILENAME CSSI EOP data file name 
 DATE1  Date part 1   
 DATE2  Date part 2   
 BUFFER  Buffering flag  
    0 = do not buffer results 
    1 = buffer results 
  
Returned: 
 
 *XP   x coordinate of the pole ( radians )     
 *YP   y coordinate of the pole ( radians ) 
 *DUT1  UT1 - UTC ( seconds ) 
 *LOD  Excess length of day ( seconds ) 
 *DPSI  Nutation ( radians ) 
 *DEPS  Nutation ( radians ) 
 *DX   ? ( radians ) 
 *DY   ? ( radians ) 
 *DAT  TAI - UTC ( seconds ) 
 *TYPE  Parameter type: 
    0 = Invalid Coefficients ( failure ) 
    1 = Observed Coefficients 
    2 = Predicted Coefficients 
 *STATUS  Pointer to status structure 
 
The date DATE1+DATE2 is a Julian date in standard SOFA two-piece format. The CSSI 
EOP data files can be downloaded from here: 
 
  http://celestrak.com/SpaceData/ 
 
The CSSI file format and data details are documented here: 
 
  http://celestrak.com/SpaceData/EOP-format.asp 
 
XP and YP are the coordinates (in radians) of the Celestial Intermediate Pole with 
respect to the International Terrestrial Reference System (see IERS Conventions 2003), 
measured along the meridians to 0 and 90 deg west respectively. The nutation 
components (luni-solar + planetary, IAU 2000A) in  longitude and obliquity are in radians 
and with respect to the equinox and ecliptic of date. If the date is outside of the date 
range of the data file then the error code GAL_OUTSIDE_DATE_RANGE is set. If any 
errors occur then the applicable error codes are set and all return values are set to zero. 
If the BUFFER parameter is set to 1 then the routine buffers the return results. If the 
date requested is the same as the previous call, then the buffered results are returned 
and the file is not accessed. If the BUFFER parameter is set to 0 then the file is 
accessed on each call. Using the buffered results improves the execution speed, 
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however the user should use caution if multiple data files are used, or if the file contents 
are changed during program execution. 
 
References: 
 
Vallado, David A. and T.S. Kelso, "Using EOP and Solar Weather Data for Satellite 
Operations," presented at the 15th AIAA/AAS Astrodynamics Specialist Conference, 
Lake Tahoe, CA, 2005 August 7–11. http://celestrak.com/publications/AAS/05-406/ 
  
 g a l _ e o r s             [0.1]  
 
Equation of the origins, given the classical NPB matrix and the quantity s.   

double   
gal_eors   
(   
  double rnpb[3][3],   
  double s   
) ;   

On entry RNPB contains the classical nutation x precession x bias matrix, and S the 
quantity s (the CIO locator). The routine returns the equation of the origins in radians. 
The equation of the origins is the distance between the true equinox and the celestial 
intermediate origin and, equivalently, the difference between Earth rotation angle and 
Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since 
J2000.0) in right ascension plus the equation of the equinoxes (including the small 
correction terms). The algorithm is from Wallace & Capitaine (2006).   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P. & Capitaine, N., 2006, Astronomy & Astrophysics (submitted) 
 
 g a l _ e q e q 9 4            [0.1]  
 
Equation of the equinoxes, IAU 1994 model.   

double   
gal_eqeq94   
(   
  double date1,   
  double date2   
) ;   
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On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) Julian Date 
in standard SOFA two-piece format. The routine returns the equation of the equinoxes. 
The result, which is in radians, operates in the following sense:   
 

Greenwich Apparent Sidereal Time = Greenwich Mean Sidereal Time + equation 
of the equinoxes   

  
References:   
 
IAU Resolution C7, Recommendation 3 (1994)   
 
Capitaine, N. & Gontier, A.-M., Astronomy & Astrophysics, 275, 645-650 (1993)   
 
 g a l _ e r a 0 0              [0.1] 
 
Earth rotation angle (IAU 2000 model).   

double   
gal_era00   
(   
  double dj1,   
  double dj2   
) ;   

On entry DJ1 and DJ2 contain the Universal Time (UT1) Julian Date in standard SOFA 
two-piece format. The routine returns the Earth rotation angle (radians), in the range 0 
to 2π. The date & time method is best matched to the algorithm used: maximum 
accuracy (or, at least, minimum noise) is delivered when the DJ1 argument is for 0hrs 
UT1 on the day in question and the DJ2 argument lies in the range 0 to 1, or vice versa. 
The algorithm is adapted from Expression 22 of Capitaine et al. 2000. The time 
argument has been expressed in days directly, and, to retain precision, integer 
contributions have been eliminated. The same formulation is given in IERS Conventions 
(2003), Chap. 5, Eq. 14.   
 
References:   
 
Capitaine N., Guinot B. and McCarthy D.D, 2000, Astronomy & Astrophysics, 355, 398-
405.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ f a d 0 3              [0.1] 
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Fundamental argument, IERS Conventions (2003): mean elongation of the Moon from 
the Sun.   

double   
gal_fad03   
(   
  double t   
) ;   

 
On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns D in radians. Though T is strictly Barycentric 
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which 
makes no significant difference. The expression used is as adopted in IERS 
Conventions (2003) and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a e 0 3              [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Earth.   

double   
gal_fae03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Earth in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
    
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
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Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
 g a l _ f a f 0 3              [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of the Moon minus 
mean longitude of the ascending node.   

double   
gal_faf03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of the Moon in radians. Though T 
is strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a j u 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Jupiter.   

double   
gal_faju03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Jupiter in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
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adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
 g a l _ f a l 0 3              [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean anomaly of the Moon.   

double   
gal_fal03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns L in radians. Though T is strictly Barycentric Dynamical 
Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which makes no 
significant difference. The expression used is as adopted in IERS Conventions (2003) 
and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a l p 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean anomaly of the Sun.   

double   
gal_falp03   
(   
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  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns Lʼ in radians. Though T is strictly Barycentric 
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which 
makes no significant difference. The expression used is as adopted in IERS 
Conventions (2003) and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a m a 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Mars.   

double   
gal_fama03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Mars in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).  
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
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 g a l _ f a m e 0 3           [0.1]   
 
Fundamental argument, IERS Conventions (2003): mean longitude of Mercury.   

double   
gal_fame03   
(   
  double t   
) ;    

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Mercury in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
 g a l _ f a n e 0 3             [0.1] 
  
Fundamental argument, IERS Conventions (2003): mean longitude of Neptune.   

double   
gal_fane03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Neptune in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).   
 
References:   
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McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a o m 0 3            [0.1]  
 
Fundamental argument, IERS Conventions (2003): mean longitude of the Moon's 
ascending node.   

double   
gal_faom03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns Omega in radians. Though T is strictly Barycentric 
Dynamical Time (TDB), it is usually more convenient to use Terrestrial Time (TT), which 
makes no significant difference. The expression used is as adopted in IERS 
Conventions (2003) and is from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a p a 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): general accumulated precession in 
longitude.   

double   
gal_fapa03   
(   
  double t   
) ;  

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the general precession in longitude in radians. Though 
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T is strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003). It is taken from Kinoshita & Souchay (1990) and 
comes originally from Lieske et al. (1977).   
 
References:   
 
Kinoshita, H. and Souchay J. 1990, Celestial Mechanics and Dynamical Astronomy 48, 
187   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58, 
1-16  
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ f a s a 0 3            [0.1]  
 
Fundamental argument, IERS Conventions (2003): mean longitude of Saturn.   

double   
gal_fasa03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Saturn in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
 
References:  
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
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 g a l _ f a u r 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Uranus.   

double   
gal_faur03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Uranus in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
 g a l _ f a v e 0 3             [0.1] 
 
Fundamental argument, IERS Conventions (2003): mean longitude of Venus.   

double   
gal_fave03   
(   
  double t   
) ;   

On entry T contains the Barycentric Dynamical Time (TDB) date in Julian centuries 
since J2000. The routine returns the mean longitude of Venus in radians. Though T is 
strictly Barycentric Dynamical Time (TDB), it is usually more convenient to use 
Terrestrial Time (TT), which makes no significant difference. The expression used is as 
adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon 
et al. (1994).   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
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Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
 g a l _ f w 2 m              [0.1] 
 
Form rotation matrix given the Fukushima-Williams angles.   

void   
gal_fw2m   
(   
  double gamb,   
  double phib,   
  double psi,   
  double eps,   
  double r[3][3]   
) ;   

On entry GAMB contains the F-W angle gamma_bar, PHIB the F-W angle phi_bar, PSI 
the F-W angle psi, and EPS the F-W angle epsilon. All angles are in radians. On return 
R contains the rotation matrix.  
 
Naming the following points:   
    
 e   J2000 ecliptic pole   
 p   GCRS pole  
 E   ecliptic pole of date   
 P   CIP 
    
the four Fukushima-Williams angles are as follows:   
    
 gamb  = gamma   = epE   
 phib   = phi   = pE   
 psi   = psi   = pEP   
 eps   = epsilon   = EP   
 
The matrix representing the combined effects of frame bias, precession and nutation is:   
    
 NxPxB = R_1(-EPS).R_3(-PSI).R_1(PHIB).R_3(GAMB)   
 
Three different matrices can be constructed, depending on the supplied angles:   
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To obtain the nutation x precession x frame bias matrix, generate the four precession 
angles, generate the nutation components and add them to the psi_bar and epsilon_A 
angles, and call this routine.  To obtain the precession x frame bias matrix, generate the 
four precession angles and call this routine. To obtain the frame bias matrix, generate 
the four precession angles for date J2000.0 and call this routine. The nutation-only and 
precession-only matrices can if necessary be obtained by combining these three 
appropriately. 
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 
 g a l _ f w 2 x y              [0.1] 
 
CIP X,Y given Fukushima-Williams bias-precession-nutation angles.   

void  
gal_fw2xy   
(   
  double gamb,   
  double phib,   
  double psi,   
  double eps,   
  double *x,   
  double *y   
) ;   

On entry GAMB contains the F-W angle gamma_bar, PHIB the F-W angle phi_bar, PSI 
the F-W angle psi, and EPS the F-W angle epsilon. All angles are in radians. On return 
X and Y contain the CIP X and Y in radians.  
 
Naming the following points:   
    
 e   J2000 ecliptic pole,   
 p   GCRS pole,   
 E   ecliptic pole of date,   
 P   CIP,   
    
the four Fukushima-Williams angles are as follows:   
    
 gamb  = gamma   = epE   
 phib   = phi   = pE   
 psi   = psi   = pEP   
 eps   = epsilon   = EP   
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The matrix representing the combined effects of frame bias, precession and nutation is:   
 
 NxPxB = R_1(-epsa).R_3(-psi).R_1(phib).R_3(gamb)   
  
 X and Y are elements [0][2] and [1][2] of the matrix.   
  
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 
 g a l _ g c 2 g d             [0.6]  
 
Transform geocentric coordinates to geodetic using the specified reference ellipsoid. 

void  
gal_gc2gd (  
  int    n,  
  double xyz[3], 
  double *elong,  
  double *phi,  
  double *height, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
  N  Ellipsoid identifier  
   XYZ   Geocentric p-vector  
 
On return the variables are set as follows: 
 
  ELONG Longitude ( radians, east positive ) 
  PHI  Latitude ( geodetic, radians ) 
  HEIGHT Height above ellipsoid ( geodetic ) 
 
The identifier N is a number that specifies the choice of reference ellipsoid. The header 
file "gal_frame_macros.h" defines the constants for the identifiers. The geocentric vector 
( XYZ, given ) and HEIGHT ( height, returned ) are in meters. An error code of 
GAL_INVALID_ID means that the identifier N is illegal. In all error cases, PHI and 
HEIGHT are both set to -1e9. The inverse transformation is performed in the function 
gal_gd2gc.  
 
 g a l _ g c 2 g d e           [0.6]  
 
Transform geocentric coordinates to geodetic for a reference ellipsoid of specified form. 

void 
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gal_gc2gde (  
  double a, 
  double f, 
  double xyz[3], 
  double *elong,  
  double *phi,  
  double *height, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
  A  Equatorial radius  
  F  Flattening  
  XYZ   Geocentric p-vector  
 
On return the variables are set as follows: 
 
  ELONG Longitude ( radians, east positive ) 
  PHI  Latitude ( geodetic, radians ) 
  HEIGHT Height above ellipsoid ( geodetic ) 
 
This function is based on the GCONV2H Fortran subroutine by Toshio Fukushima (see 
reference). The equatorial radius, A, can be in any units, but meters is the conventional 
choice. The flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298. 
The equatorial radius, A, and the geocentric vector, XYZ, must be given in the same 
units, and determine the units of the returned height, HEIGHT. If an error occurs, 
ELONG, PHI and HEIGHT are unchanged. The inverse transformation is performed in 
the function gal_gd2gce. The transformation for a standard ellipsoid ( such as WGS84 ) 
can more conveniently be performed by calling gal_gc2gd, which uses a numerical code 
to identify the required A and F values. The error codes GAL_INVALID_SMA and 
GAL_INVALID_FLATTENING are set when A and F respectively have invalid values. 
 
Reference: 
 
Fukushima, T., "Transformation from Cartesian to geodetic coordinates accelerated by 
Halley's method", J.Geodesy (2006) 79: 689-693 
 
 g a l _ g d 2 g c              [0.6]  
 
Transform geodetic coordinates to geocentric using the specified reference ellipsoid. 

void 
gal_gd2gc (  
  int    n,  
  double elong,  
  double phi,  
  double height, 
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  double xyz[3], 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
  N  Ellipsoid identifier  
  ELONG Longitude ( radians, east positive ) 
  PHI  Latitude ( geodetic, radians ) 
  HEIGHT Height above ellipsoid ( geodetic ) 
 
On return the variables are set as follows: 
 
  XYZ  Geocentric vector  
 
The identifier N is a number that specifies the choice of reference ellipsoid. The header 
file "gal_frame_macros.h" defines the constants for the identifiers. The geocentric vector 
( XYZ, given ) and height ( HEIGHT, returned ) are in meters. No validation is performed 
on the arguments ELONG, PHI and HEIGHT. An error status GAL_INVALID_ID means 
that the identifier N is illegal. Error GAL_ARITHMETIC_EXCEPTION protects against 
cases that would lead to arithmetic exceptions. In all error cases, XYZ is set to zeros. 
The inverse transformation is performed in the function gal_gc2gd. 
 
 g a l _ g d 2 g c e            [0.6]  
 
Transform geodetic coordinates to geocentric for a reference ellipsoid of specified form.  

void 
gal_gd2gce (  
  double a,  
  double f,  
  double elong,  
  double phi, 
  double height,  
  double xyz[3], 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
  A  Equatorial radius 
  F  Flattening 
  ELONG Longitude ( radians, east positive ) 
  PHI  Latitude ( geodetic, radians ) 
  HEIGHT Height above ellipsoid ( geodetic ) 
 
On return the variables are set as follows: 
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  XYZ  Geocentric vector  
 
The equatorial radius, A, can be in any units, but meters is the conventional choice. The 
flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298. The equatorial 
radius, A, and the height, HEIGHT, must be given in the same units, and determine the 
units of the returned geocentric vector, XYZ. No validation is performed on individual 
arguments. The error status GAL_ARITHMETIC_EXCEPTION protects against 
(unrealistic) cases that would lead to arithmetic exceptions.  If an error occurs, XYZ is 
unchanged. The inverse transformation is performed in the function gal_gc2gde. The 
transformation for a standard ellipsoid (such as WGS84) can more conveniently be 
performed by calling gal_gd2gc, which uses a numerical code to identify the required A 
and F values. 
 
References: 
  
Green, R.M., Spherical Astronomy, Cambridge University Press, (1985) Section 4.5, 
p96. 
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), 
University Science Books (1992), Section 4.22, p202. 
 
 g a l _ g m s t 0 0             [0.1] 
 
Greenwich Mean Sidereal Time (model consistent with IAU 2000 resolutions).   

double   
gal_gmst00   
(   
  double uta,   
  double utb,   
  double tta,   
  double ttb   
) ;   

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, and TTA and 
TTB contain the Terrestrial Time (TT) Julian Date. Both dates in standard SOFA two-
piece format. The routine returns the Greenwich Mean Sidereal Time in radians, in the 
range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth rotation and TT 
to predict the effects of precession. If UT1 is used for  both purposes, errors of order 
100 microarcseconds result. This GMST is compatible with the IAU 2000 resolutions 
and must be used only in conjunction with other IAU 2000 compatible components such 
as precession-nutation and equation of the equinoxes. The algorithm is from Capitaine 
et al. (2003) and IERS Conventions 2003.   
 
References: 
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Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ g m s t 0 6             [0.1] 
 
Greenwich mean sidereal time (consistent with IAU 2006 precession).   

double   
gal_gmst06   
(   
  double uta,   
  double utb,   
  double tta,   
  double ttb   
) ;    

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, and TTA and 
TTB contain the Terrestrial Time (TT) Julian Date. Both dates in standard SOFA two-
piece format. The routine returns the Greenwich Mean Sidereal Time in radians, in the 
range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth rotation and TT 
to predict the effects of precession. If UT1 is used for both purposes, errors of order 100 
microarcseconds result. This GMST is compatible with the IAU 2006 precession and 
must not be used with other precession models.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355   
 
 g a l _ g m s t 8 2             [0.1] 
 
Universal Time to Greenwich Mean Sidereal Time (IAU 1982 model).   

double   
gal_gmst82   
(   
  double dj1,   
  double dj2   
) ;   

On entry DJ1 and DJ2 contain the Universal Time (UT1) Julian Date in standard SOFA 
two-piece format. The routine returns the Greenwich Mean Sidereal Time (GMST) in 
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radians, in the range 0 to 2π. The algorithm is based on the IAU 1982 expression. This 
is always described as giving the GMST at 0 hours UT1. In fact, it gives the difference 
between the GMST and the UT, the steady 4-minutes-per-day drawing-ahead of ST with 
respect to UT. When whole days are ignored, the expression happens to equal the 
GMST at 0 hours UT1 each day. In this routine, the entire UT1 (the sum of the two 
arguments DJ1 and DJ2) is used directly as the argument for the standard formula, the 
constant term of which is adjusted by 12 hours to take account of the noon phasing of 
Julian Date. The UT1 is then added, but omitting whole days to conserve accuracy.   
 
References:   
 
Transactions of the International Astronomical Union, XVIII B, 67 (1983).   
 
Aoki et al., Astronomy & Astrophysics 105, 359-361 (1982).   
 
 g a l _ g s t 0 0 a             [0.1] 
 
Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions).   

double   
gal_gst00a   
(   
  double uta,   
  double utb,   
  double tta,   
  double ttb   
) ;   

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB the 
Terrestrial Time (TT) Julian Date. The routine return the Greenwich Apparent Sidereal 
Time (GAST) in radians, in the range 0 to 2π.  Both UT1 and TT are required, UT1 to 
predict the Earth rotation and TT to predict the effects of precession-nutation. If UT1 is 
used for both purposes, errors of order 100 microarcseconds result. This GAST is 
compatible with the IAU 2000 resolutions and must be used only in conjunction with 
other IAU 2000 compatible components such as precession-nutation. The algorithm is 
from Capitaine et al. (2003) and IERS Conventions 2003.   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
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 g a l _ g s t 0 0 b             [0.1] 
  
Greenwich Apparent Sidereal Time (consistent with IAU 2000 resolutions but using the 
truncated nutation model IAU 2000B).   

double   
gal_gst00b   
(   
  double uta,   
  double utb   
) ;   

On entry UTA and UTB contain the Universal time (UT1) Julian Date in standard SOFA 
two-piece format. The routine returns the Greenwich Apparent Sidereal Time (GAST) in 
radians, in the range 0 to 2π. The result is compatible with the IAU 2000 resolutions, 
except that accuracy has been compromised for the sake of speed and convenience in 
two respects: (1) UT is used instead of TDB (or TT) to compute the precession 
component of Greenwich Mean Sidereal Time (GMST) and the equation of the 
equinoxes. This results in errors of order 0.1 mas at present. (2) The IAU 2000B 
abridged nutation model (McCarthy & Luzum, 2001) is used, introducing errors of up to 
1 mas. This GAST is compatible with the IAU 2000 resolutions and must be used only in 
conjunction with other IAU 2000 compatible components such as precession-nutation. 
The algorithm is from Capitaine et al. (2003) and IERS Conventions 2003.   
 
References:   
 
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 
2000 definition of UT1", Astronomy & Astrophysics, 406, 1135-1149 (2003)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
  
 g a l _ g s t 0 6              [0.1] 
 
Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.   

double   
gal_gst06   
(   
  double uta,   
  double utb,   
  double tta,   
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  double ttb,   
  double rnpb[3][3]   
) ;   

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB 
contain the Terrestrial Time (TT) Julian Date, RNPB contains the nutation x precession 
x bias matrix. The routine returns the Greenwich Apparent Sidereal Time (GAST) in 
radians, in the range 0 to 2π. Both UT1 and TT are required, UT1 to predict the Earth 
rotation and TT to predict the effects of precession-nutation. If UT1 is used for both 
purposes, errors of order 100 microarcseconds result. Although the routine uses the IAU 
2006 series for s+XY/2, it is otherwise independent of the precession-nutation model 
and can in practice be used with any equinox-based NPB matrix.   
 
References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ g s t 0 6 a            [0.1]  
 
Greenwich Apparent Sidereal Time (consistent with IAU 2000 and 2006 resolutions).   

double   
gal_gst06a   
(   
  double uta,   
  double utb,   
  double tta,   
  double ttb   
) ;   

On entry UTA and UTB contain the Universal Time (UT1) Julian Date, TTA and TTB 
contain the Terrestrial Time (TT) Julian Date. The routine returns the Greenwich 
Apparent Sidereal Time (GAST) in radians, in the range 0 to 2π. All dates are in 
standard SOFA two-piece format. Both UT1 and TT are required, UT1 to predict the 
Earth rotation and TT to predict the effects of precession-nutation. If UT1 is used for 
both purposes, errors of order 100 microarcseconds result. This GAST is compatible 
with the IAU 2000/2006 resolutions and must be used only in conjunction with IAU 2006 
precession and IAU 2000A nutation.  
 
References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ g s t 9 4              [0.1] 
 



General Astrodynamics Library 

168 
 

Greenwich Apparent Sidereal Time (consistent with IAU 1982/94 resolutions).   

double   
gal_gst94   
(   
  double uta,   
  double utb   
) ;   

On entry UTA and UTB contain the Universal time (UT1) Julian Date in standard SOFA 
two-piece format. The routine returns the Greenwich Apparent Sidereal Time (GAST) in 
radians, in the range 0 to 2π. The result is compatible with the IAU 1982 and 1994 
resolutions, except that accuracy has been compromised for the sake of convenience in 
that Universal Time (UT1) is used instead of Barycentric Dynamical Time (TDB) (or 
Terrestrial Time (TT)) to compute the equation of the equinoxes. This GAST must be 
used only in conjunction with contemporaneous IAU standards such as 1976 
precession, 1980 obliquity and 1982 nutation. It is not compatible with the IAU 2000 
resolutions.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992)   
 
IAU Resolution C7, Recommendation 3 (1994)   
 
 g a l _ i 2 t p v 0 0            [0.2]  
 
This routine converts a position & velocity vector in the Celestial Intermediate Reference 
System (CIRS) to the International Terrestrial Reference Frame (ITRF) (IAU 2000 
Resolutions).   

void   
gal_i2tpv00   
(  
  double cirs[2][3], 
  double tta, 
  double ttb, 
  double ut1a, 
  double ut1b, 
  double lod, 
  double xp, 
  double yp, 
  double itrf[2][3] 
) ;   
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On entry the parameters are set as follows: 
 
 CIRS CIRS position & velocity vector (meters, meters per second) 
 TTA   Date part 1 (TT)  
 TTB      Date part 2 (TT)  
 UT1A     UT1 date part 1  
 UT1B    UT1 date part 2  
 LOD    Excess length of day (seconds) 
 XP     X coordinate of the pole (radians)  
 YP     Y coordinate of the pole (radians)  
 
TTA and TTB contain a Terrestrial Time (TT) Julian Date, and UT1A and UT1B a 
Universal Time (UT1) Julian Date. Both dates are in standard SOFA two-piece format. 
On return ITRF contains the ITRF position & velocity vector (meters, meters per 
second). XP and YP are the "coordinates of the pole", in seconds, which position the 
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS 
Conventions 2003). In a geocentric right-handed triad u, v, w, where the w-axis points at 
the north geographic pole, the v-axis points towards the origin of longitudes and the u 
axis completes the system, XP = +u and YP = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007  
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 
 
 g a l _ i j k 2 p q w            [0.4] 
 
This routine transforms a pv-vector from the IJK frame to the to PQW frame.   

void   
gal_ijk2pqw   
(  
  double ijk[2][3], 
  double raan, 
  double argp, 
  double inc, 
  double pqw[2][3] 
) ;   
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On entry the parameters are set as follows: 
 
 IJK     pv-vector in IJK frame (meters, meters per second) 
 RAAN    Longitude of the ascending mode (radians) 
 ARGP      Argument of pericenter (radians) 
 INC       Inclination (radians) 
 
On return PQW contains the pv-vector in the PQW frame. 
  
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2 
   
g a l _ i l l u m              [0.5] 
 
This routine calculates the degree of the Sun's occultation by a body of a satellite.   

int 
gal_illum   
(  
  double rsu, 
  double rb, 
  double psu[3], 
  double pb[3], 
  double ps[3], 
  double *illum 
) ;   

 
On entry the parameters are set as follows: 
 
 RSU   Radius of the Sun's disc (meters) 
 RB       Radius of the occulting body (meters) 
 PSU      Sun's position vector (meters) 
 PB        Position vector of occulting body (meters) 
 PS       Position vector of satellite (meters) 
 
On return the ILLUM is set to the degree of occultation (0 to 1). 
 
 0 = the satellite is in umbra 
 1 = the satellite is in sunlight 
  0 < illum < 1 the satellite is in penumbra 
 
The routine returns one of the following status codes: 
 
 GAL_NO_OCCULTATION 
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 GAL_PARTIAL_OCCULTATION 
 GAL_TOTAL_OCCULTATION 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 81-83 
     
 g a l _ m e 2 b f             [0.5]  
 
This routine transforms a pv-vector from the planet mean equator reference frame to the 
planet body fixed reference frame. 

void   
gal_me2bf   
(  
  double merf[2][3], 
  double w, 
  double omega, 
  double bfrf[2][3] 
) ;   

 
On entry the parameters are set as follows: 
 
 MERF    pv-vector in planet mean equator frame (meters, meters per second) 
 W        Prime meridian angle (radians) 
 OMEGA   Planet rotation rate (radians per second) 
 
On return BFRF contains the pv-vector in planet body fixed frame. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5 
   
g a l _ m e 2 c             [0.5]  
 
This routine transforms a pv-vector from planet mean equator reference frame reference 
frame to an inertial frame aligned with the International Celestial Reference frame 
(ICRF). 

void   
gal_me2c   
(  
  double merf[2][3], 
  double alpha, 
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  double delta, 
  double icrf[2][3] 
) ;     

On entry the parameters are set as follows: 
 
 MERF   pv-vector in planet mean equator frame (meters, meters per second) 
 ALPHA    Right ascension of planet spin axis (radians) 
 DELTA    Declination of planet spin axis (radians) 
 
On return ICRF contains the pv-vector in inertial frame aligned to ICRF. 
 
References: 
 
Mars Pathfinder Project Planetary Constants and Models, Jet Propulsion Laboratory, 
December 1995, Chapters 2, 4, and 5 
 
g a l _ m o r o t e l 0 0           [0.5]  
 
This routine returns the rotational elements for the Earth's Moon (IAU/IAG 2000).   

void  
gal_morotel00   
(  
  double tdb1, 
  double tdb2, 
  double *alpha, 
  double *delta, 
  double *w, 
  double *omega 
) ;   

On entry TDB1 and TDB2 contain the Barycentric Dynamical Time (TDB) Julian Date in 
standard two-piece SOFA format. On return the variables are set as follows: 
 
 ALPHA    Right ascension of Moon spin axis (radians)  
 DELTA    Declination of Moon spin axis (radians)  
 W       Prime meridian angle (radians)  
 OMEGA    Rotation Rate (radians per second) 
 
Planetary coordinate systems are defined relative to their mean axis of rotation and 
various definitions of longitude depending on the body. The longitude systems of most 
of those bodies with observable rigid surfaces have been defined by references to a 
surface feature such as a crater. Approximate expressions for these rotational elements 
with respect to the J2000 inertial coordinate system have been derived. The 
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International Celestial Reference Frame (ICRF) is the reference coordinate frame of 
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of 
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on 
the north side of the invariable plane of the solar system. The direction of the north pole 
is specified by the value of its right ascension ra and declination dec, whereas the 
location of the prime meridian is specified by the angle that is measured along the 
planet's equator in an easterly direction with respect to the planet's north pole from the 
node Q (located at right ascension 90 degrees + RA) of the planet's equator on the 
standard equator to the point B where the prime meridian crosses the planet's equator. 
The right ascension of the point Q is 90 degrees + RA and the inclination of the planet's 
equator to the standard equator is 90 degrees - DEC. Because the prime meridian is 
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In 
addition, RA, DEC, and W may vary with time due to a precession of the axis of rotation 
of the planet. If W increases with time, the planet has direct (or prograde) rotation and if 
W decreases with time, the rotation is said to the retrograde. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191 
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed. 
Page 51 
 
Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational 
Elements of the Planets and Satellites: 2000, P. K. Seidelmann et al. 
 
g a l _ m o r o t e l 9 1           [0.5]  
 
This routine returns the rotational elements for the Earth's Moon (IAU/IAG/COSPAR 
1991).   

void  
gal_morotel91   
(  
  double tdb1, 
  double tdb2, 
  double *alpha, 
  double *delta, 
  double *w, 
  double *omega 
) ;   

On entry TDB1 and TDB2 contain a Barycentric Dynamical Time (TDB) Julian Date in 
standard SOFA two-piece format. On return the variables are set as follows: 
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 ALPHA  Right ascension of Moon spin axis (radians)  
 DELTA    Declination of Moon spin axis (radians)  
 W        Prime meridian angle (radians)  
 OMEGA  Rotation Rate (radians per second) 
 
Planetary coordinate systems are defined relative to their mean axis of rotation and 
various definitions of longitude depending on the body. The longitude systems of most 
of those bodies with observable rigid surfaces have been defined by references to a 
surface feature such as a crater. Approximate expressions for these rotational elements 
with respect to the J2000 inertial coordinate system have been derived. The 
International Celestial Reference Frame (ICRF) is the reference coordinate frame of 
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of 
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on 
the north side of the invariable plane of the solar system. The direction of the north pole 
is specified by the value of its right ascension ra and declination dec, whereas the 
location of the prime meridian is specified by the angle that is measured along the 
planet's equator in an easterly direction with respect to the planet's north pole from the 
node Q (located at right ascension 90 degrees + RA) of the planet's equator on the 
standard equator to the point B where the prime meridian crosses the planet's equator. 
The right ascension of the point Q is 90 degrees + RA and the inclination of the planet's 
equator to the standard equator is 90 degrees - DEC. Because the prime meridian is 
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In 
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of 
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W 
decreases with time, the rotation is said to the retrograde. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191 
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed. 
Page 51 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites: 1991, M. E. Davies et al. 
 
 
 g a l _ n u m 0 0 a            [0.1]  
 
Form the matrix of nutation for a given date, IAU 2000A model.   

void   
gal_num00a   
(   
  double date1,   
  double date2,   
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  double rmatn[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix 
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with 
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to 
the mean equatorial triad of date. A faster, but slightly less accurate result (about 1 
mas), can be obtained by using instead the gal_num00b routine.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
 
 g a l _ n u m 0 0 b             [0.1] 
 
Form the matrix of nutation for a given date, IAU 2000B model.   

void   
gal_num00b   
(   
  double date1,   
  double date2,   
  double rmatn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix 
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with 
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to 
the mean equatorial triad of date. This routine is faster, but slightly less accurate (about 
1 mas), than the gal_num00a routine.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
 
 g a l _ n u m 0 6 a            [0.1]  
 
Form the matrix of nutation for a given date, IAU 2006/2000A model.   

void   
gal_num06a   



General Astrodynamics Library 

176 
 

(   
  double date1,   
  double date2,   
  double rmatn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RMATN contains the nutation matrix. The matrix 
operates in the sense V(true) = RMATN * V(mean), where the p-vector V(true) is with 
respect to the true equatorial triad of date and the p-vector V(mean) is with respect to 
the mean equatorial triad of date.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2005, Astronomy & Astrophysics 432, 355   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ n u m a t              [0.1] 
 
Form the matrix of nutation.   

void   
gal_numat   
(   
  double epsa,   
  double dpsi,   
  double deps,   
  double rmatn[3][3]   
) ;   

On entry EPSA contains the mean obliquity of date, DPSI and DEPS contain the 
nutation. On return RMATN contains the nutation matrix. The supplied mean obliquity 
EPSA, must be consistent with the precession-nutation models from which DPSI and 
DEPS were obtained.  The caller is responsible for providing the nutation components; 
they are in longitude and obliquity, in radians and are with respect to the equinox and 
ecliptic of date. The matrix operates in the sense V(true) = RMATN * V(mean), where 
the p-vector V(true) is with respect to the true equatorial triad of date and the p-vector 
V(mean) is with respect to the mean equatorial triad of date.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222-3 (p114).   
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 g a l _ n u t 0 0 a             [0.1] 
 
Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation with free core 
nutation omitted).   

void   
gal_nut00a   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and 
planetary). The nutation components in longitude and obliquity are in radians and with 
respect to the equinox and ecliptic of date. The obliquity at J2000 is assumed to be the 
Lieske et al. (1977) value of 84381.448 arcsec. Both the luni-solar and planetary 
nutations are included. The latter are due to direct planetary nutations and the 
perturbations of the lunar and terrestrial orbits. The routine computes the MHB2000 
nutation series with the associated corrections for planetary nutations. It is an 
implementation of the nutation part of the IAU 2000A precession-nutation model, 
formally adopted by the IAU General Assembly in 2000, namely MHB2000 (Mathews et 
al. 2002), but with the free core nutation (FCN) omitted. The full MHB2000 model also 
contains contributions to the nutations in longitude and obliquity due to the free-
excitation of the free-core-nutation during the period 1979-2000.These FCN terms, 
which are time-dependent and unpredictable, are NOT included in this routine and, if 
required, must be independently computed. With the FCN corrections included, this 
routine delivers a pole which is at current epochs accurate to a few hundred 
microarcseconds. The omission of FCN introduces further errors of about that size. This 
routine provides classical nutation. The MHB2000 algorithm, from which it is adapted, 
deals also with (i) the offsets between the GCRS and mean poles and (ii) the 
adjustments in longitude and obliquity due to the changed precession rates. These 
additional functions, namely frame bias and precession  adjustments, are supported by 
the routines gal_bi00 and gal_pr00. The MHB2000 algorithm also provides "total" 
nutations, comprising the arithmetic sum of the frame bias, precession adjustments, 
luni-solar nutation and planetary nutation. These total nutations can be used in 
combination with an existing IAU 1976 precession implementation, such as gal_pmat76, 
to deliver GCRS-to-true predictions of sub-mas accuracy at current epochs. However, 
there are three shortcomings in the MHB2000 model that must be taken into account if 
more accurate or definitive results are required (see Wallace 2002):   
 
(i) The MHB2000 total nutations are simply arithmetic sums, yet in reality the various 
components are successive Euler rotations. This slight lack of rigor leads to cross terms  
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that exceed 1 mas after a century. The rigorous procedure is to form the GCRS-to-true 
rotation matrix by applying the bias, precession and nutation in that order.   
 
(ii) Although the precession adjustments are stated to be with respect to Lieske et al. 
(1977), the MHB2000 model does not specify which set of Euler angles are to be used 
and how the adjustments are to be applied. The most literal and straightforward 
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add 
dpsipr to psi_A and depspr to both omega_A and eps_A.   
 
(iii) The MHB2000 model predates the determination by Chapront et al. (2002) of a 14.6 
mas displacement between the J2000 mean equinox and the origin of the ICRS frame. It 
should, however, be noted that neglecting this displacement when calculating star 
coordinates does not lead to a 14.6 mas change in right ascension, only a small 
second-order distortion in the pattern of the precession-nutation effect.   
 
For these reasons, the routines do not generate the "total nutations" directly, though 
they can of course easily be generated by calling gal_bi00, gal_pr00 and this routine 
and adding the results.   
 
References:   
 
Chapront, J., Chapront-Touze, M. & Francou, G. 2002, Astronomy & Astrophysics 387, 
700   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977, Astronomy & Astrophysics 58, 
1-16   
 
Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, Journal Geophysical Research 107, 
B4.  The MHB_2000 code itself was obtained on 9th September 2002 from: 
 
ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A  
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 
1994, Astronomy & Astrophysics 282, 663-683   
 
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS 
Workshop 5.1 (2002)   
 
 g a l _ n u t 0 0 b             [0.1] 
 
Nutation, IAU 2000B model.   
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void   
gal_nut00b   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and 
planetary). The nutation components in longitude and obliquity are in radians and with 
respect to the equinox and ecliptic of date. The obliquity at J2000 is assumed to be the 
Lieske et al. (1977) value of 84381.448 arcsec. (The errors that result from using this 
routine with the IAU 2006 value of 84381.406 arcseconds can be neglected.) The 
nutation model consists only of luni-solar terms, but includes also a fixed offset which 
compensates for certain long-period  planetary terms. This routine is an implementation 
of the IAU 2000B abridged nutation model formally adopted by the IAU General 
Assembly in 2000. The routine computes the MHB_2000_SHORT luni-solar nutation 
series (Luzum 2001), but without the associated corrections for the precession rate 
adjustments and the offset between the GCRS and J2000 mean poles. The full IAU 
2000A (MHB2000) nutation model contains nearly 1400  terms. The IAU 2000B model 
(McCarthy & Luzum 2003) contains only 77 terms, plus additional simplifications, yet still 
delivers results of 1 mas accuracy at present epochs. This combination of accuracy and 
size makes the IAU 2000B abridged nutation model suitable for most practical 
applications. The routine delivers a pole accurate to 1 mas from 1900 to 2100 (usually 
better than 1 mas, very occasionally just outside 1 mas). The full IAU 2000A model, 
which is implemented in the routine gal_nut00a (q.v.), delivers considerably greater 
accuracy at current epochs; however, to realize this improved accuracy, corrections for 
the essentially unpredictable free-core-nutation (FCN) must also be included. The 
routine provides classical nutation. The MHB_2000_SHORT algorithm, from which it is 
adapted, deals also with (i) the offsets between the GCRS and mean poles and (ii) the 
adjustments in longitude and obliquity due to the changed precession rates. These 
additional functions, namely frame bias and precession adjustments, are supported by 
the routines gal_bi00 and gal_pr00. The MHB_2000_SHORT algorithm also provides 
"total" nutations, comprising the arithmetic sum of the frame bias, precession 
adjustments, and nutation (luni-solar + planetary).  These total nutations can be used in 
combination with an existing IAU 1976 precession implementation, such as gal_pmat76, 
to deliver GCRS-to-true predictions of mas accuracy at current epochs. However, for 
symmetry with the gal_nut00a routine (q.v. for the reasons), the routines do not 
generate the "total nutations" directly. Should they be required, they could of course 
easily be generated by calling gal_bi00, gal_pr00 and this routine and adding the 
results. The IAU 2000B model includes "planetary bias" terms that are fixed in size but 
compensate for long-period nutations. The amplitudes  quoted in McCarthy & Luzum 
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(2003), namely Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are optimized for the 
"total nutations" method described above. The Luzum (2001) values used in this 
implementation, namely -0.135 mas and +0.388 mas, are optimized for the "rigorous" 
method, where frame bias, precession and nutation are applied separately and in that 
order. During the interval 1995-2050, the implementation delivers a maximum error of 
1.001 mas (not including FCN).   
 
References:   
 
Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions for the precession 
quantities based upon the IAU /1976/ system of astronomical constants", Astronomy & 
Astrophysics 58, 1-2, 1-16. (1977)   
 
Luzum, B., private communication, 2001 (Fortran code MHB_2000_SHORT)   
 
McCarthy, D.D. & Luzum, B.J., "An abridged model of the precession-nutation of the 
celestial pole", Celestial Mechanics & Dynamical Astronomy, 85, 37-49 (2003)   
 
Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J., 
Astronomy & Astrophysics 282, 663-683 (1994)   
 
 g a l _ n u t 0 6 a             [0.1] 
 
IAU 2000A nutation with adjustments to match the IAU 2006 precession.   

void   
gal_nut06a   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return DPSI and DEPS contain the nutation (luni-solar and 
planetary). The nutation components in longitude and obliquity are in radians and with 
respect to the mean equinox and ecliptic of date, IAU 2006 precession model (Hilton et 
al. 2006, Capitaine et al. 2005). The routine first computes the IAU 2000A nutation, then 
applies adjustments for (i) the consequences of the change in obliquity from the IAU 
1980 ecliptic to the IAU 2006 ecliptic and (ii) the secular variation in the Earth's 
dynamical flattening. This routine provides classical nutation, complementing the IAU 
2000 frame bias and IAU 2006 precession. It delivers a pole which is at current epochs 
accurate to a few tens of microarcseconds, apart from the free core nutation.   
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References:   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ n u t 8 0              [0.1] 
 
Nutation, IAU 1980 model.   

void   
gal_nut80   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. on return DPSI contains the nutation in longitude (radians), and 
DEPS the nutation in obliquity (radians). The nutation components are with respect to 
the ecliptic of date.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.222 (p111).   
 
 g a l _ n u t m 8 0             [0.1] 
 
Form the matrix of nutation for a given date, IAU 1980 model.   

void   
gal_nutm80   
(   
  double date1,   
  double date2,   
  double rmatn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return RMATN contains the nutation matrix. The matrix operates in the 
sense V(true) = RMATN * V(mean), where the p-vector V(true) is with respect to the true  
equatorial triad of date and the p-vector V(mean) is with respect to the mean equatorial 
triad of date.   
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 g a l _ o b l 0 6              [0.1] 
 
Mean obliquity of the ecliptic, IAU 2006 precession model.   

double 
gal_obl06   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the obliquity of the ecliptic in radians. The 
result is the angle between the ecliptic and mean equator of date (DATE1 and DATE2).   
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 
 g a l _ o b l 8 0              [0.1] 
 
Mean obliquity of the ecliptic, IAU 1980 model.   

double   
gal_obl80   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. the routine returns the obliquity of the ecliptic in radians. The 
result is the angle between the ecliptic and mean equator of date (DATE1 and DATE2).   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Expression 3.222-1 (p114).   
 
 g a l _ p 0 6 e              [0.1] 
 
Precession angles, IAU 2006, equinox based.   

void  
gal_p06e   
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(   
  double date1,   
  double date2,   
  double *eps0,   
  double *psia,   
  double *oma,   
  double *bpa,   
  double *bqa,   
  double *pia,   
  double *bpia,   
  double *epsa,   
  double *chia,   
  double *za,   
  double *zetaa,   
  double *thetaa,   
  double *pa,   
  double *gam,   
  double *phi,   
  double *psi   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. This routine returns the set of equinox based angles for the 
Capitaine et al. "P03" precession theory, adopted by the IAU in 2006. The angles are 
set out in Table 1 of Hilton et al. (2006):   
    
 EPS0    epsilon_0    obliquity at J2000   
 PSIA    psi_A         luni-solar precession   
 OMA     omega_A      inclination of equator wrt. J2000 ecliptic   
 BPA     P_A           ecliptic pole x, J2000 ecliptic triad   
 BQA     Q_A           ecliptic pole -y, J2000 ecliptic triad   
 PIA     pi_A          angle between moving and J2000 ecliptics   
 BPIA    Pi_A          longitude of ascending node of the ecliptic   
 EPSA    epsilon_A    obliquity of the ecliptic   
 CHIA    chi_A         planetary precession   
 ZA      z_A           equatorial precession: -3rd 323 Euler angle   
 ZETAA   zeta_A       equatorial precession: -1st 323 Euler angle   
 THETA  theta_A      equatorial precession: 2nd 323 Euler angle   
 PA      p_A           general precession   
 GAM     gamma_J2000  J2000 right ascension difference of ecliptic poles   
 PHI     phi_J2000    J2000 codeclination of ecliptic pole   
 PSI     psi_J2000    longitude difference of equator poles, J2000   
 
The returned values are all radians. Hilton et al. (2006) Table 1 also contains angles 
that depend on models distinct from the P03 precession theory itself, namely the IAU 
2000A frame bias and nutation. The quoted polynomials are used in other routines:   
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 gal_xy06 contains the polynomial parts of the X and Y series.   
  
 gal_s06 contains the polynomial part of the s+XY/2 series.   
  

gal_pfw06 implements the series for the Fukushima-Williams angles that are with 
respect to the GCRS pole (i.e. the variants that include frame bias).   

 
The IAU resolution stipulated that the choice of parameterization was left to the user, 
and so an IAU compliant precession implementation can be constructed using various 
combinations of the angles returned by this routine.   
 
The parameterization used is the Fukushima-Williams angles referred directly to the 
GCRS pole. These are the final four arguments returned by this routine, but are more 
efficiently calculated by calling the routine gal_pfw06. GAL also supports the direct 
computation of the CIP GCRS X,Y by series, available by calling gal_xy06. The 
agreement between the different parameterizations is at the 1 microarcsecond level in 
the present era. When constructing a precession formulation that refers to the GCRS 
pole rather than the dynamical pole, it may (depending on the choice of angles) be 
necessary to introduce the frame bias explicitly.   
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 
 g a l _ p b 0 6             [0.1]  
 
This routine forms three Euler angles which implement general precession from epoch 
J2000.0, using the IAU 2006 model. Frame bias (the offset between ICRS and mean 
J2000.0) is included.   

void   
gal_pb06   
(   
  double date1,   
  double date2,   
  double *bzeta,   
  double *bz,   
  double *btheta   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables BZETA, BZ, and BTHETA are set as 
follows: 
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 BZETA  1st rotation: radians clockwise around z   
  BZ        3rd rotation: radians clockwise around z   
 BTHETA   2nd rotation: radians counterclockwise around y   
  
The traditional accumulated precession angles zeta_A, z_A, theta_A cannot be 
obtained in the usual way, namely through polynomial expressions, because of the 
frame bias.  The latter means that two of the angles undergo rapid changes near this 
date. They are  instead the results of decomposing the precession-bias matrix obtained 
by using the Fukushima-Williams method, which does not suffer from the problem. The 
decomposition returns values which can be used in the conventional formulation and 
which include frame bias. The three angles are returned in the conventional order, 
which is not the same as the order of the corresponding Euler rotations. The 
precession-bias matrix is R_3(-z) x R_2(+theta) x R_3(-zeta). Should zeta_A, z_A, 
theta_A angles be required that do not contain frame bias, they are available by calling 
the routine gal_p06e.   
 
 g a l _ p f w 0 6              [0.1] 
 
Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).   

void   
gal_pfw06   
(   
  double date1,   
  double date2,   
  double *gamb,   
  double *phib,   
  double *psib,   
  double *epsa   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the routine sets the variables as follows: 
 
 GAMB   F-W angle gamma_bar (radians)   
 PHIB     F-W angle phi_bar (radians)   
 PSIB    F-W angle psi_bar (radians)   
 EPSA   F-W angle epsilon_A (radians)   
 
Naming the following points:   
    
 e   J2000 ecliptic pole   
  p   GCRS pole 
  E   mean ecliptic pole of date   
 P   mean pole of date  
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the four Fukushima-Williams angles are as follows:   
 
 GAMB  = gamma_bar  = epE   
 PHIB  = phi_bar   = pE   
 PSIB  = psi_bar   = pEP   
  EPSA  = epsilon_A  = EP   
 
The matrix representing the combined effects of frame bias and precession is:   
 
 P x B = R_1(-EPSA).R_3(-PSIB).R_1(PHIB).R_3(GAMB)   
 
The matrix representing the combined effects of frame bias, precession and nutation is 
simply:   
 
 N x P x B = R_1(-EPSA-dE).R_3(-PSIB-dP).R_1(PHIB).R_3(GAMB)   
 
where dP and dE are the nutation components with respect to the ecliptic of date.   
 
References:   
 
Hilton, J. et al., 2006, Celestial Mechanics and Dynamical Astronomy 94, 351   
 
g a l _ p l r o t e l 0 0            [0.5]  
 
This routine returns the rotational elements of a selected planet (IAU/IAG 2000).   

int   
gal_plrotel00   
 (  
   int body, 
   double tdb1, 
   double tdb2, 
   double *alpha, 
   double *delta, 
   double *w, 
   double *omega 
 ) ; *** NEEDS FIXING ***  

On entry the parameters are set as follows: 
 
 body  Planet identifier code  
 tdb1      Date part 1 (TDB) 
 tdb2    Date part 2 (TDB) 
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The header file gal_const.h defines the following constants for the planet identifier code: 
 
 GAL_SSB_SU     The Sun                
  GAL_SSB_ME   Mercury                
 GAL_SSB_VE  Venus                  
 GAL_SSB_EA  Earth                  
 GAL_SSB_MA  Mars                   
 GAL_SSB_JU  Jupiter                
 GAL_SSB_SA   Saturn                 
 GAL_SSB_UR  Uranus                 
 GAL_SSB_NE  Neptune                
 GAL_SSB_PL   Pluto                  
 
tdb1 and tdb2 contain a Barycentric Dynamical Time (TDB) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 alpha    Right ascension of planet spin axis (radians)  
 delta     Declination of planet spin axis (radians)  
 w       Prime meridian angle (radians)  
 omega   Rotation Rate (radians per second) 
 
The routine returns a status code of 0 if successful, and 1 if the planet identifier code is 
invalid. 
 
Planetary coordinate systems are defined relative to their mean axis of rotation and 
various definitions of longitude depending on the body. The longitude systems of most 
of those bodies with observable rigid surfaces have been defined by references to a 
surface feature such as a crater. Approximate expressions for these rotational elements 
with respect to the J2000 inertial coordinate system have been derived. The 
International Celestial Reference Frame (ICRF) is the reference coordinate frame of 
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of 
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on 
the north side of the invariable plane of the solar system. The direction of the north pole 
is specified by the value of its right ascension ra and declination dec, whereas the 
location of the prime meridian is specified by the angle that is measured along the 
planet's equator in an easterly direction with respect to the planet's north pole from the 
node Q (located at right ascension 90 degrees + ra) of the planet's equator on the 
standard equator to the point B where the prime meridian crosses the planet's equator. 
The right ascension of the point Q is 90 degrees + ra and the inclination of the planet's 
equator to the standard equator is 90 degrees - dec. Because the prime meridian is 
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In 
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of 
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W 
decreases with time, the rotation is said to the retrograde. 
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References: 
 
Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191 
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed. 
Page 51 
 
Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational 
Elements of the Planets and Satellites: 2000, P. K. Seidelmann et al. 
 
g a l _ p l r o t e l 9 1            [0.5]  
 
This routine returns the rotational elements of a selected planet (IAU/IAG 1991).   

int   
gal_plrotel91   
 (  
   int body, 
   double tdb1, 
   double tdb2, 
   double *alpha, 
   double *delta, 
   double *w, 
   double *omega 
 ) ;  *** NEEDS FIXING *** 

 On entry the parameters are set as follows: 
 
 body  Planet identifier code  
 tdb1      Date part 1 (TDB) 
 tdb2    Date part 2 (TDB) 
 
The header file gal_const.h defines the following constants for the planet identifier code: 
 
 GAL_SSB_SU     The Sun                
  GAL_SSB_ME   Mercury                
 GAL_SSB_VE  Venus                  
 GAL_SSB_EA  Earth                  
 GAL_SSB_MA  Mars                   
 GAL_SSB_JU  Jupiter                
 GAL_SSB_SA   Saturn                 
 GAL_SSB_UR  Uranus                 
 GAL_SSB_NE  Neptune                
 GAL_SSB_PL   Pluto                  
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tdb1 and tdb2 contain a Barycentric Dynamical Time (TDB) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 alpha    Right ascension of planet spin axis (radians)  
 delta     Declination of planet spin axis (radians)  
 w       Prime meridian angle (radians)  
 omega   Rotation Rate (radians per second) 
 
The routine returns a status code of 0 if successful, and 1 if the planet identifier code is 
invalid. 
 
Planetary coordinate systems are defined relative to their mean axis of rotation and 
various definitions of longitude depending on the body. The longitude systems of most 
of those bodies with observable rigid surfaces have been defined by references to a 
surface feature such as a crater. Approximate expressions for these rotational elements 
with respect to the J2000 inertial coordinate system have been derived. The 
International Celestial Reference Frame (ICRF) is the reference coordinate frame of 
epoch 2000 which is January 1.5 TDB. The variable quantities are expressed in units of 
days or Julian centuries of 36525 days. The north pole is that pole of rotation that lies on 
the north side of the invariable plane of the solar system. The direction of the north pole 
is specified by the value of its right ascension ra and declination dec, whereas the 
location of the prime meridian is specified by the angle that is measured along the 
planet's equator in an easterly direction with respect to the planet's north pole from the 
node Q (located at right ascension 90 degrees + ra) of the planet's equator on the 
standard equator to the point B where the prime meridian crosses the planet's equator. 
The right ascension of the point Q is 90 degrees + ra and the inclination of the planet's 
equator to the standard equator is 90 degrees - dec. Because the prime meridian is 
assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In 
addition, ra, dec, and W may vary with time due to a precession of the axis of rotation of 
the planet. If W increases with time, the planet has direct (or prograde) rotation and if W 
decreases with time, the rotation is said to the retrograde. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck & Eberhard Gill, Springer 2005, Pages 167, 191 
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann Ed. 
Page 51 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites: 1991, M. E. Davies et al. 
 
g a l _ p q w 2 i j k            [0.4]  
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This routine transforms a pv-vector from the PQW frame to the to IJK frame.   

void   
gal_pqw2ijk   
(  
  double pqw[2][3], 
  double raan, 
  double argp, 
  double inc, 
  double ijk[2][3] 
) ;   

On entry the parameters are set as follows: 
 
 PQW   pv-vector in PQW frame (meters, meters per second) 
  RAAN     Longitude of the ascending mode (radians) 
  ARGP    Argument of pericenter (radians) 
  INC       Inclination (radians) 
 
On return IJK contains the pv-vector in the IJK frame. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2 
 
g a l _ p q w 2 i j k m            [0.4]  
 
This routine forms the PQW to IJK transformation matrix.   

void   
gal_pqw2ijkm   
(  
  double raan, 
  double argp, 
  double inc, 
  double pqw2ijkm[3][3] 
) ;   

On entry the parameters are set as follows: 
 
 RAAN   Longitude of the ascending mode (radians) 
 ARGP    Argument of pericenter (radians) 
 INC      Inclination (radians) 
 
On return PQW2IJKM contains the transformation matrix. 
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References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Chapter 2  
 
    
g a l _ s e z m             [0.5]  
 
This routine forms the SEZ transformation matrix for specified latitude and longitude.  

void   
gal_sezm   
(  
  double latitude, 
  double longitude, 
  double sez[3][3] 
) ;   

On entry LATITUDE and LONGITUDE contain the required latitude and longitude in 
radians. On return SEZ contains the SEZ transformation matrix. 
  
References: 
 
Methods of Orbit Determination, P. R. Escobal 1965, Pages 405-406 
  
g a l _ t 2 a z e l             [0.2]  
 
This routine converts a pv-vector in the International Terrestrial Reference Frame (ITRF) 
reference frame to azimuth, elevation, range & range-rate   

void   
gal_t2azel   
(  
  double itrf[2][3], 
  double site[3], 
  double lat, 
  double lon, 
  double *az, 
  double *el, 
  double *range, 
  double *rdot 
) ;   

On entry the parameters are set as follows: 
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 ITRF  ITRF position & velocity vector of target (meters, meters per second) 
 SITE  ITRF position vector of observer (meters) 
 LAT   Latitude of observer (radians)  
 LON   Longitude of observer (radians) 
 
On return the variables are set as follows: 
 
 AZ    Azimuth (radians)  
 EL   Elevation (radians)  
 RANGE  Range (meters)  
 RDOT   Range Rate (meters, meters per second) 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 252-257 
 
 g a l _ t 2 c p v 0 0 a            [0.2] 
 
This routine converts a position & velocity vector in the International Terrestrial 
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU 
2000A Resolutions).   

void   
gal_t2cpv00a   
(  
  double itrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double gcrf[2][3], 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 ITRF  ITRF position & velocity vector (meters, meters per second) 
 UTC1   Date part 1 (UTC)  
 UTC2   Date part 2 (UTC)  
 DUT1  UT1 - UTC (seconds) 
 LOD   Excess length of day (seconds)  
 XP     X coordinate of the pole (radians)  
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 YP     Y coordinate of the pole (radians)  
 
On return GCRF contains the GCRF position & velocity vector (meters, meters per 
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003), measured along the meridians to 0 
and 90 deg west respectively.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
  
 g a l _ t 2 c p v 0 0 b            [0.2] 
 
This routine converts a position & velocity vector in the International Terrestrial 
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU 
2000B Resolutions).   

void   
gal_t2cpv00b   
(  
  double itrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double gcrf[2][3], 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 ITRF  ITRF position & velocity vector (meters, meters per second) 
 UTC1    Date part 1 (UTC)  
 UTC2   Date part 2 (UTC)  
 DUT1  UT1 - UTC (seconds) 
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 LOD   Excess length of day (seconds)  
 XP    X coordinate of the pole (radians)  
 YP     Y coordinate of the pole (radians)  
 
On return GCRF contains the GCRF position & velocity vector (meters, meters per 
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003) , measured along the meridians to 0 
and 90 deg west respectively.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
  
 g a l _ t 2 c p v 0 6 a            [0.2] 
 
This routine converts a position & velocity vector in the International Terrestrial 
Reference Frame (ITRF) to the Geocentric Celestial Reference Frame (GCRF) (IAU 
2006A Resolutions).   

void   
gal_t2cpv06a   
(  
  double itrf[2][3], 
  double utc1, 
  double utc2, 
  double dut1, 
  double lod, 
  double xp, 
  double yp, 
  double gcrf[2][3], 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 ITRF  ITRF position & velocity vector (meters, meters per second) 
 UTC1    Date part 1 (UTC)  
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 UTC2   Date part 2 (UTC)  
 DUT1  UT1 - UTC (seconds) 
 LOD   Excess length of day (seconds)  
 XP    X coordinate of the pole (radians)  
 YP     Y coordinate of the pole (radians)  
 
On return gcrf contains the GCRF position & velocity vector (meters, meters per 
second). UTC1 and UTC2 contain a Coordinated Universal Time (UTC) Julian Date in 
standard SOFA two-piece format. XP and YP are the "coordinates of the pole", in 
seconds, which position the Celestial Intermediate Pole in the International Terrestrial 
Reference System (see IERS Conventions 2003) , measured along the meridians to 0 
and 90 deg west respectively. 
  
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 
 g a l _ t 2 i p v 0 0           [0.2] 
 
This routine converts a position & velocity vector in the International Terrestrial 
Reference Frame (ITRF) to the CIRS reference frame (IAU 2000 Resolutions).   

 
void   
gal_t2ipv00   
(  
  double itrf[2][3], 
  const double tta, 
  const double ttb, 
  const double ut1a, 
  const double ut1b, 
  const double lod, 
  const double xp, 
  const double yp, 
  double cirs[2][3] 
) ; 

 
On entry the parameters are set as follows: 
 
 ITRF  ITRF position & velocity vector (meters, meters per second) 
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 TTA    Date part 1 (TT)  
 TTB    Date part 2 (TT)  
 DUT1  UT1 - UTC (seconds) 
 LOD   Excess length of day (seconds)  
 XP    X coordinate of the pole (radians)  
 YP     Y coordinate of the pole (radians)  
 
On return cirs contains the CIRS position & velocity vector (meters, meters per second). 
The TTA and TTB Terrestrial time (TT) Julian Date in is standard SOFA two-piece 
format. XP and YP are the "coordinates of the pole", in seconds, which position the 
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS 
Conventions 2003). In a geocentric right-handed triad u, v, w, where the w-axis points at 
the north geographic pole, the v-axis points towards the origin of longitudes and the u 
axis completes the system, XP = +u and YP = -v.   
 
References: 
 
SOFA Tools for Earth Attitude IAU Standards for Fundamental Astronomy Review 
Board 2007 
 
http://www.iau-sofa.rl.ac.uk 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 217-219 
 
 g a l _ p m a t 0 0             [0.1] 
 
Precession matrix (including frame bias) from GCRS to a specified date, IAU 2000 
model.   

void   
gal_pmat00   
(   
  double date1,   
  double date2,   
  double rbp[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RBP contains the bias-precession matrix. The matrix 
operates in the sense V(date) = RBP * V(J2000), where the p-vector V(J2000) is with 
respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector 
V(date) is with respect to the mean equatorial triad of the given date.   
 
References:   
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IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General 
Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)   
 
 g a l _ p m a t 0 6             [0.1] 
 
Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006 
model.   

void   
gal_pmat06   
(   
  double date1,   
  double date2,   
  double rbp[3][3]   
) ; 

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RBP contains the bias-precession matrix. The matrix 
operates in the sense V(date) = RBP * V(J2000), where the p-vector V(J2000) is with 
respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector 
V(date) is with respect to the mean equatorial triad of the given date.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
  
 g a l _ p m a t 7 6             [0.1] 
 
Precession matrix from J2000 to a specified date, IAU 1976 model.   

void   
gal_pmat76   
 (   
    double date1,   
    double date2,   
    double rmatp[3][3]   
 ) ;   

On entry DATE1 and DATE2 contain the TDB Julian Date in standard SOFA two-piece 
format. On return RMATP contains the precession matrix, J2000 -> DATE1+DATE2. 
The matrix operates in the sense V(date) = RMATP * V(J2000), where the p-vector 
V(J2000) is with respect to the mean equatorial triad of epoch J2000 and the p-vector 
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V(date) is with respect to the mean equatorial triad of the given date. Though the matrix 
method itself is rigorous, the precession angles are expressed through canonical 
polynomials which are  valid only for a limited time span. In addition, the IAU 1976 
precession rate is known to be imperfect. The absolute accuracy of the present 
formulation is better than 0.1 arcseconds from 1960CE to 2040CE, better than 1 
arcseconds from 1640CE to 2360CE, and remains below 3 arcseconds for the whole of 
the period 500BCE to 3000CE. The errors exceed 10 arcseconds outside the range 
1200BCE to 3900CE, exceed 100 arcseconds outside 4200BCE to 5600CE and exceed 
1000 arcseconds outside 6800BCE to 8200CE.   
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.   
 
Kaplan, G.H., 1981. USNO circular no. 163, pA2.   
 
 g a l _ p n 0 0              [0.1] 
 
Precession-nutation, IAU 2000 model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   
gal_pn00   
(   
  double date1,   
  double date2,   
  double dpsi,   
  double deps,   
  double *epsa,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3],   
  double rn[3][3],   
  double rbpn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, DPSI and DEPS contain the nutation. On return the variables 
are set as follows: 
    
 EPSA  mean obliquity  
 RB     frame bias matrix 
 RP    precession matrix 
 RBP   bias-precession matrix 
 RN     nutation matrix 
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 RBPN   GCRS-to-true matrix 
 
The caller is responsible for providing the nutation components; they are in longitude 
and obliquity, in radians and are with respect to the equinox and ecliptic of date. For 
high-accuracy applications, free core nutation should be included as well as any other 
relevant corrections to the position of the CIP. The returned mean obliquity is consistent 
with the IAU 2000 precession-nutation models. The matrix RB transforms vectors from 
GCRS to J2000 mean equator and equinox by applying frame bias. The matrix RP 
transforms vectors from J2000 mean equator and equinox to mean equator and equinox 
of date by applying precession. The matrix RBP transforms vectors from GCRS to mean 
equator and equinox of date by applying frame bias then precession. It is the product 
RP x RB. The matrix RN transforms vectors from mean equator and equinox of date to 
true equator and equinox of date by applying the nutation (luni-solar and planetary). The 
matrix RBPN transforms vectors from GCRS to true equator and equinox of date. It is 
the product RN x RBP, applying frame bias, precession and nutation in that order.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)  
 
 g a l _ p n 0 0 a              [0.1] 
 
Precession-nutation, IAU 2000A model:  a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   
gal_pn00a   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps,   
  double *epsa,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3],   
  double rn[3][3],   
  double rbpn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
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 DPSI, DEPS   nutation  
 EPSA      mean obliquity  
 RB     frame bias matrix  
 RP        precession matrix  
 RBP    bias-precession matrix 
 RN      nutation matrix  
 RBPN   GCRS-to-true matrix 
 
The nutation components (luni-solar and planetary, IAU 2000A) in longitude and 
obliquity are in radians and with respect to the equinox and ecliptic of date. Free core 
nutation is omitted; for the utmost accuracy, use the gal_pn00 routine, where the 
nutation  components are caller-specified. For faster but slightly less accurate results, 
use the gal_pn00b routine. The mean obliquity is consistent with the IAU 2000 
precession. The matrix RB transforms vectors from GCRS to J2000 mean equator and 
equinox by applying frame bias. The matrix RP transforms vectors from J2000 mean 
equator and equinox to mean equator and equinox of date by applying precession. The 
matrix RBP transforms vectors from GCRS to mean equator and equinox of date by 
applying frame bias then precession. It is the product RP x RB. The matrix RN 
transforms vectors from mean equator and equinox of date to true equator and equinox 
of date by applying the nutation (luni-solar and planetary). The matrix RBPN transforms 
vectors from GCRS to true equator and equinox of date. It is the product RN x RBP, 
applying frame bias, precession and nutation in that order. The X,Y,Z coordinates of the 
IAU 2000A Celestial Intermediate Pole are elements [0-2][2] of the matrix RBPN.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
 g a l _ p n 0 0 b              [0.1] 
 
Precession-nutation, IAU 2000B model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   
gal_pn00b   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps,   
  double *epsa,   
  double rb[3][3],   
  double rp[3][3],   
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  double rbp[3][3],   
  double rn[3][3],   
  double rbpn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 DPSI, DEPS   nutation  
 EPSA        mean obliquity  
 RB        frame bias matrix 
 RP      bias-precession matrix  
 RBP    precession matrix 
 RN      nutation matrix  
 RBPN    GCRS-to-true matrix   
 
The nutation components (luni-solar and planetary, IAU 2000B) in longitude and 
obliquity are in radians and with respect to the equinox and ecliptic of date. For more 
accurate results, but at the cost of increased computation, use the gal_pn00a routine. 
For the utmost accuracy, use the gal_pn00 routine, where the nutation components are 
caller-specified. The mean obliquity is consistent with the IAU 2000 precession. The 
matrix RB transforms vectors from GCRS to J2000 mean equator and equinox by 
applying frame bias. The matrix RP transforms vectors from J2000 mean equator and 
equinox to mean equator and equinox of date by applying precession. The matrix RBP 
transforms vectors from GCRS to mean equator and equinox of date by applying frame 
bias then precession. It is the product RP x RB. The matrix rn transforms vectors from 
mean equator and equinox of date to true equator and equinox of date by applying the 
nutation  (luni-solar and planetary). The matrix RBPN transforms vectors from GCRS to 
true equator and equinox of date. It is the product RN x RBP, applying frame bias, 
precession and nutation in that order. The X,Y,Z coordinates of the IAU 2000B Celestial 
Intermediate Pole are elements [0-2][2] of the matrix RBPN.   
 
References:   
   
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
 g a l _ p n 0 6             [0.1]  
  
Precession-nutation, IAU 2006 model: a multi-purpose routine, supporting classical 
(equinox-based) use directly and CIO-based use indirectly.   

void   
gal_pn06   



General Astrodynamics Library 

202 
 

(   
  double date1,   
  double date2,   
  double dpsi,   
  double deps,   
  double *epsa,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3],   
  double rn[3][3],   
  double rbpn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, and dpsi and deps the nutation. On return the variables are set 
as follows: 
 
 EPSA  mean obliquity 
 RB     frame bias matrix   
 RP     precession matrix  
 RBP   bias-precession matrix 
 RN     nutation matrix 
 RBPN   GCRS-to-true matrix 
 
The caller is responsible for providing the nutation components; they are in longitude 
and obliquity, in radians and are with respect to the equinox and ecliptic of date. For 
high-accuracy applications, free core nutation should be included as well as any other 
relevant corrections to the position of the CIP. The returned mean obliquity is consistent 
with the IAU 2006 precession. The matrix RB transforms vectors from GCRS to mean 
J2000 by applying frame bias. The matrix RP transforms vectors from mean J2000 to 
mean of date by applying precession. The matrix RBP transforms vectors from GCRS to 
mean of date by applying frame bias then precession. It is the product RP x RB. The 
matrix RN transforms vectors from mean of date to true of date by applying the nutation 
(luni-solar and planetary). The matrix RBPN transforms vectors from GCRS to true of 
date CIP/equinox).  It is the product RN x RBP, applying frame bias, precession and 
nutation in that order. The X,Y,Z coordinates of the IAU 2006/2000A Celestial 
Intermediate Pole are elements [0-2][2] of the matrix RBPN.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
 
 g a l _ p n 0 6 a              [0.1] 
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Precession-nutation, IAU 2006/2000A models: a multi-purpose routine, supporting 
classical (equinox-based) use directly and CIO-based use indirectly.   

void   
gal_pn06a   
(   
  double date1,   
  double date2,   
  double *dpsi,   
  double *deps,   
  double *epsa,   
  double rb[3][3],   
  double rp[3][3],   
  double rbp[3][3],   
  double rn[3][3],   
  double rbpn[3][3]   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 DPSI, DEPS nutation  
 EPSA      mean obliquity  

RB        frame bias matrix  
RP       precession matrix  

 RBP    bias-precession matrix 
RN      nutation matrix 
RBPN    GCRS-to-true matrix  

 
The nutation components (luni-solar and planetary, IAU 2000A) in longitude and 
obliquity are in radians and with respect to the equinox and ecliptic of date. Free core 
nutation is omitted; for the utmost accuracy, use the gal_pn06 routine, where the 
nutation  components are caller-specified. The mean obliquity is consistent with the IAU 
2006 precession. The matrix RB transforms vectors from GCRS to mean J2000 by 
applying frame bias. The matrix RP transforms vectors from mean J2000 to mean of 
date by applying precession. The matrix RBP transforms vectors from GCRS to mean of 
date by  applying frame bias then precession. It is the product RP x RB. The matrix RN 
transforms vectors from mean of date to true of date by applying the nutation (luni-solar 
and planetary). The matrix RBPN transforms vectors from GCRS to true of date 
(CIP/equinox). It is the product RN x RBP, applying frame bias, precession and nutation 
in that order. The X,Y,Z coordinates of the IAU 2006/2000A Celestial Intermediate Pole 
are elements [0-2][2] of the matrix RBPN.   
 
References:   
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Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
 g a l _ p n m 0 0 a             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), equinox-
based, IAU 2000A model.   

void   
gal_pnm00a   
(   
  double date1,   
  double date2,   
  double rbpn[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RBPN contains the classical NPB matrix. The matrix 
operates in the sense V(date) = RBPN x V(GCRS), where the p-vector V(date) is with 
respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector 
V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial 
Reference System (IAU, 2000). A faster, but slightly less accurate result (about 1 mas), 
can be obtained by using instead the gal_pnm00b routine.   
 
References:   
 
IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General 
Assembly, Manchester, UK.  Resolutions B1.3, B1.6. (2000)   
 
 g a l _ p n m 0 0 b             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), equinox-
based, IAU 2000B model.   

void   
gal_pnm00b   
(   
  double date1,   
  double date2,   
  double rbpn[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RBPN the bias-precession-nutation matrix. The 
matrix operates in the sense V(date) = RBPN * V(GCRS), where the p-vector V(date) is 
with respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector 
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V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial 
Reference System (IAU, 2000). This routine is faster, but slightly less accurate (about 1 
mas), than the gal_pnm00a routine.   
 
References:   
 
IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General 
Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)   
 
 g a l _ p n m 0 6 a             [0.1] 
 
Form the matrix of precession-nutation for a given date (including frame bias), IAU 2006 
precession and IAU 2000A nutation models.   

void   
gal_pnm06a   
(   
  double date1,   
  double date2,   
  double rnpb[3][3]   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return RNPB contains bias-precession-nutation matrix. The 
matrix operates in the sense V(date) = RNPB * V(GCRS), where the p-vector V(date) is 
with respect to the true equatorial triad of date (DATE1 and DATE2) and the p-vector 
V(J2000) is with respect to the mean equatorial triad of the Geocentric Celestial 
Reference System (IAU, 2000).   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
 g a l _ p n m 8 0             [0.1] 
 
Form the matrix of precession/nutation for a given date, IAU 1976 precession model, 
IAU 1980 nutation model.   

void   
gal_pnm80   
(   
  double date1,   
  double date2,   
  double rmatpn[3][3]   
) ;    
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On entry DATE1 and DATE2 contain the Barycentric Dynamical Time (TDB) Julian Date 
in standard SOFA two-piece format. On return RMATPN contains the combined 
precession/nutation matrix. The matrix operates in the sense V(date) = RMATPN x 
V(J2000), where the p-vector V(date) is with respect to the true equatorial triad of date 
(DATE1 and DATE2) and the p-vector V(J2000) is with respect to the mean equatorial 
triad of epoch J2000.   
 
References:   
 
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed.), 
University Science Books (1992), Section 3.3 (p145).   
 
 g a l _ p o m 0 0             [0.1] 
 
Form the matrix of polar motion for a given date, IAU 2000.   

void   
gal_pom00   
(   
  double xp,   
  double yp,   
  double sp,   
  double rpom[3][3]   
) ;   

On entry XP and YP contain the coordinates of the pole in radians and the TIO locator s' 
in radians. XP and YP are the "coordinates of the pole", in radians, which position the 
Celestial Intermediate Pole in the International Terrestrial Reference System (see IERS 
Conventions 2003), measured along the meridians to 0 and 90 deg west respectively. 
SP is the TIO locator s', in radians, which positions the Terrestrial Intermediate Origin 
on the equator. It is obtained from polar motion observations by numerical integration, 
and so is in essence unpredictable.  However, it is dominated by a secular drift of about 
47 microarcseconds per century, and so can be taken into account by using s' = -47 * T, 
where T is centuries since J2000.0. The routine gal_sp00 implements this 
approximation. The matrix operates in the sense V(TRS) = RPOM * V(CIP), meaning 
that it is the final rotation when computing the pointing direction to a celestial source.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ p r 0 0              [0.1] 
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Precession-rate part of the IAU 2000 precession-nutation models (part of MHB2000).   

void   
gal_pr00   
(   
  double date1,   
  double date2,   
  double *dpsipr,   
  double *depspr   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return DPSIPR and DEPSPR contain the precession 
corrections. The precession adjustments are expressed as "nutation components", 
corrections in longitude and obliquity with respect to the J2000 equinox and ecliptic. 
Although the precession adjustments are stated to be with respect to Lieske et al. 
(1977), the MHB2000 model does not specify which set of Euler angles are to be used 
and how the adjustments are to  be applied. The most literal and straightforward 
procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add 
DPSIPR to psi_A and DEPSPR to both omega_A and eps_A (Wallace 2002). This is an 
implementation of one aspect of the IAU 2000A nutation model, formally adopted by the 
IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).   
 
References   
 
Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions for the precession 
quantities based upon the IAU (1976) System of Astronomical Constants", Astronomy & 
Astrophysics, 58, 1-16 (1977)   
 
Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New 
nutation series for non-rigid Earth and insights into the Earth's interior", Journal 
Geophysical Research, 107, B4, 2002. The MHB2000 code itself was obtained on 9th 
September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.   
 
Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS 
Workshop 5.1 (2002)   
 
 g a l _ p r e c 7 6            [0.1]  
 
IAU 1976 precession model. This routine forms the three Euler angles which implement 
general precession between two epochs, using the IAU 1976 model (as for the FK5 
catalog).   

void   
gal_prec76   
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(   
  double ep01,   
  double ep02,   
  double ep11,   
  double ep12,   
  double *zeta,   
  double *z,   
  double *theta   
) ;   

On entry EP01 and EP02 contain the Barycentric Dynamical Time (TDB) starting epoch, 
and EP11 and EP12 contain the TDB ending epoch. Both dates are Julian Dates in 
standard SOFA two-piece format. On return the variables are set as follows: 
  
 ZETA  1st rotation: radians clockwise around z  
 Z  3rd rotation: radians clockwise around z   
 THETA   2nd rotation: radians counterclockwise around y   
 
The accumulated precession angles ZETA, Z, THETA are expressed through canonical 
polynomials which are valid only for a limited time span. In addition, the IAU 1976 
precession rate is known to be imperfect. The absolute accuracy of the present 
formulation is better than 0.1 arcseconds from 1960CE to 2040CE, better than 1 
arcseconds from 1640CE to 2360CE, and remains below 3 arcseconds for the whole of 
the period 500BCE to 3000CE. The errors exceed 10 arcseconds outside the range 
1200BCE to 3900CE, exceed 100 arcseconds outside 4200BCE to 5600CE and exceed 
1000 arcseconds 1000 arcseconds outside 6800BCE to 8200CE. The three angles are 
returned in the conventional order, which is not the same as the order of the 
corresponding Euler rotations. The precession matrix is R_3(-Z) x R_2(+THETA) x 
R_3(-ZETA).   
 
References:   
 
Lieske, J.H., 1979. Astronomy & Astrophysics,73,282. equations (6) & (7), p283.   
 
 g a l _ s 0 0              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 
2000A precession-nutation.   

double   
gal_s00   
(   
  double date1,   
  double date2,   
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  double x,   
  double y   
) ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, X and Y contain the CIP coordinates. The routine returns the 
CIO locator s in radians. The CIO locator s is the difference between the right 
ascensions of the same point in two systems: the two systems are the GCRS and the 
CIP,CIO, and the point is the ascending node of the CIP equator. The quantity s 
remains below 0.1 arcsecond throughout 1900CE-2100CE. The series used to compute 
s is in fact for s+xy/2, where x and y are the x and y components of the CIP unit vector; 
this series is more compact than a direct series for s would be. This routine requires X 
and Y to be supplied by the caller, who is responsible for providing values that are 
consistent with the supplied date. The model is consistent with the IAU 2000A 
precession-nutation.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003)   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ s 0 0 a              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2000A precession-nutation model.   

double   
gal_s00a   
(   
  double date1,   
  double date2   
 )  ;    

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO 
locator s is the difference between the right ascensions of the same point in two 
systems. The two systems are the GCRS and the CIP,CIO, and the point is the 
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1 
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for 
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is 
more compact than a direct series for s would be. This routine uses the full IAU 2000A 
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nutation model when predicting the CIP position. Faster results, with no significant loss 
of accuracy, can be obtained via the routine gal_s00b, which uses instead the IAU 
2000B truncated model.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ s 0 0 b              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2000B precession-nutation model.   

double   
gal_s00b   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO 
locator s is the difference between the right ascensions of the same point in two 
systems. The two systems are the GCRS and the CIP,CIO, and the point is the 
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1 
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for 
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is 
more compact than a direct series for s would be. This routine uses the IAU 2000B 
truncated nutation model when predicting the CIP position. The routine gal_s00a uses 
instead the full IAU 2000A model, but with no significant increase in accuracy and at 
some cost in speed.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
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IAU 2006 Resolution 2.   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ s 0 6              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 
2006/2000A precession-nutation.   

double   
gal_s06   
(   
  double date1,   
  double date2,   
  double x,   
  double y   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format, X and Y contain CIP coordinates. The routine returns the CIO 
locator s in radians. The CIO locator s is the difference between the right ascensions of 
the same point in two systems:  the two systems are the GCRS and the CIP,CIO, and 
the point is the ascending node of the CIP equator. The quantity s remains below 0.1 
arcsecond throughout 1900CE - 2100CE. The series used to compute s is in fact for 
s+xy/2, where x and y are the x and y components of the CIP unit vector; this series is 
more compact than a direct series for s would be. This routine requires X,Y to be 
supplied by the caller, who is responsible for  providing values that are consistent with 
the supplied date. The model is consistent with the "P03" precession (Capitaine et al. 
2003), adopted by IAU 2006 Resolution 1, 2006, and the IAU 2000A nutation (with P03 
adjustments).   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics 432, 355   
 
McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
  
 g a l _ s 0 6 a              [0.1] 
 
The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the 
Celestial Intermediate Pole, using the IAU 2006 precession and IAU 2000A nutation 
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models.   

double   
gal_s06a   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the CIO locator s in radians. The CIO 
locator s is the difference between the right ascensions of the same point in two 
systems. The two systems are the GCRS and the CIP,CIO, and the point is the 
ascending node of the CIP equator. The CIO locator s remains a small fraction of 1 
arcsecond throughout 1900CE-2100CE. The series used to compute s is in fact for 
s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is 
more compact than a direct series for s would be. This routine uses the full IAU 2000A 
nutation model when predicting the CIP position.   
 
References:   
 
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial 
Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A 
precession-nutation model", Astronomy & Astrophysics, 400, 1145-1154 (2003) n.b. The 
celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by 
IAU 2006 Resolution 2.   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 
 g a l _ s p 0 0              [0.1] 
 
The TIO locator s', positioning the Terrestrial Intermediate Origin on the equator of the 
Celestial Intermediate Pole.   

double   
gal_sp00   
(   
  double date1,   
  double date2   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. The routine returns the TIO locator s' in radians. The TIO 
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locator s' is obtained from polar motion observations by numerical integration, and so is 
in essence unpredictable. However, it is dominated by a secular drift of about 47 
microarcseconds per century, which is the approximation evaluated by this routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ x y 0 6              [0.1] 
 
X,Y coordinates of celestial intermediate pole from series based on IAU 2006 
precession and IAU 2000A nutation.   

void   
gal_xy06   
(   
  double date1,   
  double date2,   
  double *x,   
  double *y   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return X and Y contain the CIP X,Y coordinates. The X,Y 
coordinates are those of the unit vector towards the celestial intermediate pole. They 
represent the combined effects of frame bias, precession and nutation. The fundamental 
arguments used are as adopted in IERS Conventions (2003) and are from Simon et al. 
(1994) and Souchay et al. (1999). This is an alternative to the angles-based method, via 
the routine gal_fw2xy and as used in gal_xys06a for example. The two methods agree 
at the 1 microarcsecond level (at present), a negligible amount compared with the 
intrinsic accuracy of the models. However, it would be unwise to mix the two methods 
(angles-based and series-based) in a single application.   
 
References:   
 
Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astronomy & Astrophysics, 412, 567   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note 
No. 32, BKG   
 
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., 
Astronomy & Astrophysics, 1994, 282, 663   
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Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astronomy & Astrophysics 
Supplement Series 135, 111   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
  
 g a l _ x y s 0 0 a             [0.1] 
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2000A precession-nutation model.   

void   
gal_xys00a   
(   
  double date1,   
  double date2,   
  double *x,   
  double *y,   
  double *s   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 X, Y   Celestial Intermediate Pole  
 S     the CIO locator s 
  
The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector 
in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. A faster, but slightly less 
accurate result (about 1 mas for X, Y), can be obtained by using instead the gal_xys00b 
routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
  
 g a l _ x y s 0 0 b            [0.1]  
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2000B precession-nutation model.   

void   
gal_xys00b   
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(   
  double date1,   
  double date2,   
  double *x,   
  double *y,   
  double *s   
) ;   

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 X, Y  Celestial Intermediate Pole   
 S    the CIO locator s 
 
The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector 
in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. This routine is faster, but slightly 
less accurate (about 1 mas in x,y), than the gal_xys00a routine.   
 
References:   
 
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 
32, BKG (2004)   
 
 g a l _ x y s 0 6 a            [0.1]  
 
For a given TT date, compute the X,Y coordinates of the Celestial Intermediate Pole and 
the CIO locator s, using the IAU 2006 precession and IAU 2000A nutation models.   

void   
gal_xys06a   
(   
  double date1,   
  double date2,   
  double *x,   
  double *y,   
  double *s   
) ; 

On entry DATE1 and DATE2 contain the Terrestrial Time (TT) Julian Date in standard 
SOFA two-piece format. On return the variables are set as follows: 
 
 X, Y   Celestial Intermediate Pole 
  S     the CIO locator s 
 
The Celestial Intermediate Pole coordinates are the X, Y components of the unit vector 
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in the Geocentric Celestial Reference System. The CIO locator S (radians) positions the 
Celestial Intermediate Origin on the equator of the CIP. Series-based solutions for 
generating X and Y are also available: see Capitaine & Wallace (2006) and gal_xy06.   
 
References:   
 
Capitaine, N. & Wallace, P.T., 2006, Astronomy & Astrophysics 450, 855   
 
Wallace, P.T. & Capitaine, N., 2006, Astronomy & Astrophysics 459, 981   
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Chapter 8 - Star Routines 
The routines detailed in this chapter are defined in the gal_star.h header file. 
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 g a l _ f k 5 2 h              [0.1] 
 
Transform FK5 (J2000.0) star data into the Hipparcos system.   

void   
gal_fk52h   
(   
  double r5,   
  double d5,   
  double dr5,   
  double dd5,   
  double px5,   
  double rv5,   
  double *rh,   
  double *dh,   
  double *drh,   
  double *ddh,   
  double *pxh,   
  double *rvh   
) ;   

On entry the parameters are set as follows (all FK5, equinox J2000.0, epoch J2000.0):  
  
 R5    right ascension (radians)   
 D5   declination (radians)   
 DR5      proper motion in right ascension (dRA/dt, radians per Julian year)   
 DD5    proper motion in declination (dDec/dt, radians per Julian year)   
 PX5   parallax (arcseconds)   
 RV5   radial velocity (positive = receding)   
 
On return the variables are set as follows (all Hipparcos, epoch J2000.0):   
 
 RH     right ascension (radians)   
 DH     declination (radians)   
 DRH   proper motion in right ascension (dRA/dt, radians per Julian year)   
 DDH  proper motion in declination (dDec/dt, radians per Julian year)   
 PXH  parallax (arcseconds)   
 RVH     radial velocity (positive = receding)   
 
This routine transforms FK5 star positions and proper motions into the system of the 
Hipparcos catalogue. The proper motions in right ascension are dRA/dt rather than 
cos(Dec)*dRA/dt, and are per year rather than per century. The FK5 to Hipparcos 
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue 
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are not taken into account. See also gal_h2fk5, gal_fk5hz, gal_hfk5z.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
 
 g a l _ f k 5 h i p             [0.1] 
 
FK5 to Hipparcos rotation and spin.   

void   
gal_fk5hip   
(   
  double r5h[3][3],   
  double s5h[3]   
) ;   

On return R5H contains the r-matrix: FK5 rotation wrt Hipparcos, and S5H contains the 
r-vector: FK5 spin wrt Hipparcos. This routine models the FK5 to Hipparcos 
transformation as a pure rotation and spin; zonal errors in the FK5 catalogue are not 
taken into account.  The r-matrix r5h operates in the sense: P_Hipparcos = R5H x 
P_FK5 where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is the equivalent 
Hipparcos p-vector. The r-vector S5H represents the time derivative of the FK5 to 
Hipparcos rotation. The units are radians per year (Julian, TDB).   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  
 g a l _ f k 5 h z             [0.1]  
 
Transform an FK5 (J2000) star position into the system of the Hipparcos catalogue, 
assuming zero Hipparcos proper motion.   

void   
gal_fk5hz   
(   
  double r5,   
  double d5,   
  double date1,   
  double date2,   
  double *rh,   
   double *dh   
 )  ; 
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On entry the parameters are set as follows: 
 
 R5      FK5 right ascension (radians), equinox J2000.0, at date   
 D5         FK5 declination (radians), equinox J2000.0, at date   
 DATE1   TDB date part 1 in standard SOFA two-piece format 
 DATE2   TDB date part 2 in standard SOFA two-piece format 
 
On return the variables are set as follows:  
 
 RH   Hipparcos right ascension (radians)   
 DH   Hipparcos declination (radians)   
 
This routine converts a star position from the FK5 system to the Hipparcos system, in 
such a way that the Hipparcos proper motion is zero. Because such a star has, in 
general, a non-zero proper motion in the FK5 system, the routine requires the date at 
which the position in the FK5 system was determined. The FK5 to Hipparcos 
transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue 
are not taken into account. It was the intention that Hipparcos should be a close 
approximation to an inertial frame, so that distant objects have zero proper motion; such 
objects have (in general)  non-zero proper motion in FK5, and this routine returns those 
fictitious proper motions.  The position returned by this routine is in the FK5 J2000 
reference system but at date (DATE1 and DATE2). See also gal_fk52h, gal_h2fk5, 
gal_hfk5z.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  
 g a l _ h 2 f k 5              [0.1] 
 
Transform Hipparcos star data into the FK5 (J2000.0) system.   

void   
gal_h2fk5   
(   
  double rh,   
  double dh,   
  double drh,   
  double ddh,   
  double pxh,   
  double rvh,   
  double *r5,   
  double *d5,   
  double *dr5,   
  double *dd5,   



Chapter 8 – Star Routines 

223 
 

  double *px5,   
  double *rv5   
) ;   

On entry the parameters are set as follows (all Hipparcos, epoch J2000.0):   
 
 RH    right ascension (radians)   
 DH    declination (radians)   
 DRH  proper motion in right ascension (dRA/dt, radians per Julian year)   
 DDH   proper motion in declination (dDec/dt, radians per Julian year)   
 PXH   parallax (arcseconds)   
 RVH    radial velocity (positive = receding)   
    
On return the variables are set as follows (all FK5, equinox J2000.0, epoch J2000.0):   
 
 R5     right ascension (radians)   
 D5     declination (radians)   
 DR5   proper motion in right ascension (dRA/dt, radians per Julian year)   
 DD5   proper motion in declination (dDec/dt, radians per Julian year)   
 PX5   parallax (arcseconds)   
 RV5   radial velocity (positive = receding)   
  
This routine transforms Hipparcos star positions and proper motions into FK5 J2000.  
The proper motions in right ascension are dRA/dt rather than cos(Dec)*dRA/dt, and are 
per year rather than per century. The FK5 to Hipparcos transformation is modeled as a 
pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account. 
See also gal_fk52h, gal_fk5hz, gal_hfk5z.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
  
 g a l _ h f k 5 z              [0.1] 
 
Transform a Hipparcos star position into FK5 J2000.0, assuming zero Hipparcos proper 
motion.   

void   
gal_hfk5z   
(   
  double rh,   
  double dh,   
  double date1,   
  double date2,   
  double *r5,   
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  double *d5,   
  double *dr5,   
  double *dd5   
) ;   

On entry the parameters are set as follows: 
  
 RH      Hipparcos right ascension (radians)   
 DH     Hipparcos declination (radians)   
 DATE1,DATE2  TDB date in standard SOFA two-piece format   
 
On return the variables are set as follows (all FK5, equinox J2000, date date1+date2):  
  
 R5     right ascension (radians)   
 D5    declination (radians)   
 DR5   FK5 right ascension proper motion (radians per year)   
 DD5     declination proper motion (radians per year)   
 
The proper motion in right ascension is dRA/dt rather than cos(Dec)*dRA/dt. The FK5 to 
Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the 
FK5 catalogue are not taken into account. It was the intention that Hipparcos should be 
a close  approximation to an inertial frame, so that distant objects have zero proper 
motion; such objects have (in general) non-zero proper motion in FK5, and this routine 
returns those  fictitious proper motions. The position returned by this routine is in the 
FK5 J2000.0 reference system but at date (DATE1 and DATE2). See also gal_fk52h, 
gal_h2fk5, gal_fk5zhz.   
 
References:   
 
F. Mignard & M. Froeschle, Astronomy & Astrophysics 354, 732-739 (2000).   
 
 g a l _ p v s t a r             [0.1]  
 
Convert star position & velocity vector to catalog coordinates.   

void   
gal_pvstar   
(   
  double pv[2][3],   
  double *ra,   
  double *dec,   
  double *pmr,   
  double *pmd,   
  double *px,   
  double *rv, 
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  gal_status_t *status 
) ;    

On entry PV contains the pv-vector (AU, AU per day). On return the variables are set as 
follows: 
 
 RA    right ascension (radians)   
 DEC  declination (radians)   
 PMR   right ascension proper motion (radians per year)   
 PMD   declination proper motion (radians per year)   
 PX    parallax (arcseconds)   
 RV     radial velocity (kilometers per second, positive = receding)   
 
The specified pv-vector is the coordinate direction (and its rate of change) for the epoch 
at which the light leaving the star reached the solar-system Barycenter. The star data 
returned by this routine are "observables" for an imaginary observer at the solar-system 
Barycenter. Proper motion and radial velocity are, strictly, in terms of Barycentric 
Coordinate Time, TCB. For most practical applications, it is permissible to neglect the 
distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The result will, as 
a rule, be limited by the intrinsic accuracy of the proper-motion and radial-velocity data; 
moreover, the supplied pv-vector is likely to be merely an intermediate result (for 
example generated by the routine gal_starpv), so that a change of time unit will cancel 
out overall.  
  
In accordance with normal star-catalog conventions, the object's right ascension and 
declination are freed from the effects of secular aberration. The frame, which is aligned 
to the catalog equator and equinox, is Lorentzian and centered on the SSB. 
Summarizing, the specified pv-vector is for most stars almost identical to the result of 
applying the standard geometrical "space motion" transformation to the catalog data. 
The differences, which are the subject of the Stumpff paper cited below, are:   
 

(i) In stars with significant radial velocity and proper motion, the constantly 
changing light-time distorts the apparent proper motion. Note that this is a 
classical, not a relativistic, effect.   

 
 (ii) The transformation complies with special relativity.   
  
Care is needed with units. The star coordinates are in radians and the proper motions in 
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in 
kilometers per second, but the pv-vector result is in AU and AU per day. The proper 
motions are the rate of change of the right ascension and declination at the catalog 
epoch and are in radians per Julian year. The right ascension proper motion is in terms 
of coordinate angle, not true angle, and will thus be numerically larger at high 
declinations. Straight-line motion at constant speed in the inertial frame is assumed. If 
the speed is greater than or equal to the speed of light, the routine sets the  error code 
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GAL_EXCESSIVE_VELOCITY and aborts. The inverse transformation is performed by 
the routine gal_starpv.  
 
If an internal error occurs then the appropriate error code is set.  
 
References:   
 
Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).   
 
 g a l _ s t a r p m            [0.1]  
 
Star proper motion: update star catalog data for space motion.   

void   
gal_starpm   
(   
  double ra1,   
  double dec1,   
  double pmr1,   
  double pmd1,   
  double px1,   
  double rv1,   
  double ep1a,   
  double ep1b,   
  double ep2a,   
  double ep2b,   
  double *ra2,   
  double *dec2,   
  double *pmr2,   
  double *pmd2,   
  double *px2,   
  double *rv2, 
  gal_status_t *status 
)  ;   

On entry the parameters are set as follows: 
 
 RA1   right ascension (radians), before   
 DEC1    declination (radians), before   
 PMR1   right ascension proper motion (radians per year), before   
 PMD1   declination proper motion (radians per year), before   
 PX1   parallax (arcseconds), before   
 RV1    radial velocity (kilometers per second, positive = receding), before   
 EP1a    "before" epoch, part A  
 EP1b    "before" epoch, part B   
 EP2a   "after" epoch, part A  
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 EP2b   "after" epoch, part B 
 
On return the variables are set as follows: 
 
 RA2    right ascension (radians), after   
 DEC2  declination (radians), after   
 PMR2  right ascension proper motion (radians per year), after   
 PMD2   declination proper motion (radians per year), after   
 PX2    parallax (arcseconds), after   
 RV2   radial velocity (kilometers per second, positive = receding), after   
 
The routine returns the following status codes: 
 
 -1     system error (should not occur)   
 0     no warnings or errors   
 1      distance overridden  
 2   excessive velocity 
 4      solution didn't converge  
 else   binary logical OR of the above warnings 
 
The starting and ending Barycentric dynamical Time (TDB) epochs EP1A and EP1B 
and EP2A and EP2B are Julian Dates in standard SOFA two-piece format. In 
accordance with normal star-catalog conventions, the object's right ascension and 
declination are freed from the effects of secular aberration. The frame, which is aligned 
to the catalog equator and equinox, is Lorentzian and centered on the SSB. The proper 
motions are the rate of change of the right ascension and declination at the catalog 
epoch and are in radians per TDB Julian year.  The parallax and radial velocity are in 
the same frame. Care is needed with units. The star coordinates are in radians and the 
proper motions in radians per Julian year, but the parallax is in arcseconds. The RA 
proper motion is in terms of coordinate angle, not true angle. If the catalog uses 
arcseconds for both RA and DEC proper motions, the RA proper motion will need to be 
divided by cos(DEC) before use. Straight-line motion at constant speed, in the inertial 
frame, is assumed. An extremely small (or zero or negative) parallax is interpreted to 
mean that the object is on the "celestial sphere", the radius of which is an arbitrary 
(large) value (see the gal_starpv routine for the value used). When the distance is 
overridden in this way, the error code GAL_DISTANCE_OVERRIDEN is set. If the 
space velocity is a significant fraction of c (see the constant VMAX in the routine 
gal_starpv), it is arbitrarily set to zero. When this action occurs the error code 
GAL_EXCESSIVE_VELOCITY is set. The relativistic adjustment carried out in the 
gal_starpv routine involves an iterative calculation. If the process fails to  converge 
within a set number of iterations, the error code GAL_NO_CONVERGENCE is set.   
 
 g a l _ s t a r p v             [0.1] 
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Convert star catalog coordinates to position & velocity vector.   

void   
gal_starpv   
(   
  double ra,   
  double dec,   
  double pmr,   
  double pmd,   
  double px,   
  double rv,   
  double pv[2][3], 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 RA    right ascension (radians)   
 DEC    declination (radians)   
 PMR   right ascension proper motion (radians per year)   
 PMD   declination proper motion (radians per year)   
 PX      parallax (arcseconds)   
 RV     radial velocity (kilometers per second, positive means receding)   
 
On return PV contains the pv-vector (AU, AU per day). 
 
The routine returns one of the following status codes: 
   
 0      no warnings   
 1  distance overridden 
  2  excessive velocity  
  4  solution didn't converge  
  else   binary logical OR of the above   
 
The star data accepted by this routine are "observables" for an imaginary observer at 
the solar-system Barycenter. Proper motion and radial velocity are, strictly, in terms of 
Barycentric Coordinate Time, TCB. For most practical applications, it is permissible to 
neglect the distinction between TCB and ordinary "proper" time on Earth (TT/TAI). The 
result will, as a rule, be limited by the intrinsic accuracy of the proper-motion and radial- 
velocity data; moreover, the pv-vector is likely to be merely an intermediate result, so 
that a change of time unit would cancel out overall. In accordance with normal star-
catalog conventions, the object's right ascension and declination are freed from the 
effects of secular aberration. The frame, which is aligned to the catalog equator and 
equinox, is Lorentzian and centered on the SSB. The resulting position and velocity pv-
vector is with respect to the same frame and, like the catalog coordinates, is freed from 
the effects of secular aberration. Should the "coordinate direction", where the object was 
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located at the catalog epoch, be required, it may be obtained by calculating the 
magnitude of the position vector PV[0][0-2] dividing by the speed of light in AU per day 
to give the light-time, and then multiplying the space velocity PV[1][0-2] by this light-time 
and adding the result to PV[0][0-2]. Summarizing, the pv-vector returned is for most 
stars almost identical to the result of applying the standard geometrical "space motion" 
transformation. The differences, which are the subject of the Stumpff paper referenced 
below, are:   
 

In stars with significant radial velocity and proper motion, the constantly changing 
light-time distorts the apparent proper motion. Note that this is a classical, not a 
relativistic, effect.   

 
The transformation complies with special relativity.   

  
Care is needed with units. The star coordinates are in radians and the proper motions in 
radians per Julian year, but the parallax is in arcseconds; the radial velocity is in 
kilometers per second, but the pv-vector result is in AU and AU per day. The RA proper 
motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for 
both RA and DEC proper motions, the RA proper motion will need to be divided by 
cos(DEC) before use. Straight-line motion at constant speed, in the inertial frame, is 
assumed. An extremely small (or zero or negative) parallax is interpreted to mean that 
the object is on the "celestial sphere", the radius of which is an arbitrary (large) value 
(see the constant PXMIN). When the distance is overridden in this way, the ode 
GAL_DISTANCE_OVERRIDEN is set. If the space velocity is a significant fraction of c 
(see the constant VMAX), it is arbitrarily set to zero. When this action occurs the error 
code GAL_EXCESSIVE_VELOCITY is set. The relativistic adjustment involves an 
iterative calculation. If the process fails to converge within a set number (IMAX) of 
iterations, the error code GAL_NO_CONVERGENCE is set. The inverse transformation 
is performed by the routine gal_pvstar.   
 
References:   
 
Stumpff, P., Astronomy & Astrophysics 144, 232-240 (1985).   
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Chapter 9 - Ellipsoids 
The routines detailed in this chapter are defined in the gal_frame_macros.h header file. 
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  g a l _ e l l i p s o i d s . h           [0.2] 
 
This header file includes the header files of the routines that make up the ellipsoids sub-
library, and defines the constants for the Ellipsoid Model identifiers.  

   
 Identifier                    Ellipsoid Model 
 
 Earth 
 
 GAL_EMEA_DEL1800    Delambre 1800 
 GAL_EMEA_AIRY1830           Airy 1830 
 GAL_EMEA_EVER1830           Everest 1830 
 GAL_EMEA_EVER1830BA    Everest 1830 Boni Alt 
 GAL_EMEA_BESL1841           Bessel 1841 
 GAL_EMEA_CL1866             Clarke 1866 
 GAL_EMEA_CL1880            Clarke 1880 
 GAL_EMEA_CLA1880M           Clarke 1880 Modified 
 GAL_EMEA_HEL1906       Helmert 1906 
 GAL_EMEA_INTL1909           International 1909 
 GAL_EMEA_KRSV           Krassovsky 
 GAL_EMEA_MERC1960        Mercury 1960 
 GAL_EMEA_WGS1960          World Geodetic System 1960 
 GAL_EMEA_IAU1964         IAU 1964 
 GAL_EMEA_AUSNAT1965 Australian National 1965 
 GAL_EMEA_WGS1966         World Geodetic System 1966 
 GAL_EMEA_MERC1968M Modified Mercury 1968 
 GAL_EMEA_SA1969  South American 1969 
 GAL_EMEA_GRS1967   Geodetic Reference System 1967 
 GAL_EMEA_WGS1972    World Geodetic System 1972 
 GAL_EMEA_IAG1975   IAG 1975 
 GAL_EMEA_IAU1976         IAU 1976 
 GAL_EMEA_GRS1980  Geodetic Reference System 1980 
 GAL_EMEA_MERIT1983  MERIT 1983 
 GAL_EMEA_WGS1984  World Geodetic System 1984 
 GAL_EMEA_IERS1989    IERS 1989 
   GAL_EMEA_IAU1991      IAU/IAG/COSPAR 1991 Earth       
 GAL_EMEA_IERS2000           IERS 2000 
 
 Other Bodies 
 
   GAL_EMME_IAU1991       IAU/IAG/COSPAR 1991 Mercury     
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   GAL_EMVE_IAU1991      IAU/IAG/COSPAR 1991 Venus       
   GAL_EMMA_IAU1991      IAU/IAG/COSPAR 1991 Mars        
   GAL_EMJU_IAU1991      IAU/IAG/COSPAR 1991 Jupiter     
   GAL_EMSA_IAU1991      IAU/IAG/COSPAR 1991 Saturn      
   GAL_EMUR_IAU1991      IAU/IAG/COSPAR 1991 Uranus      
   GAL_EMNE_IAU1991      IAU/IAG/COSPAR 1991 Neptune     
   GAL_EMPL_IAU1991      IAU/IAG/COSPAR 1991 Pluto       
   GAL_EMSU_IAU1991      IAU/IAG/COSPAR 1991 Sun         
 
It is important that the constants are used rather than the actual numerical value 
of the constants, as the numerical values may change between GAL releases. 
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Chapter 10 - Force Models 
The routines detailed in this chapter are defined in the gal_gravity.h header file. Version 
0.6.0 of GAL introduces many changes to the gravity sub-system. The gravity models 
that were previously defined in individual header files have been encapsulated into 
routines. The interfaces of many routines have been changed to use the GAL status 
recording mechanism. 
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 g a l _ g m . h          [0.3] 
 
This header file defines the gravity model structures, and constants for the gravity model 
identifiers and status codes. 

 
 
/* -------------------------------------------- 
 * Structure to store the gravity model details 
 * -------------------------------------------- 
 */ 
 
typedef struct { 
 
  int    body       ;  /* Solar System Body Identifier     */ 
  char   name[40]   ;  /* Gravity Model name               */ 
  double gm         ;  /* GM ( mu ) ( m^3 s^-2 )           */ 
  double sma        ;  /* Semi-Major Axis(meters)          */ 
  int    max_degree ;  /* Highest degree of coefficients   */ 
  int    max_order  ;  /* Highest order of coefficients    */ 
  int    normalized ;  /* 1 = Normalized, 0 = Unnormalized */ 
  double *terms     ;  /* Pointer to spherical terms       */ 
 
} gal_gm_t ;  
 
/* ------------------------------------------------------- 
 * Structure to store the derivative parameters for derivs 
 * ------------------------------------------------------- 
 */ 
 
typedef struct { 
  gal_gm_t *gm        ; /* Gravity Model     */ 
  int      max_degree ; /* Max degree to use */ 
  int      max_order  ; /* Max order to use  */ 
} gal_derivsp_t ; 
   
/* 
 * ------------------------------------------- 
 * Constants for the gravity model identifiers 
 * ------------------------------------------- 
 */ 
  
enum { 
 
/* 
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 * Earth  
 */ 
  
  GAL_GMEA_EGM96        = 0, 
  GAL_GMEA_JGM3         = 1, 
  GAL_GMEA_WGS72        = 2, 
  GAL_GMEA_WGS66        = 3, 
   
/* 
 * The Moon 
 */ 
  
  GAL_GMMO_GLGM1        = 4, 
  GAL_GMMO_GLGM2        = 5, 
   
/* 
 * Venus 
 */ 
  
  GAL_GMVE_MGNP180U     = 6, 
  GAL_GMVE_MGNP120PSAAP = 7, 
   
/*  
 * Mars 
 */ 
  
  GAL_GMMA_GMM2B        = 8, 
  GAL_GMMA_MGM1025      = 9, 
 
} ; 
 
/* 
 * ------------------------------------------------------------ 
 * Constants for gravity model coefficients normalization state 
 * ------------------------------------------------------------ 
 */ 
  
enum { 
  GAL_UNNORMALIZED = 0, 
  GAL_NORMALIZED   = 1, 
} ; 
 
g a l _ a c c d r a g             [0.5] 
 
Computes the perturbational acceleration due to atmospheric drag 

void 
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gal_accdrag 
( 
  double pv[2][3], 
  double area, 
  double mass, 
  double cd, 
  double p, 
  double omega, 
  double a[3]  
) ; 

On entry PV contains the satelliteʼs position and velocity vectors (meters, meters per 
second), AREA the satelliteʼs surface area (meters2), MASS the satelliteʼs mass 
(kilograms), CD the drag coefficient, P the atmospheric density (kilograms per meter3), 
and OMEGA the planetʼs rotation rate (radians per second). On return A contains the 
acceleration vector (a=d^2r/dt^2).   
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 83-85 
   
g a l _ a c c h              [0.3] 
 
Computes the body fixed acceleration due to the harmonic gravity field of the central 
body. 

void 
gal_acch 
( 
  double pbf[3], 
  gal_gm_t *gm, 
  int max_n,  
  int max_m, 
  double abf[3], 
  gal_status_t *status  
) ; 

On entry the parameters are set as follows: 
 
 P    Position vector in body fixed frame (meters) 
 GM    Gravity Model 
 MAX_N   Maximum degree to use  
 MAX_M  Maximum order to use 
 
On return ABF contains the body fixed acceleration vector. If the maximum degree 
and/or order to use exceeds that of the supplied gravity model then the error codes 
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GAL_INVALID_DEGREE or GAL_INVALID_ORDER are set in the status structure 
instance. If the routine fails to allocate memory for workspace then the error code 
GAL_ALLOC_FAILED is set in the status structure instance. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 61-68 
 
 g a l _ a c c p m             [0.1]  
 
Computes the perturbational acceleration due to a point mass 

void 
gal_accpm 
( 
  double ps[3], 
  double ppm[3], 
  double gm, 
  double a[3]  
) ; 

On entry the parameters are set as follows: 
 
 PS    Position vector of satellite (meters) 
 PPM   Position vector of point mass (meters) 
 GM    Gravitational parameter of point mass (meters3 per second2) 
 
On return A contains the acceleration vector (A = d^2r/dt^2). 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 69-70 
 
 g a l _ a c c s r p             [0.5] 
 
Computes the perturbational acceleration due to solar radiation pressure 

void 
gal_accsrp 
( 
  double psat[3], 
  double psun[3], 
  double p, 
  double au, 
  double area, 
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  double mass, 
  double eps, 
  double v, 
  double n[3], 
  double a[3]  
) ; 

 
On entry the variables are set as follows: 
 
 PSAT     Position vector of satellite (meters) 
  PSUN    Position vector of the Sun (meters) 
  P        Solar radiation pressure at one AU (Newtons per meter) 
  AU        Length of Astronomical Unit (meters) 
 AREA     Satellite surface area (meters2) 
  MASS    Satellite mass (kilograms) 
  EPS      Reflectivity  
  V        Shadow function (0 = eclipse, 1 = full sunlight) 
 N        Normal unit vector for the satellite's surface 
 
On return A contains the acceleration vector (A = d^2r/dt^2). Reflectivity is usually in the 
range 0.2 to 0.9. The header file gal_astro.h defines the constant GAL_SRP96 for the 
solar radiation pressure at 1AU (IERS 1996). 
  
 Solar Panel                          0.21 
 High Gain Antenna                   0.30 
 Aluminum coated Mylar solar sail  0.88 
 
References: 
  
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 77-79 
 
g a l _ a c c s r p s             [0.5] 
 
Computes the perturbational acceleration due to solar radiation pressure using the 
simplified formula. 

void 
gal_accsrps 
( 
  double psat[3], 
  double psun[3], 
  double p, 
  double au, 
  double area, 
  double mass, 
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  double eps, 
  double v, 
  double a[3]  
) ; 

 
On entry the variables are set as follows: 
 
 PSAT   Position vector of satellite (meters) 
 PSUN    Position vector of the Sun (meters) 
 P        Solar radiation pressure at one AU (Newtons per meter) 
 AU     Length of Astronomical Unit (meters) 
 AREA     Satellite surface area (meters2) 
 MASS   Satellite mass (kilograms) 
  EPS      Reflectivity 
 V        Shadow function (0 = eclipse, 1 = full sunlight) 
 
On return A contains the acceleration vector (A = d^2r/dt^2). Reflectivity is usually in the 
range 0.2 to 0.9. The header file gal_astro.h defines the constant GAL_SRP96 for the 
solar radiation pressure at 1AU (IERS 1996). 
 
 Solar Panel                         0.21 
 High Gain Antenna                   0.30 
 Aluminum coated Mylar solar sail  0.88 
 
References: 
  
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 77-79 
   
g a l _ c a n p v              [0.4] 
 
This routine converts a pv-vector from regular to canonical units. 

void 
gal_canpv 
( 
  double pv1[2][3], 
  double gm, 
  double re, 
  double pv2[2][3]  
) ; 

On entry PV1 contains the pv-vector to convert, GM contains the gravitational 
parameter, and RE contains the mean radius of the reference orbit. On return PV2 
contains the converted position and velocity vectors in canonical units. GM and RE must 
be stated in consistent units, i.e. meters or kilometers based. 
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 g a l _ e a a d h p           [0.5] 
 
Computes the Earth's Atmospheric Density using the Harris-Priester Density Model 

 
void 
gal_eaadhp 
( 
  double p[3], 
  double height, 
  double alpha, 
  double delta, 
  double *ad, 
  gal_status_t *status 
) ; 

On entry the variables are set as follows: 
 
 PV      Position vector of satellite (meters, meters per second)  
   True-of-date inertial reference frame 
 HEIGHT  Height of the satellite above mean sea level (meters) 
 ALPHA   Right ascension of the Sun (radians) 
 DELTA   Declination of the Sun (radians) 
 
On return AD contains the atmospheric density (kilograms per meter3). The routine sets 
the error code GAL_OUT_OF_RANGE if the height is out of the range model. In the out 
of range case AD is set to zero. 
 
References: 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 89-91 
 
g a l _ g m a l l o c           [0.3] 
 
This routine creates a blank gravity model of given degree. 

gal_gm_t * 
gal_gmalloc 
( 
  int n 
) ;   

On entry N contains the required degree. The routine returns a pointer to gravity model 
structure or NULL if failure. 
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 g a l _ g m c p y             [0.3]  
 
This routine allocates memory and populates it with all or a subset of a gravity model.  

gal_gm_t *   
gal_gmcpy 
( 
  gal_gm_t *gm1, 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 GM1   Pointer to source gravity model structure to copy 
  MAXN   Maximum degree to be returned 
 MAXM  Maximum order to be returned 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to the newly allocated model. This function additionally 
allows the user to limit the maximum degree and order of the coefficients to be included, 
useful when the full accuracy of the model is not required. If a maximum degree or order 
is requested greater than that provided for the base model then the higher unknown 
coefficients are set to zero. If the routine is unable to allocate memory then NULL is 
returned. 
 
 g a l _ g m d e n o r m          [0.3] 
 
This routine un-normalizes a gravity model's coefficients 

gal_gm_t * 
gal_gmdenorm 
( 
  gal_gm_t *gm1, 
  gal_gm_t *gm2, 
  gal_status_t *status 
) ; 

On entry GM1 contains the source gravity model. On return GM2 contains the 
unnormalized terms. The routine returns a pointer to GM2. If an internal error occurs 
then the applicable error code is set. 
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 g a l _ g m f r e e            [0.3] 
 
This routine frees a gravity model previously allocated by gal_gmalloc or gal_gmcpy 

void 
gal_gmfree 
( 
  gal_gm_t *gm 
) ; 

On entry GM contains a pointer to the model to be deallocated. 
 
 g a l _ g m g e t             [0.3] 
 
This routine makes a copy of a selected gravity model. 

gal_gm_t * 
gal_gmget 
( 
  int gmi, 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 GMI   Identifier of the required gravity model  
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the required gravity model. If the gravity 
model identifier is unknown then the error code GAL_INVALID_ID is set. If the routine 
was unable to allocate memory then the error code GAL_ALLOC_FAILED is set. In the 
case of any error NULL is returned. The user must call gal_gmfree to de-allocate 
memory when finished with the gravity model. The header file gal_gm.h defines the 
constants for the gravity model identifiers. 
 
 g a l _ g m g e t _e g m 9 6            [0.6] 
 
This file returns a gravity model containing the EGM96 Earth gravity model. 

gal_gm_t * 
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gal_gmget_egm96 
( 
 int maxn, 
 int maxm, 
 int norm, 
 gal_status_t *status 
 ) ;   

 
On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmegm96.h that was included in releases of GAL prior to version 0.6.0. 
 
References: 
 
Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox 
C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis 
E.C., Rapp R.H., Olson T.R.; The Development of the Joint NASA GSFC and the 
National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; NASA 
Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA, 
1998 
 
 g a l _ g m g e t _ g l g m 1           [0.6] 
 
This file returns a gravity model containing the GLGM1 Lunar gravity model. 

gal_gm_t * 
gal_gmget_glgm1 
( 
 int maxn, 
 int maxm, 
 int norm, 
 gal_status_t *status 
 ) ;   

 
On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
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 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmglgm1.h that was included in releases of GAL prior to version 0.6.0. 
 
This model for the Lunar Gravity Field is derived from a tracking of Lunar Orbiters 
1,2,3,4 & 5, the Apollo-15 subsatellite, and Clementine: 361,000 observations from 
Clementine, and 300,000 observations from the other spacecraft. The field was derived 
using the 1992 IAU Model for the Moon. Note that the IAU reference for this model has 
typographical errors for two the quantities describing the angular librations. The IAU 
“Table II” lists the IAU model for the orientation for the lunar pole and prime meridian. 
The quantities which read: 
  
  E3 = 260.008 - 13.012001*d 
  E5 = 357.529 -  0.985600*d 
 
should instead read: 
    
  E3 = 260.008 + 13.012001*d 
  E5 = 357.529 +  0.985600*d 
 
References:   
 
Goddard Lunar Gravity Model-1 (GLGM-1): A 70th degree and order gravity model for 
the Moon, by F G Lemoine, D E Smith, and M T Zuber, P11A-9, EOS, Transactions of 
the American Geophysical Union Volume 75, No. 44, 1994. 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A. 
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S 
Tjuflin, Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992. 
 
 g a l _ g m g e t _ g l g m 2            [0.6] 
 
This file returns a gravity model containing the GLGM2 Lunar gravity model. 

gal_gm_t * 
gal_gmget_glgm2 
( 
 int maxn, 
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 int maxm, 
 int norm, 
 gal_status_t *status 
) ;   

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmglgm2.h that was included in releases of GAL prior to version 0.6.0. 
 
The field was derived using the 1992 IAU Model for the Moon. Note that the IAU 
reference for this model has typographical errors for two of the quantities describing the 
angular librations. The IAU reference “Table II” lists the IAU model for the orientation for 
the lunar pole and prime meridian. The quantities which read: 
  
  E3 = 260.008 - 13.012001*d 
  E5 = 357.529 -  0.985600*d 
 
  should instead read: 
    
  E3 = 260.008 + 13.012001*d 
  E5 = 357.529 +  0.985600*d 
 
References:  
 
Journal Geophysical Research, GLGM-2, A 70th Degree and Order Lunar Gravity Model 
from Clementine and Historical Data, Submitted, November 1995. by F. G. Lemoine, D. 
E. Smith, M.T. Zuber, G. A. Neumann, and D. D. Rowlands. 
 
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites 1991, by M E Davies, V K Abalakin, A. 
Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, and Y S 
Tjuflin, Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992. 
 
High Degree and Order Spherical Harmonic Models for the Moon from Clementine and 
Historic S-Band Doppler Data, 1995 XXI General Assembly, IUGG, Boulder, Colorado, 
July 12, 1995. by F. G. Lemoine, D. E. Smith, M. T. Zuber, and G. A. Neumann. 
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 g a l _ g m g e t _ g m m 2 b           [0.6]  
 
This file returns a gravity model containing the GMM2B Mars gravity model. 

gal_gm_t * 
gal_gmget_gmm2b 
( 
 int maxn, 
 int maxm, 
 int norm, 
 gal_status_t *status 
 ) ;   

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmgmm2b.h that was included in releases of GAL prior to version 0.6.0. 
 
This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no 
Mariner 9 or Viking data are included. Coordinate system is IAU 1991 (Davies et al., 
Celestial Mechanics and Dynamical Astronomy, 53, 377-397, 1992). The model was 
constructed from 955,115 observations, summarized in the table below. MGS data are 
limited to tracking from the Aerobraking Hiatus and Science Phasing Orbit (SPO) 
subphases of the Orbit Insertion phase of the mission and to February 1999 to                 
February 2000 after the orbit was circularized.                               
                                                                               
Time Periods   Arcs   Observations                   
 
Hiatus                 2   24119                      
SPO-1            8   31001                      
SPO-2      16   157972                      
Feb-Mar 1999     9   76813                      
Apr 1999 - Feb 2000  47   665210                      
 
Total         955115                      
                                                                       
Orbit reconstruction was improved using Mars Orbiter Laser Altimeter (MOLA) data on 5 
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arcs between March and December 1999. Inter-arc and intra-arc crossovers at 21343 
points were included in the orbit solutions. The gravity model was derived using a Kaula 
type constraint: sqrt(2)*13*10**(-5)/L**2. The analysis and results were described by 
F.G. Lemoine, D.D. Rowlands, D.E. Smith, D.S. Chinn, G.A. Neumann, and M.T. Zuber 
at the Spring Meeting of the American Geophysical Union, May 30 - June 3, 2000, 
Washington. DC. Further improvements to the model are expected as additional MGS 
data are incorporated. This Mars gravity model was produced by F.G. Lemoine under 
the direction of D.E. Smith of the MGS Radio Science Team.                       
 
References: 
 
Kaula, W.M., Theory of Satellite Geodesy, Blaisdell, Waltham, MA, 1966 
 
 g a l _ g m g e t _ j g m 3           [0.6] 
 
This file returns a gravity model containing the JGM-3 Earth gravity model. 

gal_gm_t * 
gal_gmget_jgm3 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmjgm3.h that was included in releases of GAL prior to version 0.6.0. 
 
References:   
 
Tapley B., Watkins M., Ries J., Davis G., Eanes R., Poole S., Rim H., Schutz B., Shum 
C., Nerem R., Lerch F., Marshall J.A., Klosko S.M., Pavlis N., Williamson R.; The Joint 
Gravity Model 3; Journal of Geophysical Research, Vol. 101, No. B12, S. 28029-28049, 
1996 
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 g a l _ g m g e t _ m g m 1 0 2 5         [0.6]  
 
This file returns a gravity model containing the MGM1025 Mars gravity model. 

gal_gm_t * 
gal_gmget_mgm1025 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ;   

On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmmgm1025.h that was included in releases of GAL prior to version 0.6.0. 
 
This field is derived from radio tracking of the Mars Global Surveyor spacecraft; no 
Mariner 9 or Viking data are included. The MGM1025 gravity model is an update to the 
GMM-2B gravity model. It was determined from 155 arcs of MGS tracking data in 
Hiatus, SPO, GCO and Mapping. MGM1025 includes the same Mapping and GCO data 
as were in GMM2B; in addition, it includes data from the first half of 2001 (through July 
21, 2001) when the MGS orbit orientation angle with respect to the line-of-sight (LOS) 
was optimum for gravity measurements. It excludes data in the vicinity of solar 
conjunction from May 8 to July 30 in 2000.                                               
 
     GMM2B  MGM1025                           
 
 Model Size              80x80         80x80                            
 Coordinate System    IAU 1991     IAU 2000                           
 
 Observations                                                        
  
 Hiatus                 24,119       24,119                           
 SPO-1                  31,001       31,014                           
 SPO-2                 157,972      136,667                           
 GCO                    76,813       80,795                           
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 Mapping               665,210     1,352,661                           
 TOTAL                 955,155     1,625,276                           
 
 Number of Arcs 
                                                      
 Hiatus             2        2                           
 SPO-1              8            8                           
 SPO-2            16           14                           
 GCO              9            9                           
 Mapping           47          122                           
                                                                                
MGM1025 has improved correlation with topography compared with GMM-2B. The 
average correlation with MOLA derived topography (through degree 70) is 0.722 for 
GMM-2B and 0.756 for MGM1025. The new model has slightly greater power in the 
band from l=60 to 70. The average RMS of fit to the F2 (two-way) tracking data is 0.13 
to 0.20 millimeters per second with this model, excluding arcs in the vicinity of solar 
conjunction. The average RMS of fit for the one-way (F1) Doppler tracking with this 
model is 0.10 to 0.15 millimeters per second. The one-way data contribute to solutions 
starting sporadically in February 2000 and more consistently in arcs starting in March of 
2000. They are used solely to fill in what would otherwise be gaps in the two-way 
tracking Frequency biases are estimated for each pass of one-way data. The coordinate 
system for the model is IAU 2000 (Seidelman et al., Celestial Mechanics & Dynamical 
Astronomy, 82, 83-110, 2002), defined by the Mars Cartography Working Group. It 
includes updates to the orientation of the Mars Pole and rotation rate from a joint 
Pathfinder/Viking solution, and a re-determination of the location of the prime meridian 
(with respect to the crater Airy-0) from Mars Global Surveyor MOC and MOLA data. 
Pole right ascension (alpha) and declination (delta), prime meridian (Wo), and rotation 
rate (Wodot) in IAU 2000 are:                                    
 
 alpha   317.68143 deg   -0.1061 degrees per century                       
 delta   52.88650 deg   -0.0609 degrees per century                       
 Wo     176.630 deg                                             
 Wdot    350.89198266 deg/day                                    
                                                                                
This Mars gravity model was produced by F.G. Lemoine under the direction of D.E. 
Smith of the MGS Radio Science Team.                       
 
References: 
 
The analysis and results for MGM1025 were described by F.G. Lemoine, G.A. 
Neumann, D.S. Chinn, D.E. Smith, M.T. Zuber, D.D. Rowlands, D.P. Rubincam, and 
D.E. Pavlis in 'Solution for Mars Geophysical Parameters from Mars Global Surveyor 
Tracking Data', American Geophysical Union Fall Meeting 2001 (EOS, Trans. AGU 
82(47), Fall Meeting Supplement, Abstract P42A-0545, F721, 2001). The GMM2B 
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model was described by Lemoine et al., 'An Improved Solution of the Gravity Field of 
Mars (GMM-2B) from Mars Global Surveyor', Journal Geophysical Research, 106(E10), 
23359-23376, October  25, 2001.                         
 
 g a l _ g m g e t _ m g n p 1 2 0 p          [0.6] 
 
This file returns a gravity model containing the MGNP120PSAAP Venus gravity model. 

gal_gm_t * 
gal_gmget_mgnp120p 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ;   

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmmgnp120p.h that was included in releases of GAL prior to version 0.6.0. 
 
This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus 
gravity model is produced by the Magellan Gravity Science Team at JPL under the 
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution. 
 
 g a l _ g m g e t _ m g n p 1 8 0 u         [0.6] 
 
This file returns a gravity model containing the MGNP180U Venus gravity model. 

 
gal_gm_t * 
gal_gmget_mgnp180u 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ;   
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On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmmgnp180u.h that was included in releases of GAL prior to version 0.6.0. 
 
This field is derived from radio tracking of the Magellan spacecraft. The Magellan Venus 
gravity model is produced by the Magellan Gravity Science Team at JPL under the 
direction of W.L. Sjogren. Orbits 5758 to 15019 used in the solution. 
 
 g a l _ g m g e t _ w g s 6 6           [0.6] 
 
This file returns a gravity model containing the WGS66 Earth gravity model. 

gal_gm_t * 
gal_gmget_wgs66 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ;   

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmwgs66.h that was included in releases of GAL prior to version 0.6.0. 
 
The value for GM is unknown, so the value for WGS72 is used instead. 
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 g a l _ g m g e t _ w g s 7 2           [0.6] 
 
This file returns a gravity model containing the WGS72 Earth gravity model. 

 
gal_gm_t * 
gal_gmget_wgs72 
( 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ;   

 On entry the parameters are set as follows: 
 
 MAXN   Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
 
The routine returns a pointer to a new copy of the gravity model. If the routine was 
unable to allocate memory then NULL is returned, and the error code 
GAL_ALLOC_FAILED is set. The user must call gal_gmfree to de-allocate memory 
when finished with the gravity model. This routine replaces the functionality of 
gal_gmwgs72.h that was included in releases of GAL prior to version 0.6.0. 
 
 g a l _ g m l d a            [0.6] 
 
This routine loads a gravity model from an ASCII file in ICGEM format. 

gal_gm_t * 
gal_gmlda 
( 
  FILE *fp, 
  int maxn, 
  int maxm, 
  int norm, 
  gal_status_t *status 
) ; 

 On entry the parameters are set as follows: 
 
 FP  Pointer to open file handle 
 MAXN    Maximum degree to return 
 MAXM  Maximum order to return 
 NORM   GAL_NORMALIZED means spherical terms are to be normalized 
   GAL_UNNORMALIZED means spherical terms are to be un-normalized 
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The ICGEM-format accommodates Earth Gravity Field models in terms of spherical 
harmonic coefficients and Ocean and Atmosphere Tides. This routine only handles the 
spherical harmonic coefficients. Each individual data file consists of two sections: The 
header containing parameters which do not depend on degree and order. The end of 
the  header is marked by the keyword "end_of_head" (as a separator between header 
and data section). The data section with the list of degree- and order-dependent 
parameters. The records have the following basic structure: The basic structure of  the 
record lines is unformatted, i.e. separators are blanks and/or tabs. Each record consists 
of one keyword followed by one or more parameters (numbers or characters), which are 
separated by one or an arbitrary number of blanks and/or tabs. The number of 
parameters depends on the corresponding keyword as defined below. There are 
mandatory and optional records. All lines led by non-defined keywords are comments. 
In any line, additional characters and/or numbers beyond the last parameter are allowed 
as comments. Leading and trailing blanks are ignored. This routine extends the ICGEM 
format with the addition of the "body" keyword. Valid values for this keyword are the 
GAL Object Identifier codes. This routine assumes that the object is the Earth. If the file 
contains body identifier in the header then that will be used. Many gravity models can 
be downloaded from the International Centre for Global Earth Models ( ICGEM ).  
 
http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html 
 
References: 
 
The ICGEM-format by Franz Barthelmes and Christoph Förste, GFZ Potsdam, 
Department 1 “Geodesy and Remote Sensing” , 2006 February 26 
 
 

 g a l _ g m n o r m           [0.3] 
 
This routine normalizes a gravity model's coefficients 

gal_gm_t * 
gal_gmnorm 
( 
  gal_gm_t *gm1, 
  gal_gm_t *gm2, 
  gal_status_t *status 
) ; 

On entry GM1 contains the source gravity model. On return GM2 contains the 
normalized coefficients. The routine returns a pointer to GM2. This routine depends 
upon the gal_factorial routine. Recent gravity models ( e.g. EGM 2008 ) have degrees 
and orders that require the computation of factorials that exceed the largest possible 
value that can be represented as an IEEE long double type. Any errors recorded by 
gal_factorial are returned to the user in the status structure instance. 
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 g a l _ g m s v a             [0.6] 
 
This routine saves a gravity model to an ASCII file in ICGEM format. 

void 
gal_gmsva 
( 
  FILE *fp, 
  gal_gm_t *gm, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
  FP  Pointer to open ASCII file 
  GM  Pointer to gravity model structure 
 
The ICGEM-format accommodates Earth Gravity Field models in terms of spherical 
harmonic coefficients and Ocean and Atmosphere Tides. This routine only handles the 
spherical harmonic coefficients. Each individual data file consists of two sections: The 
header containing parameters which do not depend on degree and order. The end of 
the  header is marked by the keyword "end_of_head" (as a separator between header 
and data section). The data section with the list of degree- and order-dependent 
parameters. The records have the following basic structure: The basic structure of  the 
record lines is unformatted, i.e. separators are blanks and/or tabs. Each record consists 
of one keyword followed by one or more parameters (numbers or characters), which are 
separated by one or an arbitrary number of blanks and/or tabs. The number of 
parameters depends on the corresponding keyword as defined below. There are 
mandatory and optional records. All lines led by non-defined keywords are comments. 
In any line, additional characters and/or numbers beyond the last parameter are allowed 
as comments. Leading and trailing blanks are ignored. This routine extends the ICGEM 
format with the addition of the "body" keyword. Valid values for this keyword are the 
GAL Object Identifier codes. 
 
References: 
 
The ICGEM-format by Franz Barthelmes and Christoph Förste, GFZ Potsdam, 
Department 1 “Geodesy and Remote Sensing” , 2006 February 26 
  

g a l _ g m u z h            [0.3] 
 
This routine calculates an un-normalized zonal harmonic 

double 
gal_gmuzh 
( 
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  gal_gm_t *gm, 
  gal_facexp_t *facexp, 
  int harmonic, 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 GM       Pointer to gravity model 
 FACEXP    Pointer to factorial exponent lookup table 
 HARMONIC   Required harmonic 
 
The routine returns the required un-normalized zonal harmonic. If the requested 
harmonic exceeds the maximum degree of the gravity model then the error code 
GAL_INVALID_DEGREE is set. 
 
 g a l _ s t g e t              [0.3]   
 
This routine gets spherical terms C & S of degree n and order m from the given gravity 
model  

void 
gal_stget 
( 
  const int n, 
  const int m, 
  gal_gm_t *gm, 
  double *c, 
  double *s, 
  gal_status_t *status 
) ;     

On entry N contains the required degree, and M the required order, gm is a pointer to 
the gravity model structure. On return C and S contain the C and S coefficients of 
degree N and order M. If the required degree or order exceed the maximum of the 
gravity model then the error code GAL_INVALID_DEGREE and/or 
GAL_INVALID_ORDER are set. 
 
g a l _ s t n f              [0.3]  
 
This function computes the spherical terms normalization factor. 

double 
gal_stnf 
( 
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  gal_facexp_t *facexp, 
  const int n, 
  const int m, 
  gal_status_t *status 
) ;  

On entry FACEXP contains a pointer to the factorial exponent lookup table, N the 
required degree, and M the required order. The routine returns the normalization factor. 
This routine depends upon the gal_factorial routine. Recent gravity models ( e.g. EGM 
2008 ) have degrees and orders that require the computation of factorials that exceed 
the largest possible value that can be represented as an IEEE long double type. Any 
errors recorded by gal_factorial are returned to the user in the status structure instance. 
  
References: 
 
Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section, 
Second Pressing Pages 519-520 
 
 g a l _ s t s e t             [0.3]    
 
This routine sets spherical terms C & S of degree N and order M in the given gravity 
model  

void 
gal_stset 
( 
  const int n, 
  const int m, 
  const double c, 
  const double s, 
  gal_gm_t *gm, 
  gal_status_t *status 
) ;     

On entry N contains the required degree, M the required order, C and S contain the 
values to store in the gravity model. On return the spherical terms of the gravity model 
GM have been updated. If the required degree or order exceed the maximum of the 
gravity model then the error code GAL_INVALID_DEGREE and / or 
GAL_INVALID_ORDER are set. 
 
g a l _ s t u n f             [0.3]   
 
This function computes the spherical terms un-normalization factor. 

double 
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gal_stunf 
( 
  gal_facexp_t *facexp, 
  const int n, 
  const int m, 
  gal_status_t *status 
) ;   

On entry FACEXP contains a pointer to the factorial exponent lookup table, N contains 
the required degree, and M the required order. The routine returns the un-normalization 
factor of degree N and order M. Recent gravity models ( e.g. EGM 2008 ) have degrees 
and orders that require the computation of factorials that exceed the largest possible 
value that can be represented as an IEEE long double type. Any errors recorded by 
gal_factorial are returned to the user in the status structure instance. 
 
References: 
    
Fundamentals of Astrodynamics and Applications by David A. Vallado, Second Section, 
Second Pressing Pages 519-520 
 
 g a l _ t u            [0.4] 
 
This routine computes the canonical unit TU factor from the mean radius and 
gravitational parameter. 

double 
gal_tu 
( 
  double gm, 
  double re 
) ; 

On entry GM contains the gravitational parameter, and RE the mean radius of the 
reference orbit. The routine returns the TU factor. GM and RE must be stated in 
consistent units, i.e. meters or kilometers based. 
 
 g a l _ u n c a n p v           [0.4] 
 
This routine converts a pv-vector from canonical units to regular units 

void 
gal_uncanpv 
( 
  double pv1[2][3], 
  double gm, 
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  double re, 
  double pv2[2][3]  
) ; 

On entry PV1 contains the position and velocity vectors in canonical units, GM contains 
the gravitational parameter, and RE the mean radius of the reference orbit. On return 
PV2 contains the position and velocity vectors in regular units. GM and RE must be 
stated in consistent units, i.e. meters or kilometers based. 
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Chapter 11 – U S S T R A T C O M 
The routines detailed in this chapter are defined in the gal_usstratcom.h header file. The 
header file also defines the following structures and constants: 
 
/*  
 * Two-Line Element Structure 
 */ 
   
struct tle_node { 
  int             satnum         ; /* US Space Command Object Number              */ 
  char            classification ; /* Security Classification                     */ 
  char            intldesg[12]   ; /* International Designator (COSPAR/WDC-A-R&S) */ 
  int             epochyr        ; /* Epoch Year                                  */ 
  double          epochdays      ; /* Epoch Day of Year (plus Fraction)           */ 
  double          ndot           ; /* Mean motion derivative (rev/day /2)         */ 
  double          nddot          ; /* Mean motion second derivative (rev/day2 /6) */ 
  double          bstar          ; /* Bstar / Drag Term                           */ 
  int             ephtype        ; /* Ephermeris Type                             */ 
  int             setnum         ; /* Element set number                          */ 
  double          inclo          ; /* Inclination                                 */ 
  double          nodeo          ; /* Right Ascension of Ascending Node (deg)     */ 
  double          ecco           ; /* Eccentricity                                */ 
  double          argpo          ; /* Argument of Perigee (deg)                   */ 
  double          mo             ; /* Mean Anamaly (deg)                          */ 
  double          no             ; /* Mean Motion (rev/day)                       */ 
  int             revnum         ; /* Epoch Revolution Number                     */ 
  struct tle_node *next          ; /* Pointer to next TLE                         */ 
} ; 
 
typedef struct tle_node gal_tle_t ; 
 
/* 
 * Piece of launch definition structure 
 */ 
  
struct piece_node { 
  char              piece[4]     ; /* Piece of launch                             */ 
  int               satnum       ; /* US Space Command Object Number              */ 
  char              intldesg[12] ; /* International Designator (COSPAR/WDC-A-R&S) */ 
  char              name[40]     ; /* Description of piece of launch              */ 
  double            launch_date1 ; /* Launch date part 1                          */ 
  double            launch_date2 ; /* Launch date part 2                          */ 
  int               status       ; /* Orbital Status                              */ 
  double            decay_date1  ; /* Decay date part 1                           */ 
  double            decay_date2  ; /* Decay date part 2                           */ 
  double            period       ; /* Period                                      */ 
  double            inclo        ; /* Inclination                                 */ 
  double            apogee       ; /* Apogee                                      */ 
  double            perigee      ; /* Perigee                                     */ 
  double            rcs          ; /* RADAR cross section                         */ 
  int               owner_code   ; /* GAL Catalog Object Owner Code               */ 
  int               payload      ; /* Payload = 1, Debris = 0                     */ 
  gal_tle_t         *tle         ; /* Pointer to TLE list                         */ 
  int               tcount       ; /* Number of TLEs                              */ 
  int               tag          ; /* Tag; 1 = tagged, 0 = not tagged             */ 
 
  struct piece_node *next        ; /* Pointer to next piece of launch             */ 
} ; 
 
typedef struct piece_node gal_piece_t ; 
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/* 
 * Launch definition structure 
 */ 
  
struct launch_node { 
  int                year         ; /* Year of launch                              */ 
  int                number       ; /* Launch number of year                       */ 
  double             launch_date1 ; /* Date of launch part 1                       */ 
  double             launch_date2 ; /* Date of launch part 2                       */ 
  int                lv_code      ; /* GAL Launch Vehicle Code                     */ 
  gal_piece_t        *piece       ; /* Pointer to pieces of launch                 */ 
  int                pcount       ; /* Number of pieces of launch                  */ 
  struct launch_node *next        ; /* Pointer to next launch                      */ 
} ; 
 
typedef struct launch_node gal_launch_t ; 
 
/* 
 * Object catalog structure 
 */ 
  
typedef struct { 
  gal_launch_t *launch           ; /* Pointer to launches                         */ 
  int          lcount            ; /* Count of number of launches                 */ 
  gal_piece_t  *index            ; /* Pointer to lookup table                     */ 
  int          icount            ; /* Number of entries in index                  */ 
} gal_objcat_t ; 
 
/* --------------------------- 
 * Catalog Object Status Codes 
 * --------------------------- 
 */ 
 
enum { 
  GAL_COS_UNKNOWN               =  0, /* Unknown Status */ 
  GAL_COS_BARYCENTRIC_ORBIT_EMB =  1,        
  GAL_COS_CIRCUMLUNAR           =  2,                            
  GAL_COS_DECAYED               =  3, 
  GAL_COS_ESCAPED_SOLAR_SYSTEM  =  4,                   
  GAL_COS_GEOCENTRIC_ORBIT      =  5, 
  GAL_COS_HELIOCENTRIC_ORBIT    =  6,               
  GAL_COS_LUNAR_IMPACT          =  7,                           
  GAL_COS_LUNAR_LANDING         =  8,                          
  GAL_COS_MARS_IMPACT           =  9,                            
  GAL_COS_MARS_ORBIT            = 10,                             
  GAL_COS_NO_ELEMENTS_AVAILABLE = 11,                
  GAL_COS_NO_INITIAL_ELEMENTS   = 12,                    
  GAL_COS_SELENOCENTRIC_ORBIT   = 13,             
  GAL_COS_VENUS_IMPACT          = 14,                           
  GAL_COS_VENUS_LANDING         = 15,                          
  GAL_COS_VENUS_ORBIT           = 16 
} ; 
 
/* -------------------------- 
 * Catalog Object Owner Codes 
 * -------------------------- 
 */ 
  
enum { 
  GAL_COO_UNKNOWN               =  0,  
  GAL_COO_ALGERIA               =  1, 
  GAL_COO_ARABSAT               =  2, 
  GAL_COO_ARGENTINA             =  3, 
  GAL_COO_ASIASAT_CORP          =  4, 
  GAL_COO_AUSTRALIA             =  5, 
  GAL_COO_BERMUDA               =  6, 
  GAL_COO_BRAZIL                =  7, 
  GAL_COO_CANADA                =  8, 
  GAL_COO_CHILE                 =  9, 
  GAL_COO_CIS                   = 10, 
  GAL_COO_COLUMBIA              = 11, 
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  GAL_COO_CZECHOSLOVAKIA        = 12, 
  GAL_COO_DENMARK               = 13, 
  GAL_COO_EGYPT                 = 14, 
  GAL_COO_ESA                   = 15, 
  GAL_COO_ESRO                  = 16, 
  GAL_COO_EUMETSAT              = 17, 
  GAL_COO_EUTELSAT              = 18, 
  GAL_COO_FRANCE                = 19, 
  GAL_COO_FRANCE_GERMANY        = 20, 
  GAL_COO_GERMANY               = 21, 
  GAL_COO_GLOBALSTAR            = 22, 
  GAL_COO_GREECE                = 23, 
  GAL_COO_INDIA                 = 24, 
  GAL_COO_INDONESIA             = 25, 
  GAL_COO_INMARSAT              = 26, 
  GAL_COO_INTELSAT              = 27, 
  GAL_COO_IRAN                  = 28, 
  GAL_COO_IRIDIUM               = 29, 
  GAL_COO_ISRAEL                = 30, 
  GAL_COO_ISRO                  = 31, 
  GAL_COO_ISS                   = 32, 
  GAL_COO_ITALY                 = 33, 
  GAL_COO_JAPAN                 = 34, 
  GAL_COO_KOREA                 = 35, 
  GAL_COO_LUXEMBOURG            = 36, 
  GAL_COO_MALAYSIA              = 37, 
  GAL_COO_MEXICO                = 38, 
  GAL_COO_NATO                  = 39, 
  GAL_COO_NETHERLANDS           = 40, 
  GAL_COO_NEW_ICO               = 41, 
  GAL_COO_NIGERIA               = 42, 
  GAL_COO_NORTH_KOREA           = 43, 
  GAL_COO_NORWAY                = 44, 
  GAL_COO_PAKISTAN              = 45, 
  GAL_COO_PHILIPPINES           = 46, 
  GAL_COO_PORTUGAL              = 47, 
  GAL_COO_PRC                   = 48, 
  GAL_COO_PRC_BRAZIL            = 49, 
  GAL_COO_PRC_ESA               = 50, 
  GAL_COO_RASC                  = 51, /* Need to find out what this is */ 
  GAL_COO_SAUDI_ARABIA          = 52, 
  GAL_COO_SEA_LAUNCH            = 53, 
  GAL_COO_SINGPORE_TAIWAN       = 54, 
  GAL_COO_SOUTH_AFRICA          = 55, 
  GAL_COO_SOUTH_KOREA           = 56, 
  GAL_COO_SPAIN                 = 57, 
  GAL_COO_SWEDEN                = 58, 
  GAL_COO_SWITZERLAND           = 59, 
  GAL_COO_TAIWAN                = 60, 
  GAL_COO_THAILAND              = 61, 
  GAL_COO_TURKEY                = 62, 
  GAL_COO_UNITED_ARAB_EMIRATES  = 63, 
  GAL_COO_UNITED_KINGDOM        = 64, 
  GAL_COO_USA                   = 65, 
  GAL_COO_USA_BRAZIL            = 66, 
  GAL_COO_VENEZUELA             = 67, 
  GAL_COO_VIETNAM               = 68 
} ; 
 
#define GAL_MAX_OWNERS ( GAL_COO_VIETNAM + 1 ) 
 
/* -------------------------- 
 * Launch vehicle identifiers 
 * -------------------------- 
 */ 
 
enum { 
    GAL_LV_UNKNOWN                                  = 0,   
    GAL_LV_APEX                                     = 1,   
    GAL_LV_ARIANE_1                                 = 2,   
    GAL_LV_ARIANE_2                                 = 3,   



General Astrodynamics Library – Reference Manual 
 

266 
 

    GAL_LV_ARIANE_3                                 = 4,   
    GAL_LV_ARIANE_40                                = 5,   
    GAL_LV_ARIANE_40PLUS                            = 6,   
    GAL_LV_ARIANE_40PLUS3                           = 7,   
    GAL_LV_ARIANE_42L                               = 8,   
    GAL_LV_ARIANE_42LPLUS3                          = 9,   
    GAL_LV_ARIANE_42P                               = 10,   
    GAL_LV_ARIANE_42PPLUS                           = 11,   
    GAL_LV_ARIANE_42PPLUS3                          = 12,   
    GAL_LV_ARIANE_44L                               = 13,   
    GAL_LV_ARIANE_44LPLUS                           = 14,   
    GAL_LV_ARIANE_44LPLUS3                          = 15,   
    GAL_LV_ARIANE_44LP                              = 16,   
    GAL_LV_ARIANE_44LPPLUS                          = 17,   
    GAL_LV_ARIANE_44LPPLUS3                         = 18,   
    GAL_LV_ARIANE_44P                               = 19,   
    GAL_LV_ARIANE_44PPUS3                           = 20,   
    GAL_LV_ARIANE_5                                 = 21,   
    GAL_LV_ASLV_D3                                  = 22,   
    GAL_LV_ASLV_D4                                  = 23,   
    GAL_LV_ATHENA_1_OAM                             = 24,   
    GAL_LV_ATHENA_2                                 = 25,   
    GAL_LV_ATLAS                                    = 26,   
    GAL_LV_ATLAS_1_CENTAUR                          = 27,   
    GAL_LV_ATLAS_14E                                = 28,   
    GAL_LV_ATLAS_2_CENTAUR                          = 29,   
    GAL_LV_ATLAS_28E                                = 30,   
    GAL_LV_ATLAS_2A                                 = 31,   
    GAL_LV_ATLAS_2A_CENTAUR                         = 32,   
    GAL_LV_ATLAS_2AS_CENTAUR                        = 33,   
    GAL_LV_ATLAS_34F                                = 34,   
    GAL_LV_ATLAS_35F                                = 35,   
    GAL_LV_ATLAS_3A_CENTAUR                         = 36,   
    GAL_LV_ATLAS_3B_CENTAUR                         = 37,   
    GAL_LV_ATLAS_41E                                = 38,   
    GAL_LV_ATLAS_42E                                = 39,   
    GAL_LV_ATLAS_5_CENTAUR                          = 40,   
    GAL_LV_ATLAS_5_STAR_48_B                        = 41,   
    GAL_LV_ATLAS_55E                                = 42,   
    GAL_LV_ATLAS_67F                                = 43,   
    GAL_LV_ATLAS_75E                                = 44,   
    GAL_LV_ATLAS_AGENA                              = 45,   
    GAL_LV_ATLAS_AGENA_A                            = 46,   
    GAL_LV_ATLAS_AGENA_B                            = 47,   
    GAL_LV_ATLAS_AGENA_D                            = 48,   
    GAL_LV_ATLAS_CENTAUR                            = 49,   
    GAL_LV_ATLAS_CENTAUR_2                          = 50,   
    GAL_LV_ATLAS_D                                  = 51,   
    GAL_LV_ATLAS_D_5                                = 52,   
    GAL_LV_ATLAS_D_7                                = 53,   
    GAL_LV_ATLAS_F                                  = 54,   
    GAL_LV_ATLAS_F_BURNER_2                         = 55,   
    GAL_LV_ATLAS_H                                  = 56,   
    GAL_LV_BLACK_ARROW                              = 57,   
    GAL_LV_BLOCK_DM                                 = 58,   
    GAL_LV_BLOCK_DM_SL                              = 59,   
    GAL_LV_BREEZE_KM                                = 60,   
    GAL_LV_BREEZE_M                                 = 61,   
    GAL_LV_CELESTIS_01_PEGASUS                      = 62,   
    GAL_LV_CELESTIS_02_TAURUS                       = 63,   
    GAL_LV_CELESTIS_03_TAURUS                       = 64,   
    GAL_LV_CZ_1                                     = 65,   
    GAL_LV_CZ_2                                     = 66,   
    GAL_LV_CZ_2B                                    = 67,   
    GAL_LV_CZ_2C                                    = 68,   
    GAL_LV_CZ_2D                                    = 69,   
    GAL_LV_CZ_2E                                    = 70,   
    GAL_LV_CZ_2F                                    = 71,   
    GAL_LV_CZ_3                                     = 72,   
    GAL_LV_CZ_3A                                    = 73,   
    GAL_LV_CZ_3B                                    = 74,   
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    GAL_LV_CZ_3C                                    = 75,   
    GAL_LV_CZ_4                                     = 76,   
    GAL_LV_CZ_4B                                    = 77,   
    GAL_LV_CZ_4C                                    = 78,   
    GAL_LV_CZ_5                                     = 79,   
    GAL_LV_DELTA                                    = 80,   
    GAL_LV_DELTA_1                                  = 81,   
    GAL_LV_DELTA_1_PLUSCAMEO                        = 82,   
    GAL_LV_DELTA_1_CEP_1                            = 83,   
    GAL_LV_DELTA_1_ITOS_B                           = 84,   
    GAL_LV_DELTA_2                                  = 85,   
    GAL_LV_DELTA_2_DUVE                             = 86,   
    GAL_LV_DELTA_3                                  = 87,   
    GAL_LV_DELTA_4                                  = 88,   
    GAL_LV_DELTA_4H                                 = 89,   
    GAL_LV_DIAMANT                                  = 90,   
    GAL_LV_DIAMANT_MIKA                             = 91,   
    GAL_LV_DIAMANT_B                                = 92,   
    GAL_LV_DIAMANT_B_P4                             = 93,   
    GAL_LV_DNEPR_1                                  = 94,   
    GAL_LV_FALCON_1                                 = 95,   
    GAL_LV_FREGAT                                   = 96,   
    GAL_LV_GSLV                                     = 97,   
    GAL_LV_H_1                                      = 98,   
    GAL_LV_H_1_MABES                                = 99,   
    GAL_LV_H_2                                      = 100,   
    GAL_LV_H_2A                                     = 101,   
    GAL_LV_H_2B                                     = 102,   
    GAL_LV_IABS                                     = 103,   
    GAL_LV_IRIS                                     = 104,   
    GAL_LV_IRS_P2                                   = 105,   
    GAL_LV_IUS                                      = 106,   
    GAL_LV_JUNO_II                                  = 107,   
    GAL_LV_M_3C                                     = 108,   
    GAL_LV_M_3H                                     = 109,   
    GAL_LV_M_3S                                     = 110,   
    GAL_LV_M_3S2                                    = 111,   
    GAL_LV_M_4S                                     = 112,   
    GAL_LV_M_5                                      = 113,   
    GAL_LV_MARS_96                                  = 114,   
    GAL_LV_MINOTAUR                                 = 115,   
    GAL_LV_N_1                                      = 116,   
    GAL_LV_N_2                                      = 117,   
    GAL_LV_OPTUS_B1_STAR_63F                        = 118,   
    GAL_LV_PAM_S                                    = 119,   
    GAL_LV_PEGASUS                                  = 120,   
    GAL_LV_PSLV                                     = 121,   
    GAL_LV_PSLV_1C                                  = 122,   
    GAL_LV_SAFIR_2                                  = 123,   
    GAL_LV_SATURN_1                                 = 124,   
    GAL_LV_SATURN_1B                                = 125,   
    GAL_LV_SATURN_5                                 = 126,   
    GAL_LV_SCOUT_A                                  = 127,   
    GAL_LV_SCOUT_A_1                                = 128,   
    GAL_LV_SCOUT_B                                  = 129,   
    GAL_LV_SCOUT_B_1                                = 130,   
    GAL_LV_SCOUT_D_1                                = 131,   
    GAL_LV_SCOUT_D_1_D                              = 132,   
    GAL_LV_SCOUT_E_1                                = 133,   
    GAL_LV_SCOUT_F_1                                = 134,   
    GAL_LV_SCOUT_G_1                                = 135,   
    GAL_LV_SCOUT_X_1                                = 136,   
    GAL_LV_SCOUT_X_2M                               = 137,   
    GAL_LV_SCOUT_X_3                                = 138,   
    GAL_LV_SCOUT_X_3M                               = 139,   
    GAL_LV_SCOUT_X_4                                = 140,   
    GAL_LV_SHAVIT                                   = 141,   
    GAL_LV_SL_04                                    = 142,   
    GAL_LV_SL_1                                     = 143,   
    GAL_LV_SL_11                                    = 144,   
    GAL_LV_SL_12                                    = 145,   
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    GAL_LV_SL_13                                    = 146,   
    GAL_LV_SL_14                                    = 147,   
    GAL_LV_SL_16                                    = 148,   
    GAL_LV_SL_18                                    = 149,   
    GAL_LV_SL_19                                    = 150,   
    GAL_LV_SL_21                                    = 151,   
    GAL_LV_SL_23                                    = 152,   
    GAL_LV_SL_24                                    = 153,   
    GAL_LV_SL_26                                    = 154,   
    GAL_LV_SL_3                                     = 155,   
    GAL_LV_SL_4                                     = 156,   
    GAL_LV_SL_5                                     = 157,   
    GAL_LV_SL_6                                     = 158,   
    GAL_LV_SL_7                                     = 159,   
    GAL_LV_SL_8                                     = 160,   
    GAL_LV_SL_9                                     = 161,   
    GAL_LV_SLV_3                                    = 162,   
    GAL_LV_SS_18                                    = 163,   
    GAL_LV_SSN_23                                   = 164,   
    GAL_LV_STRELA                                   = 165,   
    GAL_LV_TAURUS                                   = 166,   
    GAL_LV_THOR_ABLE                                = 167,   
    GAL_LV_THOR_ABLESTAR                            = 168,   
    GAL_LV_THOR_AGENA_B                             = 169,   
    GAL_LV_THOR_AGENA_D                             = 170,   
    GAL_LV_THOR_ALTAIR                              = 171,   
    GAL_LV_THOR_BURNER_2                            = 172,   
    GAL_LV_THOR_BURNER_2A                           = 173,   
    GAL_LV_THOR_DELTA_1                             = 174,   
    GAL_LV_THORAD_AGENA_D                           = 175,   
    GAL_LV_THORAD_DELTA_1                           = 176,   
    GAL_LV_TITAN_2                                  = 177,   
    GAL_LV_TITAN_2G                                 = 178,   
    GAL_LV_TITAN_3                                  = 179,   
    GAL_LV_TITAN_34B                                = 180,   
    GAL_LV_TITAN_34B_AGENA                          = 181,   
    GAL_LV_TITAN_34B_AGENA_D                        = 182,   
    GAL_LV_TITAN_34D                                = 183,   
    GAL_LV_TITAN_34D_AGENA_D                        = 184,   
    GAL_LV_TITAN_34D_IUS                            = 185,   
    GAL_LV_TITAN_3A_TRANSTAGE                       = 186,   
    GAL_LV_TITAN_3B_AGENA                           = 187,   
    GAL_LV_TITAN_3C                                 = 188,   
    GAL_LV_TITAN_3C_TRANSTAGE                       = 189,   
    GAL_LV_TITAN_3D                                 = 190,   
    GAL_LV_TITAN_3E                                 = 191,   
    GAL_LV_TITAN_3E_CENTAUR                         = 192,   
    GAL_LV_TITAN_4                                  = 193,   
    GAL_LV_TITAN_4_CENTAUR                          = 194,   
    GAL_LV_TITAN_401_CENTAUR                        = 195,   
    GAL_LV_TITAN_4A                                 = 196,   
    GAL_LV_TITAN_4A_CENTAUR                         = 197,   
    GAL_LV_TITAN_4B                                 = 198,   
    GAL_LV_TITAN_4B_CENTAUR                         = 199,   
    GAL_LV_TOS                                      = 200,   
    GAL_LV_VANGUARD                                 = 201   
} ; 
    
#define GAL_MAX_LAUNCHERS ( GAL_LV_VANGUARD + 1 ) 
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g a l _ l a u n c h _ i n s          [0.6] 
 
This routine inserts a launch structure into an object catalog. 

gal_launch_t * 
gal_launch_ins 
( 
  gal_objcat_t *objcat, 
  int year, 
  int number, 
  gal_status_t *status 
) ; 

 
On entry OBJCAT points to an object catalog structure created previously by 
gal_objcat_alloc. YEAR is set to the year of the launch, and NUMBER to the number of 
the launch within the year. The routine returns a pointer to the launch structure. If the 
launch is already in the catalog then a pointer is returned to the existing structure. i.e. 
no duplicates are created. If an internal error occurs then the error code 
GAL_ALLOC_FAILED is set and the routine returns NULL. The launches are stored in a 
linked list within the catalog, the order is most recent first. 
 
g a l _ l d s s r            [0.6] 
 
This routine loads an object catalog from a US Strategic Command Satellite Situation 
Report file. 

void 
gal_ldssr 
( 
  FILE         *fp, 
  gal_objcat_t *objcat, 
  gal_status_t *status 
) ; 

 
On entry FP points to an open file, and OBJCAT points to an object catalog structure 
created previously by gal_objcat_alloc. If an error occurs then the applicable error code 
is set. The Satellite Situation Report is a listing of those satellites (objects) currently in 
orbit and those which have previously orbited the Earth. Some objects are too small or 
too far from the Earth's surface to be detected; therefore, the Satellite  Situation Report 
does not include all man-made objects orbiting the Earth. The latest report can be 
downloaded from here: 
 
http://www.space-track.org/perl/login.pl 
 
g a l _ l v c o d e            [0.6] 
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This routine returns the GAL identifer code of a launch vehicle. 

int 
gal_lvcode 
( 
  char *name 
) ; 

 
On entry NAME points to an object name, the routine returns the GAL launch vehicle 
identifier associated with the object name. If the object name is unknown then the 
routine returns GAL_LV_UNKNOWN. The header file “gal_usstratcom.h” defines the 
GAL_LV_* constants. 
 
g a l _ l v n a m e            [0.6] 
 
This routine returns the name of a launch vehicle. 

char * 
gal_lvname 
( 
  int launcher, 
  char *name, 
  gal_status_t *status 
) ; 

 
On entry LAUNCHER contains the GAL identifier code of the required launch vehicle. 
On return NAME contains the name of the launch vehicle, and the routine returns a 
pointer to NAME. The header file "gal_usstratcom.h" defines the applicable GAL_LV_* 
constants. If the specified identifier code is not known to the routine then the error code 
GAL_INVALID_ID is set, and the routine returns NULL. 
 
g a l _ o b j c a t _ a l l o c          [0.6] 
 
This routine creates an empty object catalog instance. 

gal_objcat_t * 
gal_objcat_alloc 
( 
) ; 

 
If the allocation fails then NULL is returned. Object catalog instances must be de-
allocated using the gal_objcat_free routine. 
 
g a l _ o b j c a t _ e x p o r t         [0.6] 
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This routine exports the contents of an object catalog structure to a fixed format ASCII 
file. 

void 
gal_objcat_export 
( 
  FILE *fp, 
  gal_objcat_t *objcat, 
  gal_status_t *status 
) ; 

 
On entry FP points to an open file, and OBJCAT points to an object catalog instance. 
The routine exports the contents of the object catalog to a fixed format ASCII file. The 
sort order is most recent launch first, then piece of launch. The format is as follows: 
 
%-11s  International designation 
%8i  US Strategic Command Object Number 
%-40s  Object name 
%8i  GAL Launch Vehicle Identifier Code 
%8i  GAL Owner Identifier Code 
%8i  Payload flag; 1 means payload, 0 means debris 
%8i  Status code 
%20.12e Launch date part 1 (JD UTC) 
%20.12e Launch date part 2 (JD UTC) 
%20.12e Decay date part 1 (JD UTC) 
%20.12e Decay date part 2 (JD UTC) 
%20.12e Period 
%20.12e Inclination 
%20.12e Apogee 
%20.12e Perigee 
%20.12e RADAR cross section 
 
Constants for the identifier codes are defined in “gal_usstratcom.h”. 
 
g a l _ o b j c a t _ f r e e          [0.6] 
 
This routine frees an object catalog instance. 

void 
gal_objcat_free 
( 
  gal_objcat_t *objcat 
) ;  

 
On entry OBJCAT points to the object catalog instance to de-allocate. 
 
g a l _ o b j c a t _ i n i t          [0.6] 
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This routine initializes an object catalog instance. 

void 
gal_objcat_free 
( 
  gal_objcat_t *objcat 
) ;  

 
On entry OBJCAT points to the object catalog instance to initialize. If the object catalog 
contains any launches, piece of launches, or TLEs then these are removed and de-
allocated. The object catalog instance is returned to the same state as it was when 
created by gal_objcat_alloc. 
 
g a l _ o b j o w n e r _ c o d e         [0.6] 
 
Returns the code of a catalog object's owner organization or country for the specified 
US Stategic Command abbreviation code. 

int 
gal_objowner_code 
( 
  char *owner 
) ;  

 
On entry OWNER contains a USSTRATCOM object owner abbreviation code. The 
routine returns the GAL Object Owner Code. If the OWNER abbrevation is unknown to 
the routine then GAL_UNKNOWN_OWNER is returned. The header file 
“gal_usstratcom.h” contains the GAL_COO_* constants. 
 
g a l _ o b j o w n e r _ n a m e         [0.6] 
 
Returns the name of a catalog object's owner organization or country for the specified 
GAL Object Owner Code. 

char * 
gal_objowner_name 
( 
  int owner, 
  char *name, 
  gal_status_t *status 
) ; 

 
On entry OWNER contains the GAL Object Owner Code for the required country or 
organization. The routine returns a pointer to NAME which now contains the owner 
name. The header file "gal_usstratcom.h" defines the applicable GAL_COO_* 
constants. If the specified identifier code is not known to the routine then the error code 
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GAL_INVALID_ID is set, and the routine returns NULL. 
 
g a l _ o s c 2 m e a n           [0.6] 
 
This routine converts osculating Keplerian elements to mean elements suitable for use 
with the SGP4 orbit propagator. 

void 
gal_osc2mean 
( 
  double epoch1, 
  double epoch2, 
  double osc[6], 
  gal_gm_t *gm, 
  double mean[6], 
  gal_status_t *status 
) ; 

 
On entry EPOCH1 and EPOCH2 contain the UTC date in standard SOFA two-piece 
format. OSC contains the osculating elements; the elements are stored as follows: 
 
  [0] - Argument of perigee ( degrees ) 
   [1] - Right ascension of ascending node ( degrees ) 
   [2] - Inclination ( degrees ) 
   [3] - Mean motion ( rev / day ) 
   [4] - Eccentricity 
  [5] - Mean anomaly ( degrees )  
 
On return MEAN contains the mean elements. 
  
The conversion process will not always converge to a solution. If it does not converge 
then the error code GAL_NO_CONVERGENCE is set. Testing against the complete 
unclassified catalog (as of January 2009) it was found that out of 11766 objects, 11103 
(~94%) converged and matched the NORAD values exactly, 9 (~0.07%) objects 
converged but did not exactly match the NORAD values, and 654 (~5%) objects failed 
to converge. Propagating the 9 objects that converged but do not match NORAD over a 
10 day period, shows that the velocities match within 1 m/s to those NORAD keps. x 
and y positions match within 1 km, and the worst difference value for z position is 11km 
after 10 days.  
 
g a l _ p I e c e _ i n s           [0.6] 
 
This routine inserts a piece of launch structure into an object catalog. 

gal_piece_t * 
gal_piece_ins 
( 
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  gal_objcat_t *objcat, 
  int satnum, 
  char *intldesg, 
  int *year, 
  int *number, 
  gal_status_t *status 
) ; 

 
On entry OBJCAT points to an object catalog structure created previously by 
gal_objcat_alloc, SATNUM contains the US Strategic Command Object Number, and 
INTLDESG contains the international designation (COSPAR/WDC-A-R&S). On return 
YEAR is set to the year of the launch, and NUMBER to the number of the launch within 
the year. The routine returns a pointer to the piece of launch structure. If the piece of 
launch is already in the catalog then a pointer is returned to the existing structure. i.e. 
no duplicates are created. If an internal error occurs then the error code 
GAL_ALLOC_FAILED is set and the routine returns NULL. The piece of launches are 
stored in a linked list within the catalog, the piece order is “A”, “B”, … “AA”, “AB”, … 
“AAA”, ... The international Designator must be in the format: 
 
  "YYYY-NNNPPP" e.g. "1997-051VX " 
 
 
g a l _ s e t t l e            [0.6] 
 
This routine sets up a TLE structure from given mean Keplerian elememts suitable for 
use with the SGP4 propagator. 

void 
gal_settle 
( 
  double epoch1, 
  double epoch2, 
  double mean[6], 
  gal_tle_t *tle, 
  gal_status_t *status 
) ; 

 
On entry EPOCH1 and EPOCH2 contain a UTC date in standard SOFA two-piece 
format. MEAN contains the keplerian elements stored as follows: 
 
  [0] - Argument of perigee ( degrees ) 
   [1] - Right ascension of ascending node ( degrees ) 
   [2] - Inclination ( degrees ) 
   [3] - Mean motion ( rev / day ) 
   [4] - Eccentricity 
  [5] - Mean anomaly ( degrees )  
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On return TLE is populated suitably for initializing the SGP4 propagator. 
 
g a l _ s g p 4            [0.2] 
 
This routine is the SGP4 propagation model from US Strategic Command. 

void 
gal_sgp4 
( 
  gal_sgp4_t *sgp4, 
  double date1, 
  double date2, 
  double pv[2][3], 
  gal_status_t *status 
) ; 

On entry the parameters are set as follows: 
 
 SGP4    Initialized structure from gal_sgp4init call. 
 DATE1    Date part 1 (UTC)   
 DATE2       Date part 2 (UTC)  
 
On return the variables are set as follows: 
 
 SGP4    Common values for subsequent calls 
 PV        Geocentric position/velocity (meters, meters per second)  
    True Equator Mean Equinox (TEME)  
 
If an error occurs then the applicable error code is set. This is an updated and combined 
version of SGP4 and SDP4, which were originally published separately in Spacetrack 
Report #3. This version follows the methodology from the AIAA paper (2006) describing 
the history and development of the code. This routine is a translation from c++ to c of 
David Vallado's SGP4UNIT.sgp4 routine (2007 November 16).  
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
 
Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, 
Kelso, T.S., AIAA 2006-6753 
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 g a l _ s g p 4 g m             [0.2] 
 
This routine gets the gravity model parameters required by SGP4 

void 
gal_sgp4gm 
( 
  gal_gm_t *gm, 
  double *tumin, 
  double *mu, 
  double *re, 
  double *xke, 
  double *j2, 
  double *j3, 
  double *j4, 
  double *j3oj2, 
  gal_status_t *status 
 )  ; 

On entry GM points to the gravity model structure. On return the variables are set as 
follows: 
 
 TUMIN   One time unit (minutes) 
 MU     Earth gravitational parameter (meters3 per second2) 
 RE      Radius of the Earth (kilometers) 
 XKE        Reciprocal of tumin 
 J2       Un-normalized second zonal harmonic value  
 J3      Un-normalized third  zonal harmonic value  
 J4     Un-normalized fourth zonal harmonic value 
 J3OJ2  J3 divided by J2 
 
If an error occurs then the applicable error code is set. 
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
 
Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, 
Kelso, T.S., AIAA 2006-6753 
 
 g a l _ s g p 4 i n i t            [0.2]  
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This routine initializes the variables for gal_sgp4. 

void  
gal_sgp4init 
( 
  gal_gm_t *gm, 
  gal_tle_t *tle, 
  gal_sgp4_t *sgp4, 
  gal_status_t *status 
) ;  

 
On entry GM points to the gravity model structure, and TLE points to the two-line-
elements parameters structure. On return SGP4 is initialized to its start state. If an error 
occurs then the applicable error code is set. This routine is based on a translation from 
c++ to c of David Vallado's SGP4UNIT.sgp4init routine (2007 November 16).  
 
References: 
 
NORAD Spacetrack Report #3 1980, Hoots, Roehrich  
 
NORAD Spacetrack Report #6 1986, Hoots  
 
Hoots, Schumacher and Glover 2004 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, 
Kelso, T.S., AIAA 2006-6753 
 
 g a l _ s g p 4 r s             [0.5] 
 
This routine computes the rise and set parameters for an Earth orbiting spacecraft and 
terrestrial observer using the Ernandes algorithm and the SGP4 propagator 

 
void 
gal_sgp4rs 
( 
  double utc1, 
  double utc2, 
  double latitude, 
  double longitude, 
  double height, 
  double minel, 
  double timefwd, 
  double gm, 
  double re, 
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  double inf, 
  gal_sgp4_t *sgp4, 
  double pass[3][3], 
  gal_status_t *status  
) ; 

 
On entry the parameters are set as follows: 
 
 UTC1         Date part 1 (UTC)  
 UTC2          Date part 2 (UTC)  
 LATITUDE       Observer latitude (radians) 
 LONGITUDE     Observer longitude (radians) 
 HEIGHT         Observer height ASL (meters) 
 MINEL         Minimum elevation (radians) 
 TIMEFWD       Max time forward (days) 
 GM           Gravitational parameter (meters3 per second2) 
 RE              Earth equatorial radius (meters) 
 INF             Earth inverse flattening factor 
 SGP4      Initialized SGP4 structure 
 
On return pass contains the AOS, CUL, & LOS details. UTC1 and UTC2 contain a 
Coordinated Universal Time (UTC) Julian Date in standard SOFA two-piece format. If 
the satellite never sets then the warning code GAL_NEVER_SETS is set. If an error 
occurs then the applicable error code is set. The rise and set parameters are the time, 
elevation, and azimuth for Acquisition of Signal (AOS), Loss of Signal (LOS), and 
Culmination (CUL) (maximum elevation). All angles are in radians. On return the array 
PASS is populated as follows: 
 
 PASS[0][0]  AOS JD (UTC)  
 PASS[0][1]  AOS Elevation  
 PASS[0][2]  AOS Azimuth  
 PASS[1][0]  CUL JD (UTC)  
  PASS[1][1]  CUL Elevation  
  PASS[1][2]  CUL Azimuth  
 PASS[2][0]  LOS JD (UTC) 
 PASS[2][1]  LOS Elevation  
  PASS[2][2]  LOS Azimuth  
 
This routine is based upon the rise/set algorithm devised and developed by Ernandes.  
    
References: 
 
Kenneth J. Ernandes, private communication, December 17, 1997 
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 g a l _ s g p 4 t . h             [0.2] 
 
This header file defines the SGP4 data structure that is used to store interim results 
between successive calls to gal_sgp4.  

typedef struct { 
 
/* 
 * Internal Control Variables 
 */ 
  
  int    error          ; 
  char   init           ; 
  char   method         ; 
 
/* 
 * TLE Parameters 
 */ 
  
  int    satnum         ;  /* NORAD Catalog Number                        */ 
  char   classification ;  /* Security Classification                     */ 
  char   intldesg[10]   ;  /* International Designator (COSPAR/WDC-A-R&S) */ 
  int    epochyr        ;  /* Epoch Year                                  */ 
  double epochdays      ;  /* Epoch Day of Year (plus Fraction)           */ 
  double epoch          ;  /* Epoch Date ( days since 1950-01-01 0h )     */  
  double ndot           ;  /* Mean motion derivative                      */ 
  double nddot          ;  /* Mean motion second derivative               */ 
  double bstar          ;  /* Bstar / Drag Term                           */ 
  int    ephtype        ;  /* Ephemeris Type                              */ 
  int    setnum         ;  /* Element set number                          */ 
  double inclo          ;  /* Inclination (rad)                           */ 
  double nodeo          ;  /* Right Ascension of Ascending Node (rad)     */ 
  double ecco           ;  /* Eccentricity                                */ 
  double argpo          ;  /* Argument of Perigee (rad)                   */ 
  double mo             ;  /* Mean Anomaly (rad)                          */ 
  double no             ;  /* Mean Motion ( rad/min )                     */ 
  int    revnum         ;  /* Epoch Revolution Number                     */ 
 
  double a              ;  
  double altp           ;  
  double alta           ;  
  double jdepoch1       ;  /* Julian Date of Epoch Part 1                 */ 
  double jdepoch2       ;  /* Julian Date of Epoch Part 2                 */ 
  double rcse           ;  
  int    epochtynumrev  ; 
 
/* 
 * Gravity Model Parameters 
 */ 
  
  double tumin          ;  /* Minutes in one time unit                    */ 
  double mu             ;  /* Earth gravitational parameter               */ 
  double radiusearthkm  ;  /* Radius of the earth in kilometers                   
*/ 
  double xke            ;  /* Reciprocal of tumin                         */ 
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  double j2             ;  /* Un-normalized second zonal harmonic value   */ 
  double j3             ;  /* Un-normalized third  zonal harmonic value   */ 
  double j4             ;  /* Un-normalized fourth zonal harmonic value   */ 
  double j3oj2          ;  /* j3 divided by j2                            */ 
  double vkmpersec      ;   
   
/*  
 * Near Earth  
 */ 
  
  int    isimp          ; 
  double aycof          ;  
  double con41          ;  
  double cc1            ;   
  double cc4            ;  
  double cc5            ;  
  double d2             ;  
  double d3             ;  
  double d4             ; 
  double delmo          ;  
  double eta            ;  
  double argpdot        ;  
  double omgcof         ;  
  double sinmao         ;  
  double t              ;  
  double t2cof          ;  
  double t3cof          ; 
  double t4cof          ;  
  double t5cof          ;  
  double x1mth2         ;  
  double x7thm1         ;  
  double mdot           ;  
  double nodedot        ;  
  double xlcof          ;  
  double xmcof          ; 
  double nodecf         ; 
 
/*  
 * Deep Space  
 */ 
  
  int    irez           ; 
  double d2201          ;  
  double d2211          ;  
  double d3210          ;  
  double d3222          ;  
  double d4410          ;  
  double d4422          ;  
  double d5220          ;  
  double d5232          ; 
  double d5421          ;  
  double d5433          ;  
  double dedt           ;  
  double del1           ;  
  double del2           ;  
  double del3           ;  
  double didt           ;  
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  double dmdt           ; 
  double dnodt          ;  
  double domdt          ;  
  double e3             ;  
  double ee2            ;  
  double peo            ;  
  double pgho           ;  
  double pho            ;  
  double pinco          ; 
  double plo            ;  
  double se2            ;  
  double se3            ;  
  double sgh2           ;  
  double sgh3           ;  
  double sgh4           ;  
  double sh2            ;  
  double sh3            ; 
  double si2            ;  
  double si3            ;  
  double sl2            ;  
  double sl3            ;  
  double sl4            ;  
  double gsto           ;  
  double xfact          ;  
  double xgh2           ; 
  double xgh3           ;  
  double xgh4           ;  
  double xh2            ;  
  double xh3            ;  
  double xi2            ;  
  double xi3            ;  
  double xl2            ;  
  double xl3            ; 
  double xl4            ;  
  double xlamo          ;  
  double zmol           ;  
  double zmos           ;  
  double atime          ;  
  double xli            ;  
  double xni            ; 
 
/* 
 * The following parameters are for the use of the gal_sgp4rs routine 
 */ 
  
  double time           ; /* UTC JD of last computation */ 
  double pv[2][3]       ; /* pv-vector ( m, m/s )       */ 
  double pos            ; /* modulus of p-vector        */ 
  double vel            ; /* modulus of v-vector        */ 
 
} gal_sgp4_t ; 

 
References: 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, 
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Kelso, T.S., AIAA 2006-6753 
 
 g a l _ t l e c h k s u m            [0.2] 
 
This routine calculates the US Strategic Command two line element (TLE) card 
checksum character 

char 
gal_tlechksum 
( 
  char *card 
) ; 

On entry card points to the string containing the line for which the checksum is required. 
The routine returns the checksum character. The checksum is modulo 10, letters, 
blanks, periods, plus signs equal 0; minus signs equal 1. 
 
 g a l _ t l e d e c             [0.2] 
 
This routine decodes the packed two line element (TLE) cards into the tle structure 

void 
gal_tledec 
( 
  char *card1, 
  char *card2, 
  gal_tle_t *tle, 
  gal_status_t *status 
) ; 

On entry CARD1 and CARD2 point to the first and second TLE lines respectively. On 
return the structure pointed to by TLE contains the decoded TLE parameters. If an error 
occurs then the applicable error code is set. 

 
References: 
 
Revisiting Spacetrack Report #3, Vallado, David, Crawford, Paul, Hujsak, Richard, 
Kelso, T.S., AIAA 2006-6753 
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Chapter 12 – Keplerian Propagation 
The routines detailed in this chapter are defined in the gal_kepler.h header file. 
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 g a l _ e a 2 t a            [0.5] 
 
This routine calculates the true anomaly from eccentric anomaly. 

double 
gal_ea2ta 
( 
  double ea, 
  double ecc 
) ; 

 
On entry EA contains the eccentric anomaly (radians), and ECC the eccentricity. The 
routine returns the true anomaly (radians). This routine is valid for elliptical orbits only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Page 85 
 
 g a l _ h a 2 t a            [0.5] 
 
This routine calculates the true anomaly from hyperbolic anomaly. 

double 
gal_ha2ta 
( 
  double ha, 
  double ecc 
) ; 

On entry HA contains the hyperbolic anomaly (radians), and ECC the eccentricity. The 
routine returns the true anomaly (radians). This routine is valid for hyperbolic orbits only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Page 85 
 
g a l _ k e p 2 p v           [0.4] 
 
This routine computes position and velocity from the classical orbital elements. 

void 
gal_kep2pv 
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( 
  double gm, 
  double ecc,  
  double raan, 
  double argp, 
  double inc, 
  double p, 
  double v, 
  double truelon, 
  double u, 
  double lonper, 
  double pv[2][3] 
) ; 

On entry the parameters are set as follows, if any parameter is unknown then the 
constant GAL_UNDEFINED (defined in gal_math.h) should be passed as parameter: 
 

GM     Gravitational parameter (meters3 per second2) 
ECC     Eccentricity 
RAAN   Longitude of the ascending mode (radians)  
ARGP   Argument of Pericenter (radians)  
INC     Inclination (radians) 
P      Semi-Latus Rectum (meters) 
V        True Anomaly (radians) 
TRUELON    True Longitude (radians) 
U          Argument of Latitude (radians) 
LONPER     True Longitude of Periapsis (radians) 

 
On return PV contains the position and velocity vectors (meters, meters per second). 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 118-122 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32 
 
Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 
1991, Pages 149-157 
 
 g a l _ m a 2 e a           [0.5] 
 
This routine calculates the eccentric anomaly from mean anomaly. 

double 
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gal_ma2ea 
( 
  double ma, 
  double ecc 
) ; 

 
On entry MA contains the mean anomaly (radians), and ECC the eccentricity. The 
routine returns the eccentric anomaly (radians). This routine is valid for elliptical orbits 
only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 72-75 
   
 g a l _ m a 2 h a           [0.5] 
 
This routine calculates the hyperbolic anomaly from mean anomaly. 

double 
gal_ma2ha 
( 
  double ma, 
  double ecc 
) ; 

 
On entry MA contains the mean anomaly (radians), and ECC the eccentricity. The 
routine returns the hyperbolic anomaly (radians). This routine is valid for hyperbolic 
orbits only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 78-80 
 
g a l _ p v 2 k e p           [0.4] 
 
This routine computes the classical orbital elements from position and velocity. 

void 
gal_pv2kep 
( 
  double gm, 
  double pv[2][3], 
  double *sma, 
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  double *ecc,  
  double *raan, 
  double *argp, 
  double *ma, 
  double *inc, 
  double *p, 
  double *v, 
  double *truelon, 
  double *u, 
  double *lonper 
) ; 

On entry GM contains the gravitational parameter (meters3 per second2), and PV the 
position and velocity vectors (meters, meters per second). On return the variables are 
set as follows, if any result cannot be calculated then GAL_UNDEFINED (defined in 
gal_math.h) is returned: 
  

SMA    Semi-Major Axis (meters) 
ECC    Eccentricity 
RAAN   Longitude of the ascending mode (radians)  
ARGP  Argument of Pericenter (radians)  
MA      Mean Anomaly (radians) 
INC      Inclination (radians) 
P       Semi-Latus Rectum (meters) 
V       True Anomaly (radians) 
TRUELON    True Longitude (radians) 
U         Argument of Latitude (radians) 
LONPER    True Longitude of Periapsis (radians) 

 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 118-122 
 
Satellite Orbits, Oliver Montenbruck, Eberhard Gill, Springer 2005, Pages 28-32 
 
Methods of Orbit Determination for the Micro Computer, Boulet, Dan, Willmann-Bell 
1991, Pages 149-157 
 
 g a l _ p v t 2 p v           [0.4] 
 
This routine calculates position and velocity from starting position and velocity at given 
time using Universal variables. This routine is valid for all orbit types. 

void 
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gal_pvt2pv 
( 
  double gm, 
  double pv0[2][3], 
  double ed0, 
  double ed1,  
  double tt0, 
  double tt1, 
  double pv[2][3] 
) ; 

 
On entry the variables are set as follows: 
 

GM   Gravitational parameter (meters3 per second2) 
PV0    Epoch position & velocity vectors (meters, meters per second) 
ED0, ED1  Epoch date (TT) 
TT0, TT1    Required date (TT)               

 
Both Terrestrial Time (TT) Julian Dates are in standard SOFA two-piece format. On 
return PV contains the position and velocity vectors (meters, meters per second). The 
iteration method is the Laguerre's method described in Chobotov page 58. It was 
selected as it converged faster than the Newton-Raphson method described by Vallado, 
and the choice of initial value is simpler. The calculations of SN and CN are from 
Vallado as they are simpler to implement. 
 
References: 
 
Orbital Mechanics Third Edition, AIAA Education Series, Chobotov, Vladimir A. Ed., 
Pages 55-61 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 101-103 
 
 g a l _ t 2 p a            [0.5] 
 
This routine calculates the parabolic anomaly from time dt. 

double 
gal_t2pa 
  ( 
    double gm, 
    double dt, 
    double p 
  ) ; 
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On entry the variables are set as follows: 
 

gm  Gravitational parameter (meters3 per second2) 
dt    Time since periapsis (seconds) 
p    Semi parameter (meters) 

 
The routine returns the parabolic anomaly (radians). This routine is valid for parabolic 
trajectories only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Pages 75-78 
 
 g a l _ t a 2 e a            [0.5] 
 
This routine calculates the eccentric anomaly from true anomaly. 

double 
gal_ta2ea 
  ( 
    double ta, 
    double ecc 
  ) ; 

 
On entry ta contains the true anomaly (radians), and ecc the eccentricity. The routine 
returns the eccentric anomaly (radians). This routine is valid for elliptical orbits only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Page 85 
 
 g a l _ t a 2 h a            [0.5] 
 
This routine calculates the hyperbolic anomaly from true anomaly. 

 
double 
gal_ta2ha 
  ( 
    double ta, 
    double ecc 
  ) ; 
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On entry ta contains the true anomaly (radians), and ecc the eccentricity. The routine 
returns the hyperbolic anomaly (radians). This routine is valid for hyperbolic orbits only. 
 
References: 
 
Fundamentals of Astrodynamics and Applications, Vallado, David A. Second Edition 
2004, Page 85 
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Chapter 13 - Ephemerides 
The routines detailed in this chapter are defined in the gal_ephemerides.h header file. 
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g a l _ b e a p v 8 7          [0.4] 
 
Earth Barycentric position and velocity.   

void  
gal_beapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;    

On entry the parameters are set as follows: 
 

tt1   Epoch part 1 (TT)  
tt2    Epoch part 2 (TT)  
ref   Reference frame 

0 = dynamical equinox and ecliptic J2000. 
1 = FK5 (VSOP87) 
 

On return pv contains the position and velocity vectors (AU, AU per day). 
 

pv[0][0]  x      
pv[0][1]  y       
pv[0][2]  z       

 
pv[1][0]  xdot    
pv[1][1]  ydot    
pv[1][2]  zdot    

 
tt1 and tt2 contain a Terrestrial Time (TT) Julian Date in standard SOFA two-piece 
format. The vectors are Barycentric with respect to the FK5 Reference Frame. The 
routine is a solution from the planetary theory VSOP87. The main version of VSOP87 is 
similar to the previous theory VSOP82. In the both cases the constants of integration 
have been determined by fitting to the numerical integration DE200 of the Jet Propulsion 
Laboratory. The differences between VSOP87 and VSOP82 mainly improve the validity 
time-span for Mercury, Venus, Earth-Moon Barycenter and Mars with a precision of 1" 
for 4000 years before and after J2000. The same precision is ensured for Jupiter and 
Saturn over 2000 years and for Uranus and Neptune over 6000 years before and after 
J2000. The size of the relative precision p0 of VSOP87 solutions is given hereunder. 
That means that the actual precision is close by p0*a0 AU for the distances (a0 being 
the semi-major axis) and close by p0 radian for the other variables. By derivation with 
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respect to time expressed in day (d), the precision of the velocities is close by p0*a0 AU 
per day for the distances and close by p0 radians per day for the other variables. 
     

Body      a0 (au)       p0 (10-8) 
Mercury     0.3871    0.6 
Venus    0.7233  2.5 
Earth     1.0000    2.5 
Mars      1.5237  10.0 
Jupiter    5.2026    35.0 
Saturn      9.5547   70.0 
Uranus     19.2181   8.0 
Neptune   30.1096   42.0 

   
References: 
 
Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309. 
 
 g a l _ b e b p v 8 7          [0.4] 
 
Earth-Moon Barycenter Barycentric position and velocity.   

void  
gal_bebpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
 
 g a l _ b j u p v 8 7          [0.4] 
 
Jupiter Barycentric position and velocity.    

void  
gal_bjupv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   
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See gal_beapv87 for details. 
 
 g a l _ b m a p v 8 7          [0.4] 
 
Mars Barycentric position and velocity.    

void  
gal_bmapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
 
 g a l _ b m e p v 8 7          [0.4] 
 
Mercury Barycentric position and velocity.    

void  
gal_bmepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
 
 g a l _ b n e p v 8 7          [0.4] 
 
Neptune Barycentric position and velocity.    

void  
gal_bnepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   
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See gal_beapv87 for details. 
 
 g a l _ b p l p v 8 7          [0.4] 
 
Pluto Barycentric position and velocity.    

void  
gal_bplpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87, and gal_hplpv87 for details.  
 
 g a l _ b s a p v 8 7          [0.4] 
 
Saturn Barycentric position and velocity.    

void  
gal_bsapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details.  
 
 g a l _ b s u p v 8 7          [0.4] 
 
Sun Barycentric position and velocity.    

void  
gal_bsupv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
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 g a l _ b u r p v 8 7          [0.4] 
 
Uranus Barycentric position and velocity.    

void  
gal_burpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
 
 g a l _ b v e p v 8 7          [0.4] 
 
Venus Barycentric position and velocity.    

void  
gal_bvepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_beapv87 for details. 
 
 g a l _ e p v 0 0          [0.1]  
 
Earth position and velocity, heliocentric and Barycentric, with respect to the International 
Celestial Reference Frame.   

int   
gal_epv00   
 (   
    double epoch1,   
    double epoch2,   
    double pvh[2][3],   
    double pvb[2][3] 
 ) ;    

On entry epoch1+epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date in 
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standard SOFA two-piece format. On return pvh contains the heliocentric Earth position 
and velocity, and pvb the Barycentric Earth position and velocity (AU, AU per day). The 
routine returns one of the following status codes: 
 

0 success 
1 warning: date outside 1900-2100CE 

  
The vectors are with respect to the International Celestial Reference Frame. The routine 
is a simplified solution from the planetary theory VSOP2000 (X. Moisson, P. Bretagnon, 
2001, Celestial Mechanics & Dynamical Astronomy, 80, 3/4, 205-213) and is an 
adaptation of original Fortran code supplied by P. Bretagnon (private communication, 
2000). Comparisons over the time span 1900-2100 with this simplified solution and the 
JPL DE405 ephemeris give the following results:   
 
                        RMS max   

Heliocentric:   
 

position error     3.7    11.2   kilometers   
velocity error     1.4   5.0    millimeters per second   

 
Barycentric:   

 
position error     4.6    13.4  kilometers   
velocity error     1.4   4.9    millimeters per second   

  
 g a l _ g m o p v 0 2           [0.3] 
 
Moon geocentric position and velocity.   

int   
gal_gmopv02   
 (   
    double epoch1,   
    double epoch2,  
    int icor,  
    double pv[2][3]  
 ) ;   

 
On entry the parameters are set as follows: 
 

epoch1 Epoch part 1 (TDB)  
epoch2 Epoch part 2 (TDB)  
icor    correction type 

0: the constants are fitted to LLR observations provided from 1970 
to 2001; it is the default value; 
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1: the constants are fitted to DE405 ephemeris over one also 
additive corrections to the secular coefficients. 

 
On return pv contains the geocentric Moon position & velocity (meters, meters per 
second). The routine returns one of the following status codes: 
 
 0  success 

1   warning: date outside 1940-2060 CE  
  

epoch1 and epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date is in 
standard SOFA two-piece format. The algorithm used is the Lunar Solution ELP/MPP02. 
  
References: 
 
Lunar Solution ELP version ELP/MPP02, Jean Chapront and Gerard Francou, 
Observatoire de Paris -SYRTE department - UMR 8630/CNRS, October 2002   
  
 g a l _ g s u p v 0 0           [0.3] 
 
Sun position and velocity, with respect to the Geocentric Celestial Reference Frame 
(GCRF).   

int   
gal_gsupv00   
 (   
    double epoch1,   
    double epoch2,   
    double pv[2][3]  
 ) ;   

On entry epoch1 and epoch2 contain the Barycentric Dynamical Time (TDB) Julian Date 
in standard SOFA two-piece format. On return pv contains the geocentric Sun position & 
velocity (meters, meters per second). The routine returns one of the following status 
codes: 
 

0 success 
1 warning: date outside 1900-2100CE range 

 
References: 
 
IERS Technical Note 32, IERS Conventions 2003, Dennis D. McCarthy et al., Page 12    
 
 g a l _ h e a p v 8 7          [0.4] 
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Earth heliocentric position and velocity, with respect to the FK5 Reference Frame.   

void  
gal_heapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

On entry the parameters are set as follows: 
 

tt1   Epoch part 1 (TT)  
tt2    Epoch part 2 (TT)  
ref   Reference frame 

0 dynamical equinox and ecliptic J2000. 
1  FK5 (VSOP87) 
 

On return pv contains the position and velocity vectors (AU, AU per day). 
 

pv[0][0]  x      
pv[0][1]  y       
pv[0][2]  z       

 
pv[1][0]  xdot    
pv[1][1]  ydot    
pv[1][2]  zdot    

 
tt1 and tt2 contain the Terrestrial Time Julian Date is standard SOFA two-piece format. 
The vectors are heliocentric with respect to the FK5 Reference Frame. The routine is a 
solution from the planetary theory VSOP87. The main version of VSOP87 is similar to 
the previous theory VSOP82. In the both cases the constants of integration have been 
determined by fitting to the numerical integration DE200 of the Jet Propulsion 
Laboratory. The differences between VSOP87 and VSOP82 mainly improve the validity 
time-span for Mercury, Venus, Earth-Moon Barycenter and Mars with a precision of 1" 
for 4000 years before and after J2000. The same precision is ensured for Jupiter and 
Saturn over 2000 years and for Uranus and Neptune over 6000 years before and after 
J2000. The size of the relative precision p0 of VSOP87 solutions is given hereunder. 
That means that the actual precision is close by p0*a0 AU for the distances (a0 being 
the semi-major axis) and close by p0 radian for the other variables. By derivation with 
respect to time expressed in day (d), the precision of the velocities is close by p0*a0 AU 
per day for the distances and close by p0 radians per day for the other variables. 
     

Body      a0 (AU)      p0 (10-8) 
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Mercury     0.3871    0.6 
Venus    0.7233  2.5 
Earth     1.0000    2.5 
Mars      1.5237  10.0 
Jupiter    5.2026    35.0 
Saturn      9.5547   70.0 
Uranus     19.2181   8.0 
Neptune   30.1096   42.0 

   
References: 
 
Bretagnon P., Francou G., : 1988, Astronomy & Astrophysics, 202, 309. 
 
 g a l _ h e b p v 8 7          [0.4] 
 
Earth-Moon Barycenter heliocentric position and velocity.   

void  
gal_hebpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details.  
 
 g a l _ h j u p v 8 7          [0.4] 
 
Jupiter heliocentric position and velocity.   

void  
gal_hjupv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

 
See gal_heapv87 for details.  
 
 g a l _ h m a p v 8 7          [0.4] 
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Mars heliocentric position and velocity.   

void  
gal_hmapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details.  
 
 g a l _ h m e p v 8 7          [0.4] 
 
Mercury heliocentric position and velocity.   

void  
gal_hmepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details. 
 
 g a l _ h n e p v 8 7          [0.4] 
 
Neptune heliocentric position and velocity.   

void  
gal_hnepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details.  
 
 g a l _ h p l p v 8 7          [0.4] 
 
Pluto heliocentric position and velocity.   
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void  
gal_hplpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

 On entry the parameters are set as follows: 
 

tt1   epoch part 1 (TDB)  
tt2  epoch part 2 (TDB) 
ref   Reference frame 

0 dynamical equinox and ecliptic J2000. 
1  FK5 (VSOP87) 
 

tt1 and tt2 contain a Barycentric Dynamical Time Julian Date in standard SOFA two-
piece format. On return pv contains the position and velocity vectors (AU, AU per day). 
 

pv[0][0]  x      
pv[0][1]  y       
pv[0][2]  z       

 
pv[1][0]  xdot    
pv[1][1]  ydot    
pv[1][2]  zdot  
   

The tables of Pluto were constructed by J. Chapront (BDL) with a method of 
approximation using frequency analysis as described in the referenced paper. 
 
This representation uses the result of numerical integration DE200 of Jet Propulsion 
Laboratory as a source. 
 
The interval of validity is 146120 days, from January 1 1700 0h JD2341972.5 to January 
24 2100 0h JD2488092.5 The tables contain series which represent the heliocentric 
rectangular coordinates of Pluto as functions of time. The reference frame is defined 
with dynamical equinox and equator J2000 (DE200). The time scale is Barycentric 
Dynamical Time (TDB). 
 
References: 
 
Representation of planetary ephemerides by frequency analysis. Application to the five 
outer planets. Astronomy & Astrophysics Supplement Series, 109, 191 (1995) 
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Standish E. M., 1990, The observational basis for JPL's DE200, the planetary 
ephemerides of the Astronomical Almanac. Astronomy & Astrophysics, 233, 252 
 
 g a l _ h s a p v 8 7          [0.4] 
 
Saturn heliocentric position and velocity.   

void  
gal_hsapv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details.  
 
 g a l _ h u r p v 8 7          [0.4] 
 
Uranus heliocentric position and velocity.   

void  
gal_hurpv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   

See gal_heapv87 for details.  
 
 g a l _ h v e p v 8 7          [0.4] 
 
Venus heliocentric position and velocity.   

void  
gal_hvepv87   
 (   
    double tt1,   
    double tt2,  
    int ref,  
    double pv[2][3] 
 ) ;   



General Astrodynamics Library – Reference Manual 
 

308 
 

See gal_heapv87 for details.  
 
 g a l _ p l a n 9 4           [0.1] 
 
Approximate heliocentric position and velocity of a nominated major planet: Mercury, 
Venus, Earth-Moon Barycenter, Mars, Jupiter, Saturn, Uranus or Neptune.   

 
int   
gal_plan94   
 (   
    double date1,   
    double date2,   
    int np,   
    double pv[2][3] 
 ) ;   

 
On entry date1 and date2 contain the Barycentric Dynamical Time (TDB) Julian Date in 
standard SOFA two-piece format, np contains the number of the required planet 
(1=Mercury, 2=Venus, 3=EMB ... 8=Neptune). This routine uses non-GAL standard 
constants for the planetʼs ID. This is for compatibility with the SOFA library. However, it 
is planned for this to be changed in a future release of GAL, so that the planet IDs 
match those used by the other GAL routines. On return pv contains the planetʼs 
heliocentric J2000 position and velocity vectors (AU, AU per day). The routine returns 
one of the following status codes: 
 

-1   illegal NP (outside 1-8)   
0   success   
+1   warning: date outside 1000-3000 CE   
+2   warning: solution failed to converge   

  
If an np value outside the range 1-8 is supplied, an error status (-1) is returned and the 
pv vector set to zeroes. For np=3 the result is for the Earth-Moon Barycenter. To obtain 
the heliocentric position and velocity of the Earth, use instead the routine gal_epv00. 
The reference frame is equatorial and is with respect to the mean equator and equinox 
of epoch J2000. The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M. 
Chapront-Touze, G. Francou and J. Laskar (Bureau des Longitudes, Paris, France).  
From comparisons with JPL ephemeris DE102, they quote the following maximum 
errors over the interval 1800-2050:   
    

L (arcseconds)  B (arcseconds)   R (kilometers)   
 

Mercury    4           1          300   
Venus      5          1          800   
EMB       6           1         1000   
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Mars       17         1        7700   
Jupiter    71         5        76000   
Saturn     81         13       267000   
Uranus    86          7        712000   
Neptune    11         1        253000   

 
Over the interval 1000-3000, they report that the accuracy is no worse than 1.5 times 
that over 1800-2050. Outside 1000-3000 the accuracy declines.   
 
Comparisons of this routine with the JPL DE200 ephemeris give the following RMS 
errors over the interval 1960-2025:   
    

position (kilometers)      velocity (meters per second)  
  
Mercury  334            0.437   
Venus      1060                 0.855   
EMB     2010              0.815   
Mars       7690             1.98   
Jupiter    71700             7.70   
Saturn     199000            19.4   
Uranus     564000            16.4   
Neptune   158000           14.4   

   
Comparisons against DE200 over the interval 1800-2100 gave the following maximum 
absolute differences. (The results using DE406 were essentially the same.)   
 

L    B     R   Rdot   
 

Mercury     7          1          500        0.7   
Venus      7          1          1100        0.9   
EMB      9         1         1300        1.0   
Mars     26        1         9000        2.5   
Jupiter   78        6       82000        8.2   
Saturn    87        14      263000     24.6   
Uranus   86        7       661000     27.4   
Neptune   11         2       248000     21.4   

    
References:   
 
Simon, J.L, Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., and Laskar, 
J., Astronomy & Astrophysics 282, 663 (1994). 
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Chapter 13 – Astromomical Macros 
The header file gal_astro.h defines the following constants and macros: 
 
/* 
 * ---------------------- 
 * Astronomical Constants 
 * ---------------------- 
 */ 
  
#define GAL_KM2M   (1000.0)           /* Kilometers to meters                          */ 
 
#define GAL_AU03   (149597870691.0)   /* Astronomical Unit IERS 2003 / DE405 meters    */ 
 
#define GAL_AU09   (149597870700.0)   /* Astronomical Unit IERS 2010 / IAU 2009 meters */ 
 
#define GAL_AUR    (149597870000.0)   /* Astronomical Unit rounded meters              */ 
                                      /* Same as SOFA's December 2010 DAU              */  
 
#define GAL_RESU76 (6.96e8)           /* Equatorial Radius of the Sun IAU76 meters     */ 
 
#define GAL_SRP96  (4.56e-6)          /* Solar Radiation Pressure @ 1 AU IERS 1996     */ 
                                      /* Newtons per meter^2                           */ 
 
#define GAL_CM     (299792458.0)      /* Speed of Light meters per second              */ 
 
/* 
 * ------------------- 
 * Astronomical Macros 
 * ------------------- 
 */ 
 
/*  
 * Macro to calculate Speed of Light in AU per second  
 * Requires the desired value for AU as parameter      
 */ 
 
#define GAL_CAUS( AU ) ( ( AU ) / GAL_CM ) 
 
/*  
 * Macro to calculate Speed of Light in AU per day  
 * Requires the desired value for AU as parameter      
 */ 
 
#define GAL_CAUD( AU ) ( GAL_D2S / GAL_CAUS( ( AU ) ) ) 
 
/*  
 * Speed of light (AU per day) rounded 
 * This is the same as the SOFA December 2010 constant DC 
 */ 
  
#define GAL_CAUDR ( GAL_D2S / 499.004782 )  
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Appendix A – GNU Free Documentation License 
Version 1.2, November 2002 

 
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Everyone is permitted to copy and distribute verbatim copies of this license document, 

but changing it is not allowed. 
 

1. PREAMBLE  
The purpose of this License is to make a manual, textbook, or other functional 
and useful document "free" in the sense of freedom: to assure everyone the 
effective freedom to copy and redistribute it, with or without modifying it, either 
commercially or noncommercially. Secondarily, this License preserves for the 
author and publisher a way to get credit for their work, while not being considered 
responsible for modifications made by others.  
This License is a kind of "copyleft", which means that derivative works of the 
document must themselves be free in the same sense. It complements the GNU 
General Public License, which is a copyleft license designed for free software. 
We have designed this License in order to use it for manuals for free software, 
because free software needs free documentation: a free program should come 
with manuals providing the same freedoms that the software does.  But this 
License is not limited to software manuals; it can be used for any textual work, 
regardless of subject matter or whether it is published as a printed book.  We 
recommend this License principally for works whose purpose is instruction or 
reference.  
2. APPLICABILITY AND DEFINITIONS  
This License applies to any manual or other work, in any medium, that contains a 
notice placed by the copyright holder saying it can be distributed under the terms 
of this License. Such a notice grants a world-wide, royalty-free license, unlimited 
in duration, to use that work under the conditions stated herein. The "Document", 
below, refers to any such manual or work. Any member of the public is a 
licensee, and is addressed as "you". You accept the license if you copy, modify 
or distribute the work in a way requiring permission under copyright law.  
A "Modified Version" of the Document means any work containing the Document 
or a portion of it, either copied verbatim, or with modifications and/or translated 
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into another language. A "Secondary Section" is a named appendix or a front-
matter section of the Document that deals exclusively with the relationship of the 
publishers or authors of the Document to the Document's overall subject (or to 
related matters) and contains nothing that could fall directly within that overall 
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary 
Section may not explain any mathematics.) The relationship could be a matter of 
historical connection with the subject or with related matters, or of legal, 
commercial, philosophical, ethical or political position regarding them. The 
"Invariant Sections" are certain Secondary Sections whose titles are designated, 
as being those of Invariant Sections, in the notice that says that the Document is 
released under this License. If a section does not fit the above definition of 
Secondary then it is not allowed to be designated as Invariant. The Document 
may contain zero Invariant Sections. If the Document does not identify any 
Invariant Sections then there are none. The "Cover Texts" are certain short 
passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the 
notice that says that the Document is released under this License. A Front-Cover 
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. 
A "Transparent" copy of the Document means a machine-readable copy, 
represented in a format whose specification is available to the general public, that 
is suitable for revising the document straightforwardly with generic text editors or 
(for images composed of pixels) generic paint programs or (for drawings) some 
widely available drawing editor, and that is suitable for input to text formatters or 
for automatic translation to a variety of formats suitable for input to text 
formatters. A copy made in an otherwise Transparent file format whose markup, 
or absence of markup, has been arranged to thwart or discourage subsequent 
modification by readers is not Transparent. An image format is not Transparent if 
used for any substantial amount of text. A copy that is not "Transparent" is called 
"Opaque". Examples of suitable formats for Transparent copies include plain 
ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML 
using a publicly available DTD, and standard-conforming simple HTML, 
PostScript or PDF designed for human modification. Examples of transparent 
image formats include PNG, XCF and JPG.  Opaque formats include proprietary 
formats that can be read and edited only by proprietary word processors, SGML 
or XML for which the DTD and/or processing tools are not generally available, 
and the machine-generated HTML, PostScript or PDF produced by some word 
processors for output purposes only. The "Title Page" means, for a printed book, 
the title page itself, plus such following pages as are needed to hold, legibly, the 
material this License requires to appear in the title page. For works in formats 
which do not have any title page as such, "Title Page" means the text near the 
most prominent appearance of the work's title, preceding the beginning of the 
body of the text. A section "Entitled XYZ" means a named subunit of the 
Document whose title either is precisely XYZ or contains XYZ in parentheses 
following text that translates XYZ in another language. (Here XYZ stands for a 
specific section name mentioned below, such as "Acknowledgements", 
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"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a 
section when you modify the Document means that it remains a section "Entitled 
XYZ" according to this definition. The Document may include Warranty 
Disclaimers next to the notice which states that this License applies to the 
Document. These Warranty Disclaimers are considered to be included by 
reference in this License, but only as regards disclaiming warranties: any other 
implication that these Warranty Disclaimers may have is void and has no effect 
on the meaning of this License.  
3. VERBATIM COPYING  
You may copy and distribute the Document in any medium, either commercially 
or noncommercially, provided that this License, the copyright notices, and the 
license notice saying this License applies to the Document are reproduced in all 
copies, and that you add no other conditions whatsoever to those of this License. 
You may not use technical measures to obstruct or control the reading or further 
copying of the copies you make or distribute.  However, you may accept 
compensation in exchange for copies. If you distribute a large enough number of 
copies you must also follow the conditions in section 3. You may also lend 
copies, under the same conditions stated above, and you may publicly display 
copies.  
4. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed 
covers) of the Document, numbering more than 100, and the Document's license 
notice requires Cover Texts, you must enclose the copies in covers that carry, 
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, 
and Back-Cover Texts on the back cover. Both covers must also clearly and 
legibly identify you as the publisher of these copies. The front cover must present 
the full title with all words of the title equally prominent and visible. You may add 
other material on the covers in addition. Copying with changes limited to the 
covers, as long as they preserve the title of the Document and satisfy these 
conditions, can be treated as verbatim copying in other respects. If the required 
texts for either cover are too voluminous to fit legibly, you should put the first 
ones listed (as many as fit reasonably) on the actual cover, and continue the rest 
onto adjacent pages. If you publish or distribute Opaque copies of the Document 
numbering more than 100, you must either include a machine-readable 
Transparent copy along with each Opaque copy, or state in or with each Opaque 
copy a computer-network location from which the general network-using public 
has access to download using public-standard network protocols a complete 
Transparent copy of the Document, free of added material. If you use the latter 
option, you must take reasonably prudent steps, when you begin distribution of 
Opaque copies in quantity, to ensure that this Transparent copy will remain thus 
accessible at the stated location until at least one year after the last time you 
distribute an Opaque copy (directly or through your agents or retailers) of that 
edition to the public. It is requested, but not required, that you contact the authors 
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of the Document well before redistributing any large number of copies, to give 
them a chance to provide you with an updated version of the Document.  
5. MODIFICATIONS  
You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified 
Version under precisely this License, with the Modified Version filling the role of 
the Document, thus licensing distribution and modification of the Modified Version 
to whoever possesses a copy of it. In addition, you must do these things in the 
Modified Version:  
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the 
Document, and from those of previous versions (which should, if there were any, 
be listed in the History section of the Document). You may use the same title as a 
previous version if the original publisher of that version gives permission.  
B. List on the Title Page, as authors, one or more persons or entities responsible 
for authorship of the modifications in the Modified Version, together with at least 
five of the principal authors of the Document (all of its principal authors, if it has 
fewer than five), unless they release you from this requirement.  
C. State on the Title page the name of the publisher of the Modified Version, as 
the publisher. D. Preserve all the copyright notices of the Document.  
E. Add an appropriate copyright notice for your modifications adjacent to the 
other copyright notices.  
F. Include, immediately after the copyright notices, a license notice giving the 
public permission to use the Modified Version under the terms of this License, in 
the form shown in the Addendum below.  
G. Preserve in that license notice the full lists of Invariant Sections and required 
Cover Texts given in the Document's license notice.  
H. Include an unaltered copy of this License.  
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item 
stating at least the title, year, new authors, and publisher of the Modified Version 
as given on the Title Page. If there is no section Entitled "History" in the 
Document, create one stating the title, year, authors, and publisher of the 
Document as   given on its Title Page, then add an item describing the Modified 
Version as stated in the previous sentence.  
J. Preserve the network location, if any, given in the Document for public access 
to a Transparent copy of the Document, and likewise the network locations given 
in the Document for previous versions it was based on. These may be placed in 
the "History" section. You may omit a network location for a work that was 
published at least four years before the Document itself, or if the original 
publisher of the version it refers to gives permission.  
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K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the 
Title of the section, and preserve in the section all the substance and tone of 
each of the contributor acknowledgements and/or dedications given therein.  
L. Preserve all the Invariant Sections of the Document, unaltered in their text and 
in their titles. Section numbers or the equivalent are not considered part of the 
section titles.  
M. Delete any section Entitled "Endorsements". Such a section may not be 
included in the Modified Version.  
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict 
in title with any Invariant Section.  
O. Preserve any Warranty Disclaimers. If the Modified Version includes new 
front-matter sections or appendices that qualify as Secondary Sections and 
contain no material copied from the Document, you may at your option designate 
some or all of these sections as invariant. To do this, add their titles to the list of 
Invariant Sections in the Modified Version's license notice. These titles must be 
distinct from any other section titles. You may add a section Entitled 
"Endorsements", provided it contains nothing but endorsements of your Modified 
Version by various parties--for example, statements of peer review or that the 
text has been approved by an organization as the authoritative definition of a 
standard. You may add a passage of up to five words as a Front-Cover Text, and 
a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover 
Texts in the Modified Version. Only one passage of Front-Cover Text and one of 
Back-Cover Text may be added by (or through arrangements made by) any one 
entity. If the Document already includes a cover text for the same cover, 
previously added by you or by arrangement made by the same entity you are 
acting on behalf of, you may not add another; but you may replace the old one, 
on explicit permission from the previous publisher that added the old one. The 
author(s) and publisher(s) of the Document do not by this License give 
permission to use their names for publicity for or to assert or imply endorsement 
of any Modified Version.  
6. COMBINING DOCUMENTS  
You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified versions, 
provided that you include in the combination all of the Invariant Sections of all of 
the original documents, unmodified, and list them all as Invariant Sections of your 
combined work in its license notice, and that you preserve all their Warranty 
Disclaimers. The combined work need only contain one copy of this License, and 
multiple identical Invariant Sections may be replaced with a single copy. If there 
are multiple Invariant Sections with the same name but different contents, make 
the title of each such section unique by adding at the end of it, in parentheses, 
the name of the original author or publisher of that section if known, or else a 
unique number. Make the same adjustment to the section titles in the list of 
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Invariant Sections in the license notice of the combined work. In the combination, 
you must combine any sections Entitled "History" in the various original 
documents, forming one section Entitled "History"; likewise combine any sections 
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must 
delete all sections Entitled "Endorsements".  
7. COLLECTIONS OF DOCUMENTS  
You may make a collection consisting of the Document and other documents 
released under this License, and replace the individual copies of this License in 
the various documents with a single copy that is included in the collection, 
provided that you follow the rules of this License for verbatim copying of each of 
the documents in all other respects. You may extract a single document from 
such a collection, and distribute it individually under this License, provided you 
insert a copy of this License into the extracted document, and follow this License 
in all other respects regarding verbatim copying of that document.  
8. AGGREGATION WITH INDEPENDENT WORKS  
A compilation of the Document or its derivatives with other separate and 
independent documents or works, in or on a volume of a storage or distribution 
medium, is called an "aggregate" if the copyright resulting from the compilation is 
not used to limit the legal rights of the compilation's users beyond what the 
individual works permit. When the Document is included in an aggregate, this 
License does not apply to the other works in the aggregate which are not 
themselves derivative works of the Document. If the Cover Text requirement of 
section 3 is applicable to these copies of the Document, then if the Document is 
less than one half of the entire aggregate, the Document's Cover Texts may be 
placed on covers that bracket the Document within the aggregate, or the 
electronic equivalent of covers if the Document is in electronic form. Otherwise 
they must appear on printed covers that bracket the whole aggregate.  
9. TRANSLATION  
Translation is considered a kind of modification, so you may distribute 
translations of the Document under the terms of section 4. Replacing Invariant 
Sections with translations requires special permission from their copyright 
holders, but you may include translations of some or all Invariant Sections in 
addition to the original versions of these Invariant Sections. You may include a 
translation of this License, and all the license notices in the Document, and any 
Warranty Disclaimers, provided that you also include the original English version 
of this License and the original versions of those notices and disclaimers. In case 
of a disagreement between the translation and the original version of this License 
or a notice or disclaimer, the original version will prevail. If a section in the 
Document is Entitled "Acknowledgements", "Dedications", or "History", the 
requirement (section 4) to Preserve its Title (section 1) will typically require 
changing the actual title.  
10.  TERMINATION  
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You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License. Any other attempt to copy, modify, 
sublicense or distribute the Document is void, and will automatically terminate 
your rights under this License. However, parties who have received copies, or 
rights, from you under this License will not have their licenses terminated so long 
as such parties remain in full compliance.  
11.  FUTURE REVISIONS OF THIS LICENSE  
The Free Software Foundation may publish new, revised versions of the GNU 
Free Documentation License from time to time. Such new versions will be similar 
in spirit to the present version, but may differ in detail to address new problems or 
concerns.  See http://www.gnu.org/copyleft/. Each version of the License is given 
a distinguishing version number. If the Document specifies that a particular 
numbered version of this License "or any later version" applies to it, you have the 
option of following the terms and conditions either of that specified version or of 
any later version that has been published (not as a draft) by the Free Software 
Foundation. If the Document does not specify a version number of this License, 
you may choose any version ever published (not as a draft) by the Free Software 
Foundation.  
12. ADDENDUM:  
How to use this License for your documents To use this License in a document 
you have written, include a copy of the License in the document and put the 
following copyright and license notices just after the title page: Copyright (c) 
YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this 
document    under the terms of the GNU Free Documentation License, Version 
1.2 or any later version published by the Free Software Foundation; with no 
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of 
the license is included in the section entitled "GNU Free Documentation License". 
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace 
the "with...Texts." line with this: with the Invariant Sections being LIST THEIR 
TITLES, with the    Front-Cover Texts being LIST, and with the Back-Cover Texts 
being LIST. If you have Invariant Sections without Cover Texts, or some other 
combination of the three, merge those two alternatives to suit the situation. If your 
document contains nontrivial examples of program code, we recommend 
releasing these examples in parallel under your choice of free software license, 
such as the GNU General Public License, to permit their use in free software. 
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precession-nutation118, 119, 184, 185, 196, 

197, 198, 199, 200, 201, 203, 204, 205 
precession-nutation, matrix of ..................204 
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range rate ..........................................127, 191 
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Universal Time .......................................112 

TIO locator s'..............................................212 
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Venus 
barycentric position and velocity ..........300 
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