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Introduction

This document is intended to define the standard reference systems re-
alized by the International Earth Rotation Service (IERS) and the mod-
els and procedures used for this purpose. It is a continuation of the
series of documents begun with the Project MERIT Standards (Mel-
bourne et al., 1983) and continued with the IERS Standards (McCarthy,
1989; McCarthy, 1992) and IERS Conventions (McCarthy, 1996). The
current issue of the IERS Conventions is called the IERS Conventions
(2003). When referenced in recommendations and articles published in
past years, this document may have been referred to as the IERS Con-
ventions (2000).
All of the products of the IERS may be considered to be consistent
with the description in this document. If contributors to the IERS do
not fully comply with these guidelines, they will carefully identify the
exceptions. In these cases, the contributor provides an assessment of the
effects of the departures from the conventions so that its results can be
referred to the IERS Reference Systems. Contributors may use models
equivalent to those specified herein. Products obtained with different
observing methods have varying sensitivity to the adopted standards
and reference systems, but no attempt has been made in this document
to assess this sensitivity.
The reference systems and procedures of the IERS are based on the res-
olutions of international scientific unions. The celestial system is based
on IAU (International Astronomical Union) Resolution A4 (1991). It
was officially initiated and named by IAU Resolution B2 (1997) and its
definition was further refined by IAU Resolution B1 (2000). The terres-
trial system is based on IUGG Resolution 2 (1991). The transformation
between celestial and terrestrial systems is based on IAU Resolution B1
(2000). The definition of time coordinates and time transformations,
the models for light propagation and the motion of massive bodies are
based on IAU Resolution A4 (1991), further defined by IAU Resolution
B1 (2000). In some cases, the procedures used by the IERS, and the
resulting conventional frames produced by the IERS, do not completely
follow these resolutions. These cases are identified in this document and
procedures to obtain results consistent with the resolutions are indicated.
The units of length, mass, and time are in the International System of
Units (Le Système International d’Unités (SI), 1998) as expressed by
the meter (m), kilogram (kg) and second (s). The astronomical unit
of time is the day containing 86400 SI seconds. The Julian century
contains 36525 days and is represented by the symbol c. When possible,
the notations in this document have been made consistent with ISO
Standard 31 on quantities and units.
While the recommended models, procedures and constants used by the
IERS follow the research developments and the recommendations of in-
ternational scientific unions, continuity with the previous IERS Stan-
dards and Conventions is essential. In this respect, the principal changes
are listed below.

Differences between this Document and IERS Technical Note 21

The most significant changes from previous IERS standards and conven-
tions are due to the incorporation of the recommendations of the 24th
IAU General Assembly held in 2000. These are shown in Appendix 1 of
this document. These recommendations clarify and extend the concepts
of the reference systems in use by the IERS and introduce a major revi-
sion of the procedures used to transform between them. A new theory
of precession-nutation has been adopted by the IAU and this is intro-
duced in this document. The IAU 2000 recommendations also extend
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the procedures for the application of relativity. Other major changes
are due to the adoption by the IERS of a new Terrestrial Reference
Frame (ITRF2000) (Altamimi et al., 2002), the recommendation of a
new geopotential model and the modification of the solid Earth tide
model to be consistent with the model of nutation.
The authors and major contributors are outlined below along with the
significant changes made for each chapter.

Chapter 1: General Definitions and Numerical Standards

This chapter was prepared principally by D. McCarthy and G. Petit
with major contributions from M. Burša, N. Capitaine, T. Fukushima,
E. Groten, P. M. Mathews, P. K. Seidelmann, E. M. Standish, and P.
Wolf. It provides general definitions for topics that belong to different
chapters of the document and also the values of numerical standards
that are used in the document. It incorporates the previous Chapter 4,
which has been updated to provide consistent notation throughout the
IERS Conventions and to comply with the recommendations of the most
recent reports of the appropriate working groups of the International
Association of Geodesy (IAG) and the IAU.

Chapter 2: Conventional Celestial Reference System and Frame

This chapter (previously Chapter 1) has been updated by E. F. Arias
with contributions from J. Kovalevsky, C. Ma, F. Mignard, and A.
Steppe to comply with the recommendations of the IAU 2000 24th Gen-
eral Assembly.

Chapter 3: Conventional Dynamical Realization of the ICRS

In this chapter (previously Chapter 2), the conventional solar system
ephemeris has been changed to the Jet Propulsion Laboratory (JPL)
DE405. It was prepared by E. M. Standish with contributions from F.
Mignard and P. Willis.

Chapter 4: Conventional Terrestrial Reference System and Frame

This chapter (previously Chapter 3) has been rewritten by Z. Altamimi,
C. Boucher, and P. Sillard with contributions from J. Kouba, G. Petit,
and J. Ray. It incorporates the new Terrestrial Reference Frame of the
IERS (ITRF2000), which was introduced in 2001.

Chapter 5: Transformation Between the Celestial and Terrestrial Systems

This chapter has been updated principally by N. Capitaine, with major
contributions from P. M. Mathews and P. Wallace to comply with the
recommendations of the IAU 2000 24th General Assembly. Significant
contributions from P. Bretagnon, R. Gross, T. Herring, G. Kaplan, D.
McCarthy, Burghard Richter and P. Simon were also incorporated.

Chapter 6: Geopotential

This chapter was prepared principally by V. Dehant, P. M. Mathews,
and E. Pavlis. Major contributions were also made by P. Defraigne, S.
Desai, F. Lemoine, R. Noomen, R. Ray, F. Roosbeek, and H. Schuh. A
new geopotential model is recommended.
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Chapter 7: Displacement of Reference Points

Chapter 7 has been updated to be consistent with the geopotential model
recommended in Chapter 6. It was prepared principally by V. Dehant, P.
M. Mathews, and H.-G. Scherneck. Major contributions were also made
by Z. Altamimi, S. Desai, S. Dickman, R. Haas, R. Langley, R. Ray, M.
Rothacher, H. Schuh, and T. van Dam. A model for post-glacial rebound
is no longer recommended and a new ocean-loading model is suggested.
The VLBI antenna deformation has been enhanced.

Chapter 8: Tidal Variations in the Earth’s Rotation

Changes have been introduced to be consistent with the nutation model
adopted at the 24th IAU General Assembly. The model of the diur-
nal/semidiurnal variations has been enhanced to include more tidal con-
stituents. The principal authors of Chapter 8 were Ch. Bizouard, R.
Eanes, and R. Ray. P. Brosche, P. Defraigne, S. Dickman, D. Gambis,
and R. Gross also made significant contributions.

Chapter 9: Tropospheric Model

This chapter has been changed to recommend an updated model. It is
based on the work of C. Ma, E. Pavlis, M. Rothacher, and O. Sovers,
with contributions from C. Jacobs, R. Langley, V. Mendes, A. Niell, T.
Otsubo, and A. Steppe.

Chapter 10: General Relativistic Models for Space-time Coordinates and

Equations of Motion

This chapter (previously Chapter 11), has been updated to be in com-
pliance with the IAU resolutions and the notation they imply. It was
prepared principally by T. Fukushima and G. Petit with major contri-
butions from P. Bretagnon, A. Irwin, G. Kaplan, S. Klioner, T. Otsubo,
J. Ries, M. Soffel, and P. Wolf.

Chapter 11: General Relativistic Models for Propagation

This chapter (previously Chapter 12), has been updated to be in compli-
ance with the IAU resolutions and the notation they imply. It is based
on the work of T. M. Eubanks and J. Ries. Significant contributions
from S. Kopeikin, G. Petit, L. Petrov, A. Steppe, O. Sovers, and P. Wolf
were incorporated.

The IERS Conventions are the product of the IERS Conventions Prod-
uct Center. However, this volume would not be possible without the
contributions acknowledged above. In addition, we would also like to
acknowledge the comments and contributions of S. Allen, Y. Bar-Sever,
A. Brzeziński, M. S. Carter, P. Cook, H. Fliegel, M. Folgueira, J. Gip-
son, S. Howard, T. Johnson, M. King, S. Kudryavtsev, Z. Malkin, S.
Pagiatakis, S. Pogorelc, J. Ray, S. Riepl, C. Ron, and T. Springer.

Conventions Product Center

E. F. Arias B. J. Luzum D. D. McCarthy G. Petit P. Wolf

7



N
o
.
3
2 IERS

Technical
Note

Introduction

References

Arias E. F., Charlot P., Feissel M., Lestrade J.-F., 1995, “The Extra-
galactic Reference System of the International Earth Rotation Ser-
vice, ICRS,” Astron. Astrophys., 303, pp. 604–608.

Altamimi, Z., Sillard, P., and Boucher, C., 2002, “ITRF2000: A New
Release of the International Terrestrial Reference Frame for Earth
Science Applications,” J. Geophys. Res., 107, B10,
10.1029/2001JB000561.

Le Système International d’Unités (SI), 1998, Bureau International des
Poids et Mesures, Sèvres, France.
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1 General Definitions and Numerical Standards

This chapter provides general definitions for some topics and the val-
ues of numerical standards that are used in the document. Those are
based on the most recent reports of the appropriate working groups of
the International Association of Geodesy (IAG) and the International
Astronomical Union (IAU).

1.1 Permanent Tide

Some geodetic parameters are affected by tidal variations. The gravita-
tional potential in the vicinity of the Earth, which is directly accessible
to observation, is a combination of the tidal gravitational potential of
external bodies (the Moon, the Sun, and the planets) and the Earth’s
own potential which is perturbed by the action of the tidal potential.
The (external) tidal potential contains both time independent (perma-
nent) and time dependent (periodic) parts, and so does the tide-induced
part of the Earth’s own potential. Similarly, the observed site positions
are affected by displacements associated with solid Earth deformations
produced by the tidal potential; these displacements also include per-
manent and time dependent parts. On removing from the observed site
positions/potential the time dependent part of the tidal contributions,
the resulting station positions are on the “mean tide” (or simply “mean”)
crust; and the potential which results is the “mean tide” potential. The
permanent part of the deformation produced by the tidal potential is
present in the mean crust; the associated permanent change in the geopo-
tential, and also the permanent part of the tidal potential, are included
in the mean tide geopotential. These correspond to the actual mean
values, free of periodic variations due to tidal forces. The “mean tide”
geoid, for example, would correspond to the mean ocean surface in the
absence of non-gravitational disturbances (currents, winds). In general,
quantities referred to as “mean tide” (e.g. flattening, dynamical form
factor, equatorial radius, etc.) are defined in relation to the mean tide
crust or the mean tide geoid.

If the deformation due to the permanent part of the tidal potential is
removed from the mean tide crust, the result is the “tide free” crust.
As regards the potential, removal of the permanent part of the external
potential from the mean tide potential results in the “zero tide” potential
which is strictly a geopotential. The permanent part of the deformation-
related contribution is still present; if that is also removed, the result is
the “tide free” geopotential. It is important to note that unlike the
case of the potential, the term “zero tide” as applied to the crust is
synonymous with “mean tide.”

In a “tide free” quantity, the total tidal effects have been removed with a
model. Because the perturbing bodies are always present, a truly “tide
free” quantity is unobservable. In this document, the tidal models used
for the geopotential (Chapter 6) and for the displacement of points on
the crust (Chapter 7) are based on nominal Love numbers; the reference
geopotential model and terrestrial reference frame, which are obtained
by removal of tidal contributions using such models, are termed “conven-
tional tide free.” Because the deformational response to the permanent
part of the tide generating potential is characterized actually by the
secular (or fluid limit) Love numbers, which differ substantially from
the nominal ones, “conventional tide free” values of quantities do not
correspond to truly tide free values that would be observed if tidal per-
turbations were absent. The true effect of the permanent tide could be
estimated using the fluid limit Love numbers for this purpose, but this
calculation is not included in this document because it is not needed for
the tidal correction procedure.

9
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Resolution 16 of the 18th General Assembly of the IAG (1983), “recog-
nizing the need for the uniform treatment of tidal corrections to various
geodetic quantities such as gravity and station positions,” recommended
that “the indirect effect due to the permanent yielding of the Earth be
not removed,” i.e. the use of “zero-tide” values for quantities associ-
ated with the geopotential and “mean-tide” values for quantities asso-
ciated with station displacements. This recommendation, however, has
not been implemented in the algorithms used for tide modeling by the
geodesy community in the analysis of space geodetic data in general. As
a consequence, the station coordinates that go with such analyses (see
Chapter 4) are “conventional tide free” values.
The geopotential can be realized in the three different cases (i.e., mean
tide, zero tide or tide free). For those parameters for which the difference
is relevant, the values given in Table 1.1 are “zero-tide” values, according
to the IAG Resolution.
The different notions related to the treatment of the permanent tide are
shown pictorially in Figures 1.1 and 1.2.

TIDE FREE CRUST
(unobservable)

CONVENTIONAL TIDE FREE CRUST
(ITRF)

MEAN CRUST

Restoring deformation
due to permanent tide
using conventional 
Love numbers

Removing total tidal
deformation with
conventional 
Love numbers

Removing deformation due to
the permanent tide using the
“secular“ or “fluid limit“ value 
for the relevant Love number

INSTANTANEOUS CRUST
(observed)

Fig. 1.1 Treatment of observations to account for tidal deformations in terrestrial
reference systems (see Chapters 4 and 7).

10



1.2 Numerical Standards

N
o
.
3
2IERS

Technical
Note

TIDE FREE GEOPOTENTIAL
(unobservable)

CONVENTIONAL TIDE FREE GEOPOTENTIAL
(EGM96)

ZERO-TIDE GEOPOTENTIAL

Restoring the contribution of
the permanent deformation
due to the tidal potential using
conventional Love numbers

Removing total tidal
effects using
conventional 
Love numbers

Removing the contribution from the
permanent deformation produced by 
the tidal potential using the “secular“
or “fluid limit“ values for the relevant 
Love number

INSTANTANEOUS GEOPOTENTIAL
(observed)

Restoring the permanent part of
the tide generating potential

MEAN TIDE GEOPOTENTIAL

Fig. 1.2 Treatment of observations for tidal effects in the geopotential (see Chapter 6).

1.2 Numerical Standards

Table 1.1 listing numerical standards is organized into 5 columns: item,
value, uncertainty, reference, comment. Most of the values are given
in terms of SI units (Le Système International d’Unités (SI), 1998), i.e.
they are consistent with the use of Geocentric Coordinate Time TCG as a
time coordinate for the geocentric system, and of Barycentric Coordinate
Time TCB for the barycentric system. The values of τA, cτA, and ψ1,
however, are given in so-called “TDB” units, having been determined
previously using Barycentric Dynamical Time TDB as a time coordinate
for the barycentric system. In this book some quantities are also given
in so-called “TT” units, having been determined using Terrestrial Time
TT as a time coordinate for the geocentric system. See Chapter 10 for
further details on the transformations between time scales and Chapter 3
for a discussion of the time scale used in the ephemerides.

TDB and TCB units of time, t, and length, `, may be easily related by
the expressions (Seidelmann and Fukushima, 1992)

tTDB = tTCB/(1− LB), `TDB = `TCB/(1− LB),

11
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where LB is given in Table 1.1. Therefore a quantity X with the dimen-
sion of time or length has a numerical value xTCB when using “TCB”
(SI) units which differs from its value xTDB when using “TDB” units by

xTDB = xTCB × (1− LB).

Similarly, the numerical value xTCG when using “TCG” (SI) units differs
from the numerical value xTT when using “TT” units by

xTT = xTCG × (1− LG)

where LG is given in Table 1.1.

The IAU 1976 System of Astronomical Constants (Astronomical Al-
manac for the Year 1984) is adopted for all astronomical constants which
do not appear in Table 1.1.

Table 1.1 IERS Numerical Standards.

ITEM VALUE UNCERTAINTY REF. COMMENTS

c 299792458ms−1 Defining [2] Speed of light
LB 1.55051976772× 10−8 2× 10−17 [4] Average value of 1-d(TT)/d(TCB)
LC 1.48082686741× 10−8 2× 10−17 [4] Average value of 1-d(TCG)/d(TCB)
LG 6.969290134× 10−10 Defining [4] 1-d(TT)/d(TCG)
G 6.673× 10−11m3kg−1s−2 1× 10−13m3kg−1s−2 [2] Constant of gravitation
GM� 1.32712442076× 1020m3s−2 5× 1010m3s−2 [from 3] Heliocentric gravitational constant

τA
† 499.0047838061s 0.00000002s [3] Astronomical unit in seconds

cτA
† 149597870691m 6m [3] Astronomical unit in meters

ψ1
† 5038.47875′′/c 0.00040′′/c [6] IAU(1976) value of precession of

the equator at J2000.0 corrected
by −0.29965′′. See Chapter 5.

ε0 84381.4059′′ 0.0003′′ [5] Obliquity of the ecliptic at J2000.0.
See Chapter 5 for value used in IAU
precession-nutation model.

J2� 2× 10−7 (adopted for DE405) Dynamical form-factor of the Sun
µ 0.0123000383 5× 10−10 [3] Moon-Earth mass ratio
GM⊕ 3.986004418× 1014m3s−2 8× 105m3s−2 [1] Geocentric gravitational constant

(EGM96 value)

aE
‡ 6378136.6m 0.10m [1] Equatorial radius of the Earth

1/f‡ 298.25642 0.00001 [1] Flattening factor of the Earth

J2⊕
‡ 1.0826359× 10−3 1.0× 10−10 [1] Dynamical form-factor

ω 7.292115× 10−5rads−1 variable [1] Nominal mean angular velocity
of the Earth

ge
‡ 9.7803278ms−2 1× 10−6ms−2 [1] Mean equatorial gravity

W0 62636856.0m2s−2 0.5m2s−2 [1] Potential of the geoid

R0
†† 6363672.6m 0.1m [1] Geopotential scale factor

† The values for τA, cτA, and ψ1 are given in “TDB” units (see discussion above).
‡ The values for aE , 1/f , J2⊕ and gE are “zero tide” values (see the discussion in section 1.1 above).

Values according to other conventions may be found from reference [1].
†† R0 = GM⊕/W0

[1] Groten, E., 1999, Report of the IAG. Special Commission SC3, Fundamental Constants,
XXII IAG General Assembly.

[2] Mohr, P. J. and Taylor, B. N., 1999, J. Phys. Chem. Ref. Data, 28, 6, p. 1713.
[3] Standish, E. M., 1998, JPL IOM 312-F.
[4] IAU XXIV General Assembly. See Appendix 1.
[5] Fukushima, T., 2003, Report on astronomical constants, Highlights of Astronomy, in press.
[6] Mathews, P. M., Herring, T. A., and Buffett, B. A., 2002, Modeling of nutation-precession: New

nutation series for nonrigid Earth, and insights into the Earth’s interior, J. Geophys. Res. 107,
B4, 10.1029/2001JB00390.
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2 Conventional Celestial Reference System and Frame

The celestial reference system is based on a kinematical definition, mak-
ing the axis directions fixed with respect to the distant matter of the
universe. The system is materialized by a celestial reference frame de-
fined by the precise coordinates of extragalactic objects, mostly quasars,
BL Lac sources and few active galactic nuclei (AGNs), on the grounds
that these sources are so far away that their expected proper motions
should be negligibly small. The current positions are known to better
that a milliarcsecond, the ultimate accuracy being primarily limited by
the structure instability of the sources in radio wavelengths. The USNO
Special Analysis Center for Source Structure has a web site at <1>.

The related IAU recommendations (see McCarthy, 1992) specify that the
origin is to be at the barycenter of the solar system and the directions of
the axes should be fixed with respect to the quasars. These recommen-
dations further stipulate that the celestial reference system should have
its principal plane as close as possible to the mean equator at J2000.0
and that the origin of this principal plane should be as close as possible
to the dynamical equinox of J2000.0. This system was prepared by the
IERS and has been adopted by the IAU General Assembly of 1997 un-
der the name of the International Celestial Reference System (ICRS). It
officially replaced the FK5 system on January 1, 1998, considering that
all the conditions set up by the 1991 resolutions were fulfilled, including
the availability of an optical reference frame realizing the ICRS with an
accuracy significantly better than the FK5.

2.1 The ICRS

The necessity of maintaining the reference directions fixed and the con-
tinuing improvement in the source coordinates requires regular mainte-
nance of the frame. Realizations of the IERS celestial reference frame
have been computed every year between 1989 and 1995 (see the IERS
annual reports) keeping the same IERS extragalactic celestial reference
system. The number of defining sources has progressively grown from
23 in 1988 to 212 in 1995. Comparisons between successive realizations
have shown that there were small shifts from year to year until the pro-
cess converged to better than 0.1 mas and to 0.02 mas for the relative
orientation between successive realizations. The IERS proposed that the
1995 version of the IERS system be taken as the International Celestial
Reference System (ICRS). This was formally accepted by the IAU in
1997 and is described in Arias et al. (1995).

2.1.1 Equator

The IAU recommendations call for the principal plane of the conventional
reference system to be close to the mean equator at J2000.0. The VLBI
observations used to establish the extragalactic reference frame are also
used to monitor the motion of the celestial pole in the sky (precession
and nutation). In this way, the VLBI analyses provide corrections to
the conventional IAU models for precession and nutation (Lieske et al.,
1977; Seidelmann, 1982) and accurate estimation of the shift of the mean
pole at J2000.0 relative to the Conventional Reference Pole of the ICRS.
Based on the VLBI solutions submitted to the IERS in 2001, the shift of
the pole at J2000.0 relative to the ICRS celestial pole has been estimated
by using (a) the updated nutation model IERS(1996) and (b) the new
MBH2000 nutation model (Mathews et al., 2002). The direction of the
mean pole at J2000.0 in the ICRS is +17.1mas in the direction 12h and
+5.0mas in the direction 18h when the IERS(1996) model is used, and

1http://rorf.usno.navy.mil/ivs saac
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+16.6mas in the direction 12h and +6.8mas in the direction 18h when
the MBH2000 model is adopted (IERS, 2001).
The IAU recommendations stipulate that the direction of the Conven-
tional Reference Pole should be consistent with that of the FK5. The
uncertainty in the direction of the FK5 pole can be estimated by consid-
ering (1) that the systematic part is dominated by a correction of about
−0.30′′/c to the precession constant used in the construction of the FK5
System, and (2) by adopting Fricke’s (1982) estimation of the accuracy of
the FK5 equator (±0.02′′), and Schwan’s (1988) estimation of the limit
of the residual rotation (±0.07′′/c), taking the epochs of observations
from Fricke et al. (1988). Assuming that the error in the precession rate
is absorbed by the proper motions of stars, the uncertainty in the FK5
pole position relative to the mean pole at J2000.0 estimated in this way
is ±50 mas. The ICRS celestial pole is therefore consistent with that of
the FK5 within the uncertainty of the latter.

2.1.2 Origin of Right Ascension

The IAU recommends that the origin of right ascensions of the ICRS
be close to the dynamical equinox at J2000.0. The x axis of the IERS
celestial system was implicitly defined in its initial realization (Arias et
al., 1988) by adopting the mean right ascension of 23 radio sources in
a group of catalogs that were compiled by fixing the right ascension of
the quasar 3C 273B to the usual (Hazard et al., 1971) conventional FK5
value (12h29m6.6997s at J2000.0) (Kaplan et al., 1982).
The uncertainty of the determination of the FK5 origin of right ascen-
sions can be derived from the quadratic sum of the accuracies given by
Fricke (1982) and Schwan (1988), considering a mean epoch of 1955 for
the proper motions in right ascension (see last paragraph of the previ-
ous section for further details). The uncertainty thus obtained is ±80
mas. This was confirmed by Lindegren et al. (1995) who found that the
comparison of FK5 positions with those of the Hipparcos preliminary
catalogue shows a systematic position error in FK5 of the order of 100
mas. This was confirmed by Mignard and Froeschlé (2000) when linking
the final Hipparcos catalog to the ICRS.
Analyses of LLR observations (Chapront et al., 2002; IERS, 2000) in-
dicate that the origin of right ascensions in the ICRS is shifted from
the inertial mean equinox at J2000.0 on the ICRS reference plane by
−55.4 ± 0.1 mas (direct rotation around the polar axis). Note that this
shift of −55.4 mas on the ICRS equator corresponds to a shift of −14.6
mas on the mean equator of J2000.0, that is used in Chapter 5. The
equinox of the FK5 was found by Mignard and Froeschlé (2000) to be
at −22.9± 2.3 mas from the origin of the right ascensions of the IERS.
These results indicate that the ICRS origin of right ascension complies
with the IAU recommendations.

2.2 The ICRF

The ICRS is materialized by the International Celestial Reference Frame
(ICRF). A realization of the ICRF consists of a set of precise coordinates
of extragalactic radio sources. The objects in the frame are divided in
three subsets: “defining,” “candidate” and “other” sources. Defining
sources should have a large number of observations over a sufficiently long
data span to assess position stability; they maintain the axes of the ICRS.
Sources with an insufficient number of observations or an observing time
span too short to be considered as defining sources are designated as
candidate; they could be potential defining sources in future realizations
of the ICRF. The category of “other” sources includes those objects with
poorly determined positions which are useful in deriving various frame
links.
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A first realization of the ICRF was constructed in 1995 by a reanalysis
of the available VLBI observations. The set of positions obtained by
this analysis was rotated to the ICRS; the position formal uncertainties
were calibrated to render their values more realistic (IERS, 1997; Ma et
al., 1998). Following the maintenance process which characterizes the
ICRS, an extension of the frame, ICRF-Ext.1 was constructed by using
VLBI data available until April 1999 (IERS, 1999). For defining sources,
the positions and errors are unchanged from the first realization of the
ICRF. The 212 defining extragalactic radio sources are distributed over
the sky with a median uncertainty of ±0.35 mas in right ascension and
of ±0.40 mas in declination. The uncertainty from the representation of
the ICRS is then established to be smaller than 0.01 mas. The scattering
of rotation parameters of different comparisons performed, shows that
these axes are stable to±0.02 mas. Note that this frame stability is based
upon the assumption that the sources have no proper motion and that
there is no global rotation of the universe. The assumption concerning
proper motion was checked regularly on the successive IERS frames (Ma
and Shaffer, 1991; Eubanks et al., 1994) as well as the different subsets
of the final data (IERS, 1997). For candidate and other sources, new
positions and errors have been calculated. All of them are listed in the
catalog in order to have a larger, usable, consistent catalog. The total
number of objects in ICRF-Ext.1 is 667.

The most precise direct access to the quasars is done through VLBI ob-
servations, a technique which is not widely available to users. Therefore,
while VLBI is used for the maintenance of the primary frame, the tie
of the ICRF to the major practical reference frames may be obtained
through the use of the IERS Terrestrial Reference Frame (ITRF, see
Chapter 4), the HIPPARCOS Galactic Reference Frame, and the JPL
ephemerides of the solar system (see Chapter 3).

2.2.1 HIPPARCOS Catalogue

The 1991 IAU recommendation stipulates that as long as the relationship
between the optical and extragalactic radio frame is not sufficiently ac-
curately determined, the FK5 catalog will be considered as a provisional
realization of the celestial reference system. In 1997, the IAU decided
that this condition was fulfilled by the Hipparcos Catalogue (ESA, 1997).

The Hipparcos Catalogue provides the equatorial coordinates of about
118000 stars in the ICRS at epoch 1991.25 along with their proper mo-
tions, their parallaxes and their magnitudes in the wide band Hipparcos
system. Actually, the astrometric data concerns only 117,955 stars. The
median uncertainty for bright stars (Hipparcos wide band magnitude
<9) are ±0.77 and ±0.64 mas in right ascension and declination respec-
tively. Similarly, the median uncertainties in annual proper motion are
±0.88 and ±0.74 mas/yr respectively.

The alignment of the Hipparcos Catalogue to the ICRF was realized with
a standard error of of ±0.6 mas for the orientation at epoch (1991.25)
and ±0.25 mas/year for the spin (Kovalevsky et al., 1997). This was
obtained by comparing positions and proper motions of Hipparcos stars
with the same subset determined with respect to the ICRF and, for the
spin, to optical galaxies.

2.2.2 Availability of the Frame

The catalogue of source coordinates published in IERS (1999) (see also
Ma et al., 1998) provides access to the ICRS. It includes a total of 667
objects. Maintenance of the ICRS requires the monotoring of the source
coordinate stability based on new observations and new analyses; the
appropriate warnings and updates appear in IERS publications.
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The principles on which the ITRF is established and maintained are de-
scribed in Chapter 4. The IERS Earth Orientation Parameters provide
the permanent tie of the ICRF to the ITRF. They describe the orienta-
tion of the Celestial Ephemeris Pole in the terrestrial system and in the
celestial system (polar coordinates x, y; celestial pole offsets dψ, dε) and
the orientation of the Earth around this axis (UT1−UTC), as a function
of time. This tie is available daily with an accuracy of ±0.3 mas in the
IERS publications.
The other ties to major celestial frames are established by differen-
tial VLBI observations of solar system probes, galactic stars relative
to quasars and other ground- or space-based astrometry projects. The
tie of the solar system ephemerides of the Jet Propulsion Laboratory
(JPL) is described by Standish et al. (1995). Its estimated precision is
±3 mas, according to Folkner et al. (1994). Other links to the dynamical
system are obtained using laser ranging to the Moon, with the ITRF as
an intermediate frame (Chapront et al., 2002; IERS, 2000; IERS, 2001).
Ties to the frames related to catalogs at other wavelengths will be avail-
able from the IERS as observational analyses permit.
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The planetary and lunar ephemerides recommended for the IERS stan-
dards are the JPL Development Ephemeris DE405 and the Lunar Ephe-
meris LE405, available on a CD from the publisher, Willmann-Bell. See
also the website <2>; click on the button, “Where to Obtain Epheme-
rides.”
Note that the time scale for DE405/LE405 is not Barycentric Coordinate
Time (TCB) but rather, a coordinate time, Teph, which is related to TCB
by an offset and a scale. The ephemerides based upon the coordinate
time Teph are automatically adjusted in the creation process so that
the rate of Teph has no overall difference from the rate of Terrestrial
Time (TT) (see Standish, 1998), therefore also no overall difference from
the rate of Barycentric Dynamical Time (TDB). For this reason space
coordinates obtained from the ephemerides are consistent with TDB.
The reference frame of DE405 is that of the International Celestial Ref-
erence Frame (ICRF). DE405 was adjusted to all relevant observational
data, including, especially, VLBI observations of spacecraft in orbit
around Venus and Mars, taken with respect to the ICRF. These highly
accurate observations serve to orient the ephemerides; observations with
respect to other frames (e.g., FK5) were referenced to the ICRF using
the most recent transformations then available.
It is expected that DE405/LE405 will eventually replace DE200/LE200
(Standish, 1990) as the basis for the international almanacs. Table 3.1
shows the IAU 1976 values of the planetary masses and the values used in
the creations of both DE200/LE200 and of DE405/LE405. Also shown
in the table are references for the DE405 set, the current best estimates.

Table 3.1 1976 IAU, DE200 and DE405 planetary mass values, expressed in reciprocal solar masses.
Planet 1976 IAU DE200 DE405 Reference for DE405 value
Mercury 6023600. 6023600. 6023600. Anderson et al., 1987
Venus 408523. 5 408523. 5 408523. 71 Sjogren et al., 1990
Earth & Moon 328900. 5 328900. 55 328900. 561400 Standish, 1997
Mars 3098710. 3098710. 3098708. Null, 1969
Jupiter 1047. 355 1047. 350 1047. 3486 Campbell and Synott, 1985
Saturn 3498. 5 3498. 0 3497. 898 Campbell and Anderson, 1989
Uranus 22869. 22960. 22902. 98 Jacobson et al., 1992
Neptune 19314. 19314. 19412. 24 Jacobson et al., 1991
Pluto 3000000. 130000000. 135200000. Tholen and Buie, 1997

Also associated with the ephemerides is the set of astronomical constants
used in the ephemeris creation; these are listed in Table 3.2. They are
provided directly with the ephemerides and should be considered to be
an integral part of them; they will sometimes differ from a more standard
set, but the differences are necessary for the optimal fitting of the data.

Table 3.2 Auxiliary constants from the JPL Planetary and Lunar Ephemerides
DE405/LE405.

Scale (km/au) 149597870.691 GMCeres 4.7 ×10−10GMSun

Scale (s/au) 499.0047838061 GMPallas 1.0 ×10−10GMSun

Speed of light (km/s) 299792.458 GMV esta 1.3 ×10−10GMSun

Obliquity of the ecliptic 23◦26′21.409′′ densityclassC 1.8
Earth-Moon mass ratio 81.30056 densityclassS 2.4

densityclassM 5.0

2http://ssd.jpl.nasa.gov/iau-comm4
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4 Conventional Terrestrial Reference System and Frame

4.1 Concepts and Terminology

4.1.1 Basic Concepts

A Terrestrial Reference System (TRS) is a spatial reference system co-
rotating with the Earth in its diurnal motion in space. In such a system,
positions of points attached to the solid surface of the Earth have coordi-
nates which undergo only small variations with time, due to geophysical
effects (tectonic or tidal deformations). A Terrestrial Reference Frame
(TRF) is a set of physical points with precisely determined coordinates
in a specific coordinate system (Cartesian, geographic, mapping...) at-
tached to a Terrestrial Reference System. Such a TRF is said to be a
realization of the TRS. These concepts have been defined extensively
by the astronomical and geodetic communities (Kovalevsky et al., 1989,
Boucher, 2001).
Ideal Terrestrial Reference Systems. An ideal Terrestrial Reference
System (TRS) is defined as a reference trihedron close to the Earth and
co-rotating with it. In the Newtonian framework, the physical space is
considered as an Euclidian affine space of dimension 3. In this case, such
a reference trihedron is an Euclidian affine frame (O,E). O is a point of
the space named origin. E is a basis of the associated vector space. The
currently adopted restrictions on E are to be right-handed, orthogonal
with the same length for the basis vectors. The triplet of unit vectors
collinear to the basis vectors will express the orientation of the TRS
and the common length of these vectors its scale,

λ = ‖ ~Ei‖i=1,2,3. (1)

We consider here systems for which the origin is close to the Earth’s
center of mass (geocenter), the orientation is equatorial (the Z axis is the
direction of the pole) and the scale is close to an SI meter. In addition
to Cartesian coordinates (naturally associated with such a TRS), other
coordinate systems, e.g. geographical coordinates, could be used. For a
general reference on coordinate systems, see Boucher (2001).
Under these hypotheses, the general transformation of the Cartesian
coordinates of any point close to the Earth from TRS (1) to TRS (2) will
be given by a three-dimensional similarity (~T1,2 is a translation vector,
λ1,2 a scale factor and R1,2 a rotation matrix)

~X(2) = ~T1,2 + λ1,2 ·R1,2 · ~X(1). (2)

This concept can be generalized in the frame of a relativistic background
model such as Einstein’s General Relativity, using the spatial part of
a local Cartesian frame (Boucher, 1986). For more details concerning
general relativistic models, see Chapters 10 and 11.
In the application of (2), the IERS uses the linearized formulas and no-
tation. The standard transformation between two reference systems is a
Euclidian similarity of seven parameters: three translation components,
one scale factor, and three rotation angles, designated respectively, T1,
T2, T3, D, R1, R2, R3, and their first time derivatives: Ṫ1, Ṫ2, Ṫ3, Ḋ,
Ṙ1, Ṙ2, Ṙ3. The transformation of a coordinate vector ~X1, expressed in
reference system (1), into a coordinate vector ~X2, expressed in reference
system (2), is given by

~X2 = ~X1 + ~T +D ~X1 +R ~X1, (3)

λ1,2 = 1 +D, R1,2 = (I +R), and I is the identity matrix with
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T =

(
T1
T2
T3

)
, R =

( 0 −R3 R2
R3 0 −R1
−R2 R1 0

)
.

It is assumed that equation (3) is linear for sets of station coordinates
provided by space geodesy techniques. Origin differences are about a few
hundred meters, and differences in scale and orientation are at the level
of 10−5. Generally, ~X1, ~X2, T , D,R are functions of time. Differentiating
equation (3) with respect to time gives

~̇X2 = ~̇X1 + ~̇T + Ḋ ~X1 +D ~̇X1 + Ṙ ~X1 +R ~̇X1. (4)

D and R are at the 10−5 level and Ẋ is about 10 cm per year, the
terms D ~̇X1 and R ~̇X1 which represent about 0.1 mm over 100 years are
negligible. Therefore, equation (4) could be written as

~̇X2 = ~̇X1 + ~̇T + Ḋ ~X1 + Ṙ ~X1. (5)

Conventional Terrestrial Reference System (CTRS). A CTRS is
defined by the set of all conventions, algorithms and constants which
provide the origin, scale and orientation of that system and their time
evolution.
Conventional Terrestrial Reference Frame (CTRF). A Conven-
tional Terrestrial Reference Frame is defined as a set of physical points
with precisely determined coordinates in a specific coordinate system
as a realization of an ideal Terrestrial Reference System. Two types of
frames are currently distinguished, namely dynamical and kinematical,
depending on whether or not a dynamical model is applied in the process
of determining these coordinates.

4.1.2 TRF in Space Geodesy

Seven parameters are needed to fix a TRF at a given epoch, to which
are added their time-derivatives to define the TRF time evolution. The
selection of the 14 parameters, called “datum definition,” establishes the
TRF origin, scale, orientation and their time evolution.
Space geodesy techniques are not sensitive to all the parameters of the
TRF datum definition. The origin is theoretically accessible through dy-
namical techniques (LLR, SLR, GPS, DORIS), being the center of mass
(point around which the satellite orbits). The scale depends on some
physical parameters (e.g. geo-gravitational constant GM and speed of
light c) and relativistic modelling. The orientation, unobservable by any
technique, is arbitrary or conventionally defined. Meanwhile it is recom-
mended to define the orientation time evolution using a no-net-rotation
condition with respect to horizontal motions over the Earth’s surface.
Since space geodesy observations do not contain all the necessary in-
formation to completely establish a TRF, some additional information
is then needed to complete the datum definition. In terms of normal
equations, usually constructed upon space geodesy observations, this
situation is reflected by the fact that the normal matrix, N , is singular,
since it has a rank deficiency corresponding to the number of datum
parameters which are not reduced by the observations.
In order to cope with this rank deficiency, the analysis centers currently
add one of the following constraints upon all or a sub-set of stations:

1. Removable constraints: solutions for which the estimated station
positions and/or velocities are constrained to external values within
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an uncertainty σ ≈ 10−5 m for positions and m/y for velocities.
This type of constraint is easily removable, see for instance Al-
tamimi et al. (2002a; 2002b).

2. Loose constraints: solutions where the uncertainty applied to the
constraints is σ ≥ 1 m for positions and ≥ 10 cm/y for velocities.

3. Minimum constraints used solely to define the TRF using a min-
imum amount of required information. For more details on the
concepts and practical use of minimum constraints, see for instance
Sillard and Boucher (2001) and Altamimi et al. (2002a).

Note that the old method where very tight constraints (σ ≤ 10−10 m)
are applied (which are numerically not easy to remove), is no longer
suitable and may alter the real quality of the estimated parameters.
In case of removable or loose constraints, this amounts to adding the
following observation equation

~X − ~X0 = 0, (6)

where ~X is the vector of estimated parameters (positions and/or veloci-
ties) and ~X0 is that of the a priori parameters.
Meanwhile, in case of minimum constraints, the added equation is of the
form

B( ~X − ~X0) = 0, (7)

where B = (ATA)−1AT and A is the design matrix of partial derivatives,
constructed upon a priori values ( ~X0) given by either

A =



. . . . . . .
1 0 0 xi

0 0 zi
0 −yi

0

0 1 0 yi
0 −zi

0 0 xi
0

0 0 1 zi
0 yi

0 −xi
0 0

. . . . . . .


(8)

when solving for only station positions, or

A =



. . . . . . . . . . . . . .
1 0 0 x0

i 0 z0
i −y0

i

0 1 0 y0
i −z0

i 0 x0
i ≈ 0

0 0 1 z0
i y0

i −x0
i 0

1 0 0 x0
i 0 z0

i −y0
i

≈ 0 0 1 0 y0
i −z0

i 0 x0
i

0 0 1 z0
i y0

i −x0
i 0

. . . . . . . . . . . . . .


(9)

when solving for station positions and velocities.
The fundamental distinction between the two approaches is that in equa-
tion (6), we force ~X to be equal to ~X0 (to a given σ), while in equation
(7) we express ~X in the same TRF as ~X0 using the projector B con-
taining all the necessary information defining the underlying TRF. Note
that the two approaches are sensitive to the configuration and quality of
the subset of stations ( ~X0) used in these constraints.
In terms of normal equations, equation (7) could be written as

(BT Σ−1
θ B) ~X = (BT Σ−1

θ B) ~X0, (10)
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where Σθ is a diagonal matrix containing small variances for each of
the transformation parameters. Adding equation (10) to the singular
normal matrix N allows it to be inverted and simultaneously to express
the estimated solution in the same TRF as the a priori solution ~X0. Note
that the 7 columns of the design matrix A correspond to the 7 datum
parameters (3 translations, 1 scale factor and 3 rotations). Therefore
this matrix should be reduced to those parameters which need to be
defined (e.g. 3 rotations in almost all techniques and 3 translations in
case of VLBI). For more practical details, see, for instance, Altamimi et
al. (2002a).

4.1.3 Crust-based TRF

In general, various types of TRF can be considered. In practice two
major categories are used:

• positions of satellites orbiting around the Earth, expressed in a TRS.
This is the case for navigation satellite systems or satellite radar al-
timetry, see section 4.3;

• positions of points fixed on solid Earth crust, mainly tracking instru-
ments or geodetic markers (see sub-section 4.2.1).

Such crust-based TRF are those currently determined in IERS activities,
either by analysis centers or by combination centers, and ultimately as
IERS products (see sub-section 4.1.5).

The general model connecting the instantaneous actual position of a
point anchored on the Earth’s crust at epoch t, ~X(t), and a regularized
position ~XR(t) is

~X(t) = ~XR(t) +
∑

i

∆ ~Xi(t). (11)

The purpose of the introduction of a regularized position is to remove
high-frequency time variations (mainly geophysical ones) using conven-
tional corrections ∆ ~Xi(t), in order to obtain a position with regular time
variation. In this case, ~XR can be estimated by using models and numer-
ical values. The current model is linear (position at a reference epoch t0
and velocity):

~XR(t) = ~X0 + ~̇X · (t− t0). (12)

The numerical values are ( ~X0, ~̇X). In the past (ITRF88 and ITRF89),
constant values were used as models ( ~X0), the linear motion being incor-
porated as conventional corrections derived from a tectonic plate motion
model (see sub-section 4.2.2).

Conventional models are presented in Chapter 7 for solid Earth tides,
ocean loading, pole tide, atmospheric loading, and geocenter motion.

4.1.4 The International Terrestrial Reference System

The IERS is in charge of defining, realizing and promoting the Inter-
national Terrestrial Reference System (ITRS) as defined by the IUGG
Resolution No. 2 adopted in Vienna, 1991 (Geodesist’s Handbook, 1992).
The resolution recommends the following definitions of the TRS: “1)
CTRS to be defined from a geocentric non-rotating system by a spa-
tial rotation leading to a quasi-Cartesian system, 2) the geocentric non-
rotating system to be identical to the Geocentric Reference System
(GRS) as defined in the IAU resolutions, 3) the coordinate-time of the
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CTRS as well as the GRS to be the Geocentric Coordinate Time (TCG),
4) the origin of the system to be the geocenter of the Earth’s masses in-
cluding oceans and atmosphere, and 5) the system to have no global
residual rotation with respect to horizontal motions at the Earth’s sur-
face.”
The ITRS definition fulfills the following conditions.

1. It is geocentric, the center of mass being defined for the whole
Earth, including oceans and atmosphere;

2. The unit of length is the meter (SI). This scale is consistent with
the TCG time coordinate for a geocentric local frame, in agree-
ment with IAU and IUGG (1991) resolutions. This is obtained by
appropriate relativistic modelling;

3. Its orientation was initially given by the Bureau International de
l’Heure (BIH) orientation at 1984.0;

4. The time evolution of the orientation is ensured by using a no-net-
rotation condition with regards to horizontal tectonic motions over
the whole Earth.

4.1.5 Realizations of the ITRS

Realizations of the ITRS are produced by the IERS ITRS Product Cen-
ter (ITRS-PC) under the name International Terrestrial Reference Frame
(ITRF). The current procedure is to combine individual TRF solutions
computed by IERS analysis centers using observations of space geodesy
techniques: VLBI, LLR, SLR, GPS and DORIS. These individual TRF
solutions currently contain station positions and velocities together with
full variance matrices provided in the SINEX format. The combination
model used to generate ITRF solutions is essentially based on the trans-
formation formulas of equations (3) and (5). The combination method
makes use of local ties in collocation sites where two or more geodetic
systems are operated. The local ties are used as additional observations
with proper variances. They are usually derived from local surveys us-
ing either classical geodesy or the Global Positioning System (GPS). As
they represent a key element of the ITRF combination, they should be
better or at least as accurate as the individual space geodesy solutions
incorporated in the ITRF combination.
Currently, ITRF solutions are published nearly annually by the ITRS-
PC in the Technical Notes (cf. Boucher et al., 1999). The numbers (yy)
following the designation “ITRF” specify the last year whose data were
used in the formation of the frame. Hence ITRF97 designates the frame
of station positions and velocities constructed in 1999 using all of the
IERS data available until 1998.
The reader may also refer to the report of the ITRF Working Group on
the ITRF Datum (Ray et al., 1999), which contains useful information
related to the history of the ITRF datum definition. It also details
technique-specific effects on some parameters of the datum definition, in
particular the origin and the scale.

4.2 ITRF Products

4.2.1 The IERS Network

The initial definition of the IERS network
The IERS network was initially defined through all tracking instruments
used by the various individual analysis centers contributing to the IERS.
All SLR, LLR and VLBI systems were included. Eventually, GPS sta-
tions from the IGS were added as well as the DORIS tracking network.
The network also included, from its beginning, a selection of ground
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markers, specifically those used for mobile equipment and those cur-
rently included in local surveys performed to monitor local eccentricities
between instruments for collocation sites or for site stability checks.
Each point is currently identified by the attribution of a DOMES num-
ber. The explanations of the DOMES numbering system is given below.
Close points are clustered into a site. The current rule is that all points
which could be linked by a collocation survey (up to 30 km) should be
included as a unique site of the IERS network having a unique DOMES
site number.

Collocations
In the frame of the IERS, the concept of collocation can be defined as the
fact that two instruments are occupying simultaneously or subsequently
very close locations that are very precisely surveyed in three dimensions.
These include situations such as simultaneous or non-simultaneous mea-
surements and instruments of the same or different techniques.
As typical illustrations of the potential use of such data, we can mention:

1. calibration of mobile systems, for instance SLR or GPS antennas,
using simultaneous measurements of instruments of the same tech-
nique;

2. repeated measurements on a marker with mobile systems (for in-
stance mobile SLR or VLBI), using non-simultaneous measure-
ments of instruments of the same technique;

3. changes in antenna location for GPS or DORIS;
4. collocations between instruments of different techniques, which im-

plies eccentricities, except in the case of successive occupancies of
a given marker by various mobile systems.

Usually, collocated points should belong to a unique IERS site.

Extensions of the IERS network
Recently, following the requirements of various user communities, the
initial IERS network was expanded to include new types of systems
which are of potential interest. Consequently, the current types of points
allowed in the IERS and for which a DOMES number can be assigned
are (IERS uses a one character code for each type):

• satellite laser ranging (SLR) (L),
• lunar laser ranging (LLR) (M),
• VLBI (R),
• GPS (P),
• DORIS (D) also Doppler NNSS in the past,
• optical astrometry (A) –formerly used by the BIH–,
• PRARE (X),
• tide gauge (T),
• meteorological sensor (W).

For instance, the cataloging of tide gauges collocated with IERS instru-
ments, in particular GPS or DORIS, is of interest for the Global Sea
Level Observing System (GLOSS) program under the auspices of UN-
ESCO.
Another application is to collect accurate meteorological surface mea-
surements, in particular atmospheric pressure, in order to derive raw
tropospheric parameters from tropospheric propagation delays that can
be estimated during the processing of radio measurements, e.g. made
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by the GPS, VLBI, or DORIS space techniques. Other systems could
also be considered if it was considered as useful (for instance systems
for time transfer, super-conducting or absolute gravimeters. . .) These
developments were undertaken to support the conclusions of the CSTG
Working Group on Fundamental Reference and Calibration Network.

Another important extension is the wish of some continental or national
organizations to see their fiducial networks included into the IERS net-
work, either to be computed by IERS (for instance the European Ref-
erence Frame (EUREF) permanent GPS network) or at least to get
DOMES numbers (for instance the Continuously Operating Reference
Stations (CORS) network in USA). Such extensions are supported by the
IAG Commission X on Global and Regional Geodetic Networks (GRGN)
in order to promulgate the use of the ITRS.

4.2.2 History of ITRF Products

The history of the ITRF goes back to 1984, when for the first time a
combined TRF (called BTS84), was established using station coordinates
derived from VLBI, LLR, SLR and Doppler/ TRANSIT (the predecessor
of GPS) observations (Boucher and Altamimi, 1985). BTS84 was real-
ized in the framework of the activities of BIH, being a coordinating center
for the international MERIT project (Monitoring of Earth Rotation and
Inter-comparison of Techniques) (Wilkins, 2000). Three other successive
BTS realizations were then achieved, ending with BTS87, when in 1988,
the IERS was created by the IUGG and the International Astronomical
Union (IAU).

Until the time of writing, 10 versions of the ITRF were published, start-
ing with ITRF88 and ending with ITRF2000, each of which superseded
its predecessor.

From ITRF88 till ITRF93, the ITRF Datum Definition is summarized
as follows:

• Origin and Scale: defined by an average of selected SLR solutions;

• Orientation: defined by successive alignment since BTS87 whose ori-
entation was aligned to the BIH EOP series. Note that the ITRF93
orientation and its rate were again realigned to the IERS EOP series;

• Orientation Time Evolution: No global velocity field was estimated for
ITRF88 and ITRF89 and so the AM0-2 model of (Minster and Jordan,
1978) was recommended. Starting with ITRF91 and till ITRF93, com-
bined velocity fields were estimated. The ITRF91 orientation rate was
aligned to that of the NNR-NUVEL-1 model, and ITRF92 to NNR-
NUVEL-1A (Argus and Gordon, 1991), while ITRF93 was aligned to
the IERS EOP series.

Since the ITRF94, full variance matrices of the individual solutions incor-
porated in the ITRF combination were used. At that time, the ITRF94
datum was achieved as follows (Boucher et al., 1996):

• Origin: defined by a weighted mean of some SLR and GPS solutions;

• Scale: defined by a weighted mean of VLBI, SLR and GPS solutions,
corrected by 0.7 ppb to meet the IUGG and IAU requirement to be
in the TCG (Geocentric Coordinate Time) time-frame instead of TT
(Terrestrial Time) used by the analysis centers;

• Orientation: aligned to the ITRF92;

• Orientation time evolution: aligned the velocity field to the model
NNR-NUVEL-1A, over the 7 rates of the transformation parameters.
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The ITRF96 was then aligned to the ITRF94, and the ITRF97 to the
ITRF96 using the 14 transformation parameters (Boucher et al., 1998;
1999).

The ITRF network has improved with time in terms of the number of
sites and collocations as well as their distribution over the globe. Fig-
ure 4.1 shows the ITRF88 network having about 100 sites and 22 collo-
cations (VLBI/SLR/LLR), and the ITRF2000 network containing about
500 sites and 101 collocations. The ITRF position and velocity precisions
have also improved with time, thanks to analysis strategy improvements
both by the IERS Analysis Centers and the ITRF combination as well
as their mutual interaction. Figure 4.2 displays the formal errors in
positions and velocities, comparing ITRF94, 96, 97, and ITRF2000.

1 2 3  3  
20 2Collocated techniques -->Collocated techniques -->

1 2 3  4 4 4 4 4 
70 25 6 Collocated techniques ->

Fig. 4.1 ITRF88 (left) and ITRF2000 (right) sites and collocated techniques.
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Fig. 4.2 Formal errors evolution between different ITRF versions in position (left) and velocity
(right).
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4.2.3 ITRF2000, the Current Reference Realization of the ITRS

The ITRF2000 is intended to be a standard solution for geo-referencing
and all Earth science applications. In addition to primary core stations
observed by VLBI, LLR, SLR, GPS and DORIS, the ITRF2000 is den-
sified by regional GPS networks in Alaska, Antarctica, Asia, Europe,
North and South America and the Pacific.
The individual solutions used in the ITRF2000 combination are gener-
ated by the IERS analysis centers using removable, loose or minimum
constraints.
In terms of datum definition, the ITRF2000 is characterized by the fol-
lowing properties:

• the scale is realized by setting to zero the scale and scale rate param-
eters between ITRF2000 and a weighted average of VLBI and most
consistent SLR solutions. Unlike the ITRF97 scale expressed in the
TCG-frame, that of the ITRF2000 is expressed in the TT-frame;

• the origin is realized by setting to zero the translation components
and their rates between ITRF2000 and a weighted average of most
consistent SLR solutions;

• the orientation is aligned to that of the ITRF97 at 1997.0 and its
rate is aligned, conventionally, to that of the geological model NNR-
NUVEL-1A (Argus and Gordon, 1991; DeMets et al., 1990; 1994).
This is an implicit application of the no-net-rotation condition, in
agreement with the ITRS definition. The ITRF2000 orientation and
its rate were established using a selection of ITRF sites with high
geodetic quality, satisfying the following criteria:
1. continuous observation for at least 3 years;
2. locations far from plate boundaries and deforming zones;
3. velocity accuracy (as a result of the ITRF2000 combination) bet-

ter than 3 mm/y;
4. velocity residuals less than 3 mm/y for at least 3 different solu-

tions.

The ITRF2000 results show significant disagreement with the geolog-
ical model NUVEL-1A in terms of relative plate motions (Altamimi
et al., 2002b). Although the ITRF2000 orientation rate alignment to
NNR-NUVEL-1A is ensured at the 1 mm/y level, regional site velicity
differences between the two may exceed 3 mm/y. Meanwhile it should
be emphasized that these differences do not at all disrupt the internal
consistency of the ITRF2000, simply because the alignment defines the
ITRF2000 orientation rate and nothing more. Moreover, angular veloc-
ities of tectonic plates which would be estimated using ITRF2000 veloc-
ities may significantly differ from those predicted by the NNR-NUVEL-
1A model.

4.2.4 Expression in ITRS using ITRF

The procedure used in the IERS to determine ITRF products includes
several steps:

1. definition of individual TRF used by contributing analysis cen-
ters. This implies knowing the particular conventional corrections
adopted by each analysis center.

2. determination of the ITRF by the combination of individual TRF
and datum fixing. This implies adoption for the ITRF of a set of
conventional corrections and ensures the consistency of the combi-
nation by removing possible differences between corrections adop-
ted by each contributing analysis centers;
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3. definitions of corrections for users to get best estimates of positions
in ITRS.

In this procedure, the current status is as follows:

A) Solid Earth Tides
Since the beginning, all analysis centers use a conventional tide-free cor-
rection, first published in MERIT Standards, ∆ ~XtidM . Consequently,
the ITRF has adopted the same option and is therefore a “conventional
tide free” frame, according to the nomenclature in the Introduction. To
adopt a different model, ∆ ~Xtid, a user then needs to apply the following
formula to get the regularized position ~XR consistent with this model:

~XR = ~XITRF + (∆ ~XtidM −∆ ~Xtid). (13)

For more details concerning tidal corrections, see Chapter 7.

B) Relativistic scale
All individual centers use the TT scale. In the same manner the ITRF
has also adopted this option (except ITRF94, 96 and 97, see sub-section
4.2.2). It should be noted that the ITRS is specified to be consistent
with the TCG scale. Consequently, the regularized positions strictly
expressed in the ITRS have to be computed using

~XR = (1 + LG) ~XITRF (14)

where LG = 0.6969290134× 10−9 (IAU Resolution B1.9, 24th IAU Gen-
eral Assembly, Manchester 2000).

C) Geocentric positions
The ITRF origin is fixed in the datum definition. In any case, it should
be considered as a figure origin related to the crust. In order to obtain a
truly geocentric position, following the ITRS definition, one must apply
the geocenter motion correction ∆ ~XG

~XITRS = ~XITRF + ∆ ~XG. (15)

Noting OG(t) the geocenter motion in ITRF, (see, Ray et al., 1999), then

∆ ~XG(t) = − ~OG(t). (16)

4.2.5 Transformation Parameters between ITRF Solutions

Table 4.1 lists transformation parameters and their rates from ITRF2000
to previous ITRF versions, which should be used with equations (3) and
(5) given above. The values listed in this table have been compiled from
those already published in previous IERS Technical Notes as well as from
the recent ITRF2000/ITRF97 comparison. Moreover, it should be noted
that these parameters are adjusted values which are heavily dependent
on the weighting as well as the number and distribution of the implied
common sites between these frames. Therefore, using different subsets of
common stations between two ITRF solutions to estimate transformation
parameters would not necessarily yield values consistent with those of
Table 4.1.
ITRF solutions are specified by Cartesian equatorial coordinates X,
Y , and Z. If needed, they can be transformed to geographical coor-
dinates (λ, φ, h) referred to an ellipsoid. In this case the GRS80 el-
lipsoid is recommended (semi-major axis a=6378137.0 m, eccentricity2

=0.00669438002290). See the IERS Conventions’ web page for the sub-
routine at <3>.

3http://maia.usno.navy.mil/conv2000.html
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Table 4.1 Transformation parameters from ITRF2000 to past ITRFs.
“ppb” refers to parts per billion (or 10−9). The units for rate
are understood to be “per year.”

ITRF
Solution T1 T2 T3 D R1 R2 R3

(cm) (cm) (cm) (ppb) (mas) (mas) (mas) Epoch
ITRF97 0.67 0.61 -1.85 1.55 0.00 0.00 0.00 1997.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF96 0.67 0.61 -1.85 1.55 0.00 0.00 0.00 1997.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF94 0.67 0.61 -1.85 1.55 0.00 0.00 0.00 1997.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF93 1.27 0.65 -2.09 1.95 -0.39 0.80 -1.14 1988.0

rates -0.29 -0.02 -0.06 0.01 -0.11 -0.19 0.07
ITRF92 1.47 1.35 -1.39 0.75 0.0 0.0 -0.18 1988.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF91 2.67 2.75 -1.99 2.15 0.0 0.0 -0.18 1988.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF90 2.47 2.35 -3.59 2.45 0.0 0.0 -0.18 1988.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF89 2.97 4.75 -7.39 5.85 0.0 0.0 -0.18 1988.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02
ITRF88 2.47 1.15 -9.79 8.95 0.1 0.0 -0.18 1988.0

rates 0.00 -0.06 -0.14 0.01 0.00 0.00 0.02

4.3 Access to the ITRS

Several ways could be used to express point positions in the ITRS. We
mention here very briefly some procedures:

• direct use of ITRF station positions;

• use of IGS products (e.g. orbits and clocks) which are nominally all
referred to the ITRF. However, users should be aware of the ITRF
version used in the generation of the IGS products. Note also that
IGS/GPS orbits themselves belong to the first TRF category de-
scribed in sub-section 4.1.3;

• Fixing or constraining some ITRF station coordinates in the analysis
of GPS measurements of a campaign or permanent stations;

• use of transformation formulas which would be estimated between a
particular TRF and an ITRF solution.

Other useful details are also available in Boucher and Altamimi (1996).
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5 Transformation Between the Celestial and Terrestrial

Systems

The coordinate transformation to be used to transform from the terres-
trial reference system (TRS) to the celestial reference system (CRS) at
the epoch t of the observation can be written as:

[CRS] = Q(t)R(t)W (t) [TRS], (1)

where Q(t), R(t) and W (t) are the transformation matrices arising from
the motion of the celestial pole in the celestial system, from the rotation
of the Earth around the axis of the pole, and from polar motion respec-
tively. The frame as realized from the [TRS] by applying the transfor-
mations W (t) and then R(t) will be called “the intermediate reference
frame of epoch t.”

5.1 The Framework of IAU 2000 Resolutions

Several resolutions were adopted by the XXIVth General Assembly of
the International Astronomical Union (Manchester, August 2000) that
concern the transformation between the celestial and terrestrial reference
systems and are therefore to be implemented in the IERS procedures.
Such a transformation being also required for computing directions of
celestial objects in intermediate systems, the process to transform among
these systems consistent with the IAU resolutions is also provided at the
end of this chapter.
Resolution B1.3 specifies that the systems of space-time coordinates
as defined by IAU Resolution A4 (1991) for the solar system and the
Earth within the framework of General Relativity are now named the
Barycentric Celestial Reference System (BCRS) and the Geocentric Ce-
lestial Reference System (GCRS) respectively. It also provides a gen-
eral framework for expressing the metric tensor and defining coordinate
transformations at the first post-Newtonian level.
Resolution B1.6 recommends that, beginning on 1 January 2003, the IAU
1976 Precession Model and IAU 1980 Theory of Nutation be replaced
by the precession-nutation model IAU 2000A (MHB 2000 based on the
transfer functions of Mathews et al., (2002)) for those who need a model
at the 0.2 mas level, or its shorter version IAU 2000B for those who need
a model only at the 1 mas level, together with their associated celestial
pole offsets, published in this document.
Resolution B1.7 recommends that the Celestial Intermediate Pole (CIP)
be implemented in place of the Celestial Ephemeris Pole (CEP) on 1
January 2003 and specifies how to implement its definition through its
direction at J2000.0 in the GCRS as well as the realization of its motion
both in the GCRS and ITRS. Its definition is an extension of that of the
CEP in the high frequency domain and coincides with that of the CEP
in the low frequency domain (Capitaine, 2000).
Resolution B1.8 recommends the use of the “non-rotating origin” (NRO)
(Guinot, 1979) both in the GCRS and the ITRS and these origins are
designated as the Celestial Ephemeris Origin (CEO) and the Terrestrial
Ephemeris Origin (TEO). The “Earth Rotation Angle” is defined as the
angle measured along the equator of the CIP between the CEO and the
TEO. This resolution recommends that UT1 be linearly proportional
to the Earth Rotation Angle and that the transformation between the
ITRS and GCRS be specified by the position of the CIP in the GCRS,
the position of the CIP in the ITRS, and the Earth Rotation Angle. It is
recommended that the IERS takes steps to implement this by 1 January
2003 and that the IERS will continue to provide users with data and
algorithms for the conventional transformation.
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5 Transformation Between the Celestial and Terrestrial Systems

Following the recommendations above, this chapter of the IERS Con-
ventions provides the expressions for the implementation of the IAU
resolutions using the new transformation which is described in Resolu-
tion B1.8. It also provides the expressions which are necessary to be
compatible with the resolutions when using the conventional transfor-
mation. Numerical values contained in this chapter have been slightly
revised from earlier provisional values to ensure continuity of the IERS
products. Fortran subroutines implementing the transformations are
described towards the end of the chapter. More detailed explanations
about the relevant concepts, software and IERS products can be found
in IERS Technical Note 29 (Capitaine et al., 2002).

5.2 Implementation of IAU 2000 Resolutions

In order to follow Resolution B1.3, the celestial reference system, which
is designated here CRS, must correspond to the geocentric space coor-
dinates of the GCRS. IAU Resolution A4 (1991) specified that the rela-
tive orientation of barycentric and geocentric spatial axes in BCRS and
GCRS are without any time dependent rotation. This requires that the
geodesic precession and nutation be taken into account in the precession-
nutation model.

Concerning the time coordinates, IAU Resolution A4 (1991) defined
TCB and TCG of the BCRS and GCRS respectively, as well as an-
other time coordinate in the GCRS, Terrestrial Time (TT), which is the
theoretical counterpart of the realized time scale TAI+32.184 s and has
been re-defined by IAU resolution B1.9 (2000). See Chapter 10 for the
relationships between these time scales.

The parameter t, used in the following expressions, is defined by

t = (TT− 2000 January 1d 12h TT) in days/36525. (2)

This definition is consistent with IAU Resolution C7 (1994) which rec-
ommends that the epoch J2000.0 be defined at the geocenter and at the
date 2000 January 1.5 TT = Julian Date 2451545.0 TT.

In order to follow Resolution B1.6, the precession-nutation quantities
to be used in the transformation matrix Q(t) must be based on the
precession-nutation model IAU 2000A or IAU 2000B depending on the
required precision. In order to follow Resolution B1.7, the realized ce-
lestial pole must be the CIP. This requires an offset at epoch in the
conventional model for precession-nutation as well as diurnal and higher
frequency variations in the Earth’s orientation. According to this reso-
lution, the direction of the CIP at J2000.0 has to be offset from the pole
of the GCRS in a manner consistent with the IAU 2000A Precession-
Nutation Model. The motion of the CIP in the GCRS is realized by the
IAU 2000 model for precession and forced nutation for periods greater
than two days plus additional time-dependent corrections provided by
the IERS through appropriate astro-geodetic observations. The motion
of the CIP in the ITRS is provided by the IERS through astro-geodetic
observations and models including variations with frequencies outside
the retrograde diurnal band.

The realization of the CIP thus requires that the IERS monitor the
observed differences (reported as “celestial pole offsets”) with respect to
the conventional celestial position of the CIP in the GCRS based on the
IAU 2000 Precession-Nutation Model together with its observed offset
at epoch. It also requires that the motion of the CIP in the TRS be
provided by the IERS by observations taking into account a predictable
part specified by a model including the terrestrial motion of the pole
corresponding to the forced nutations with periods less than two days
(in the GCRS) as well as the tidal variations in polar motion. Two
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equivalent procedures were given in the IERS Conventions (McCarthy,
1996) for the coordinate transformation from the TRS to the CRS. The
classical procedure, which was described in detail as option 1, makes use
of the equinox for realizing the intermediate reference frame of date t.
It uses apparent Greenwich Sidereal Time (GST) in the transformation
matrix R(t) and the classical precession and nutation parameters in the
transformation matrix Q(t).

The second procedure, which was described in detail as option 2, makes
use of the “non-rotating origin” to realize the intermediate reference
frame of date t. It uses the “Earth Rotation Angle,” originally referred
to as “stellar angle” in the transformation matrix R(t), and the two
coordinates of the celestial pole in the CRS (Capitaine, 1990) in the
transformation matrix Q(t).

Resolutions B1.3, B1.6 and B1.7 can be implemented in any of these pro-
cedures if the requirements described above are followed for the space-
time coordinates in the geocentric celestial system, for the precession and
nutation model on which are based the precession and nutation quan-
tities used in the transformation matrix Q(t) and for the polar motion
used in the transformation matrix W (t).

On the other hand, only the second procedure can be in agreement with
Resolution B1.8, which requires the use of the “non-rotating origin” both
in the CRS and the TRS as well as the position of the CIP in the GCRS
and in the ITRS. However, the IERS must also provide users with data
and algorithms for the conventional transformation; this implies that the
expression of Greenwich Sidereal Time (GST) has to be consistent with
the new procedure.

The following sections give the details of this procedure and the stan-
dard expressions necessary to obtain the numerical values of the relevant
parameters at the date of the observation.

5.3 Coordinate Transformation consistent with the IAU 2000 Resolutions

In the following, R1, R2 and R3 denote rotation matrices with positive
angle about the axes 1, 2 and 3 of the coordinate frame. The posi-
tion of the CIP both in the TRS and CRS is provided by the x and y
components of the CIP unit vector. These components are called “coor-
dinates” in the following and their numerical expressions are multiplied
by the factor 1296000′′/2π in order to provide in arcseconds the value of
the corresponding “angles” with respect to the polar axis of the reference
system.

The coordinate transformation (1) from the TRS to the CRS corre-
sponding to the procedure consistent with Resolution B1.8 is expressed
in terms of the three fundamental components as given below (Capitaine,
1990)

W (t) = R3(−s′) ·R2(xp) ·R1(yp), (3)

xp and yp being the “polar coordinates” of the Celestial Intermediate
Pole (CIP) in the TRS and s′ being a quantity which provides the po-
sition of the TEO on the equator of the CIP corresponding to the kine-
matical definition of the NRO in the ITRS when the CIP is moving with
respect to the ITRS due to polar motion. The expression of s′ as a
function of the coordinates xp and yp is:

s′(t) = (1/2)
∫ t

t0

(xpẏp − ẋpyp) dt. (4)

The use of the quantity s′, which was neglected in the classical form
prior to 1 January 2003, is necessary to provide an exact realization of
the “instantaneous prime meridian.”
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R(t) = R3(−θ), (5)

θ being the Earth Rotation Angle between the CEO and the TEO at
date t on the equator of the CIP, which provides a rigorous definition of
the sidereal rotation of the Earth.

Q(t) = R3(−E) ·R2(−d) ·R3(E) ·R3(s), (6)

E and d being such that the coordinates of the CIP in the CRS are:

X = sin d cosE, Y = sin d sinE, Z = cos d, (7)

and s being a quantity which provides the position of the CEO on the
equator of the CIP corresponding to the kinematical definition of the
NRO in the GCRS when the CIP is moving with respect to the GCRS,
between the reference epoch and the epoch t due to precession and nu-
tation. Its expression as a function of the coordinates X and Y is (Cap-
itaine et al., 2000)

s(t) = −
∫ t

t0

X(t)Ẏ (t)− Y (t)Ẋ(t)
1 + Z(t)

dt− (σ0N0 − Σ0N0), (8)

where σ0 and Σ0 are the positions of the CEO at J2000.0 and the x-
origin of the GCRS respectively and N0 is the ascending node of the
equator at J2000.0 in the equator of the GCRS. Or equivalently, within
1 microarcsecond over one century

s(t) = −1
2
[X(t)Y (t)−X(t0)Y (t0)] +

∫ t

t0

Ẋ(t)Y (t)dt− (σ0N0 − Σ0N0). (9)

The arbitrary constant σ0N0 − Σ0N0, which had been conventionally
chosen to be zero in previous references (e.g. Capitaine et al., 2000),
is now chosen to ensure continuity with the classical procedure on 1
January 2003 (see expression (36)).
Q(t) can be given in an equivalent form directly involving X and Y as

Q(t) =

 1− aX2 −aXY X
−aXY 1− aY 2 Y
−X −Y 1− a(X2 + Y 2)

 ·R3(s), (10)

with a = 1/(1 + cos d), which can also be written, with an accuracy of
1 µas, as a = 1/2 + 1/8(X2 + Y 2). Such an expression of the transfor-
mation (1) leads to very simple expressions of the partial derivatives of
observables with respect to the terrestrial coordinates of the CIP, UT1,
and celestial coordinates of the CIP.

5.4 Parameters to be used in the Transformation

5.4.1 Schematic Representation of the Motion of the CIP

According to Resolution B1.7, the CIP is an intermediate pole separat-
ing, by convention, the motion of the pole of the TRS in the CRS into
two parts:

• the celestial motion of the CIP (precession/nutation), including all the
terms with periods greater than 2 days in the CRS (i.e. frequencies
between −0.5 counts per sidereal day (cpsd) and +0.5 cpsd),

• the terrestrial motion of the CIP (polar motion), including all the
terms outside the retrograde diurnal band in the TRS (i.e. frequencies
lower than −1.5 cpsd or greater than −0.5 cpsd).
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frequency in TRS
-3.5 -2.5 -1.5 -0.5 +0.5 +1.5 +2.5 (cpsd)

polar motion polar motion

frequency in CRS
-2.5 -1.5 -0.5 +0.5 +1.5 +2.5 +3.5 (cpsd)

nutation

5.4.2 Motion of the CIP in the ITRS

The standard pole coordinates to be used for the parameters xp and yp,
if not estimated from the observations, are those published by the IERS
with additional components to account for the effects of ocean tides and
for nutation terms with periods less than two days.

(xp, yp) = (x, y)IERS + (∆x,∆y)tidal + (∆x,∆y)nutation,
where (x, y)IERS are pole coordinates provided by the IERS,
(∆x,∆y)tidal are the tidal components, and (∆x,∆y)nutation are the
nutation components. The corrections for these variations are described
below.
Corrections (∆x,∆y)tidal for the diurnal and sub-diurnal variations in
polar motion caused by ocean tides can be computed using a routine
available on the website of the IERS Conventions (see Chapter 8). Ta-
ble 8.2 (from Ch. Bizouard), based on this routine, provides the am-
plitudes and arguments of these variations for the 71 tidal constituents
considered in the model. These subdaily variations are not part of the
polar motion values reported to and distributed by the IERS and are
therefore to be added after interpolation.
Recent models for rigid Earth nutation (Souchay and Kinoshita, 1997;
Bretagnon et al., 1997; Folgueira et al., 1998a; Folgueira et al., 1998b;
Souchay et al., 1999; Roosbeek, 1999; Bizouard et al., 2000; Bizouard et
al., 2001) include prograde diurnal and prograde semidiurnal terms with
respect to the GCRS with amplitudes up to∼ 15 µas in ∆ψ sin ε0 and ∆ε.
The semidiurnal terms in nutation have also been provided both for rigid
and nonrigid Earth models based on Hamiltonian formalism (Getino et
al., 2001, Escapa et al., 2002a and b). In order to realize the CIP as
recommended by Resolution B1.7, nutations with periods less than two
days are to be considered using a model for the corresponding motion
of the pole in the ITRS. The prograde diurnal nutations correspond
to prograde and retrograde long periodic variations in polar motion,
and the prograde semidiurnal nutations correspond to prograde diurnal
variations in polar motion (see for example Folgueira et al. 2001). A table
for operational use of the model for these variations (∆x,∆y)nutation

in polar motion for a nonrigid Earth has been provided by an ad hoc
Working Group (Brzeziński, 2002) based on nonrigid Earth models and
developments of the tidal potential (Brzeziński, 2001; Brzeziński and
Capitaine, 2002; Mathews and Bretagnon, 2002). The amplitudes of
the diurnal terms are in very good agreement with those estimated by
Getino et al. (2001). Components with amplitudes greater than 0.5 µas
are given in Table 5.1. The contribution from the triaxiality of the core to
the diurnal waves, while it can exceed the adopted cut-off level (Escapa
et al., 2002b; Mathews and Bretagnon, 2002), has not been taken into
account in the table due to the large uncertainty in the triaxiality of the
core (Dehant, 2002, private communication). The Stokes coefficients of
the geopotential are from the model JGM-3.
The diurnal components of these variations should be considered simi-
larly to the diurnal and semidiurnal variations due to ocean tides. They
are not part of the polar motion values reported to the IERS and dis-
tributed by the IERS and should therefore be added after interpolation.
The long-periodic terms, as well as the secular variation, are already
contained in the observed polar motion and need not be added to the
reported values.
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Table 5.1 Coefficients of sin(argument) and cos(argument) in (∆x,∆y)nutation due to tidal
gravitation (of degree n) for a nonrigid Earth. Units are µas; χ denotes GMST+ π
and the expressions for the fundamental arguments (Delaunay arguments) are given
by (40).

argument Doodson Period xp yp

n χ l l′ F D Ω number (days) sin cos sin cos
4 0 0 0 0 0 −1 055.565 6798.3837 −0.03 0.63 −0.05 −0.55
3 0 −1 0 1 0 2 055.645 6159.1355 1.46 0.00 −0.18 0.11
3 0 −1 0 1 0 1 055.655 3231.4956 −28.53 −0.23 3.42 −3.86
3 0 −1 0 1 0 0 055.665 2190.3501 −4.65 −0.08 0.55 −0.92
3 0 1 1 −1 0 0 056.444 438.35990 −0.69 0.15 −0.15 −0.68
3 0 1 1 −1 0 −1 056.454 411.80661 0.99 0.26 −0.25 1.04
3 0 0 0 1 −1 1 056.555 365.24219 1.19 0.21 −0.19 1.40
3 0 1 0 1 −2 1 057.455 193.55971 1.30 0.37 −0.17 2.91
3 0 0 0 1 0 2 065.545 27.431826 −0.05 −0.21 0.01 −1.68
3 0 0 0 1 0 1 065.555 27.321582 0.89 3.97 −0.11 32.39
3 0 0 0 1 0 0 065.565 27.212221 0.14 0.62 −0.02 5.09
3 0 −1 0 1 2 1 073.655 14.698136 −0.02 0.07 0.00 0.56
3 0 1 0 1 0 1 075.455 13.718786 −0.11 0.33 0.01 2.66
3 0 0 0 3 0 3 085.555 9.1071941 −0.08 0.11 0.01 0.88
3 0 0 0 3 0 2 085.565 9.0950103 −0.05 0.07 0.01 0.55
2 1 −1 0 −2 0 −1 135.645 1.1196992 −0.44 0.25 −0.25 −0.44
2 1 −1 0 −2 0 −2 135.655 1.1195149 −2.31 1.32 −1.32 −2.31
2 1 1 0 −2 −2 −2 137.455 1.1134606 −0.44 0.25 −0.25 −0.44
2 1 0 0 −2 0 −1 145.545 1.0759762 −2.14 1.23 −1.23 −2.14
2 1 0 0 −2 0 −2 145.555 1.0758059 −11.36 6.52 −6.52 −11.36
2 1 −1 0 0 0 0 155.655 1.0347187 0.84 −0.48 0.48 0.84
2 1 0 0 −2 2 −2 163.555 1.0027454 −4.76 2.73 −2.73 −4.76
2 1 0 0 0 0 0 165.555 0.9972696 14.27 −8.19 8.19 14.27
2 1 0 0 0 0 −1 165.565 0.9971233 1.93 −1.11 1.11 1.93
2 1 1 0 0 0 0 175.455 0.9624365 0.76 −0.43 0.43 0.76

Rate of secular polar motion (µas/y) due to the zero frequency tide
4 0 0 0 0 0 0 555.555 −3.80 −4.31

5.4.3 Position of the TEO in the ITRS

The quantity s′ is only sensitive to the largest variations in polar mo-
tion. Some components of s′ have to be evaluated, in principle, from the
measurements and can be extrapolated using the IERS data. Its main
component can be written as:

s′ = −0.0015(a2
c/1.2 + a2

a)t, (11)

ac and aa being the average amplitudes (in arc seconds) of the Chandle-
rian and annual wobbles, respectively in the period considered (Capitaine
et al., 1986). The value of s′ will therefore be less than 0.4 mas through
the next century, even if the amplitudes for the Chandlerian and annual
wobbles reach values of the order of 0.5′′ and 0.1′′ respectively. Using
the current mean amplitudes for the Chandlerian and annual wobbles
gives (Lambert and Bizouard, 2002):

s′ = −47 µas t. (12)

5.4.4 Earth Rotation Angle

The Earth Rotation Angle, θ, is obtained by the use of its conventional
relationship with UT1 as given by Capitaine et al. (2000),

θ(Tu) = 2π(0.7790572732640 + 1.00273781191135448Tu), (13)
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where Tu=(Julian UT1 date−2451545.0), and UT1=UTC+(UT1−UTC),
or equivalently

θ(Tu) = 2π(UT1 Julian day number elapsed since 2451545.0
+0.7790572732640 + 0.00273781191135448Tu), (14)

the quantity UT1−UTC to be used (if not estimated from the observa-
tions) being the IERS value.
This definition of UT1 based on the CEO is insensitive at the microarc-
second level to the precession-nutation model and to the observed celes-
tial pole offsets. Therefore, in the processing of observational data, the
quantity s provided by Table 5.2c must be considered as independent of
observations.

5.4.5 Motion of the CIP in the GCRS

Developments of the coordinates X and Y of the CIP in the GCRS,
valid at the microarcsecond level, based on the IERS 1996 model for
precession, nutation and pole offset at J2000.0 with respect to the pole
of the GCRS, have been provided by Capitaine et al. (2000). New
developments of X and Y based on the IAU 2000A or IAU 2000B model
(see the following section for more details) for precession-nutation and
on their corresponding pole offset at J2000.0 with respect to the pole of
the GCRS have been computed at the same accuracy (Capitaine et al.,
2003a). These developments have the following form:

X = −0.01661699′′ + 2004.19174288′′t− 0.42721905′′t2

−0.19862054′′t3 − 0.00004605′′t4 + 0.00000598′′t5

+
∑

i[(as,0)i sin(ARGUMENT) + (ac,0)i cos(ARGUMENT)]
+
∑

i[(as,1)it sin(ARGUMENT) + (ac,1)it cos(ARGUMENT)]
+
∑

i[(as,2)it
2 sin(ARGUMENT) + (ac,2)it

2 cos(ARGUMENT)]
+ · · · ,

(15)

Y = −0.00695078′′ − 0.02538199′′t− 22.40725099′′t2

+0.00184228′′t3 + 0.00111306′′t4 + 0.00000099′′t5

+
∑

i[(bc,0)i cos(ARGUMENT) + (bs,0)i sin(ARGUMENT)]
+
∑

i[(bc,1)it cos(ARGUMENT) + (bs,1)i t sin(ARGUMENT)]
+
∑

i[(bc,2)it
2 cos(ARGUMENT) + (bs,2)it

2 sin(ARGUMENT)]
+ · · · ,

(16)

the parameter t being given by expression (2) and ARGUMENT being a
function of the fundamental arguments of the nutation theory whose
expressions are given by (40) for the lunisolar ones and (41) for the
planetary ones.
These series are available electronically on the IERS Convention Cen-
ter website (Tables 5.2a and 5.2b) at <4>. tab5.2a.txt for the X
coordinate and at tab5.2b.txt for the Y coordinate. An extract from
Tables 5.2a and 5.2b for the largest non-polynomial terms in X and Y
is given hereafter.

The numerical values of the coefficients of the polynomial part of X
and Y are derived from the development as a function of time of the
precession in longitude and obliquity and pole offset at J2000.0 and the
amplitudes (as,j)i, (ac,j)i, (bc,j)i,(bs,j)i for j = 0, 1, 2, ... are derived
from the amplitudes of the precession and nutation series. The ampli-
tudes (as,0)i, (bc,0)i of the sine and cosine terms in X and Y respectively
are equal to the amplitudes Ai × sin ε0 and Bi of the series for nutation

4ftp://maia.usno.navy.mil/conv2000/chapter5/
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Extract from Tables 5.2a and 5.2b (available at <4>) for the largest non-polynomial terms in the
development (15) for X(t) (top part) and (16) for Y (t) (bottom part) compatible with IAU 2000A
Precession-Nutation Model (unit µas). The expressions for the fundamental arguments appearing in
columns 4 to 17 are given by (40) and (41).
i (as,0)i (ac,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 −6844318.44 1328.67 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −523908.04 −544.76 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 −90552.22 111.23 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 82168.76 −27.64 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 58707.02 470.05 0 1 0 0 0 0 0 0 0 0 0 0 0 0

.....
i (as,1)i (ac,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1307 −3328.48 205833.15 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1308 197.53 12814.01 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
1309 41.19 2187.91 0 0 2 0 2 0 0 0 0 0 0 0 0 0
.....
i (bs,0)i (bc,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 1538.18 9205236.26 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −458.66 573033.42 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 137.41 97846.69 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 −29.05 −89618.24 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 −17.40 22438.42 0 1 2 −2 2 0 0 0 0 0 0 0 0 0

.....
i (bs,1)i (bc,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

963 153041.82 878.89 0 0 0 0 1 0 0 0 0 0 0 0 0 0
964 11714.49 −289.32 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
965 2024.68 −50.99 0 0 2 0 2 0 0 0 0 0 0 0 0 0
.....

in longitude × sin ε0 and obliquity, except for a few terms in each co-
ordinate X and Y which contain a contribution from crossed-nutation
effects. The coordinates X and Y contain Poisson terms in t sin, t cos,
t2 sin, t2 cos, ... which originate from crossed terms between precession
and nutation.
The contributions (in µas) to expressions (15) and (16) from the frame
biases are

dX = −16617.0− 1.6 t2 + 0.7 cos Ω,
dY = −6819.2− 141.9 t+ 0.5 sinΩ, (17)

the first term in each coordinate being the contribution from the celestial
pole offset at J2000.0 and the following ones from the equinox offset at
J2000.0 also called “frame bias in right ascension.”
The celestial coordinates of the CIP, X and Y , can also be obtained at
each time t as a function of the precession and nutation quantities pro-
vided by the IAU 2000 Precession-Nutation Model. The developments
to be used for the precession quantities and for the nutation angles re-
ferred to the ecliptic of date are described in the following section and a
subroutine is available for the computation.
The relationships between the coordinates X and Y and the precession-
nutation quantities are (Capitaine, 1990):

X = X̄ + ξ0 − dα0 Ȳ ,
Y = Ȳ + η0 + dα0 X̄,

(18)

where ξ0 and η0 are the celestial pole offsets at the basic epoch J2000.0
and dα0 the right ascension of the mean equinox of J2000.0 in the CRS.
(See the numbers provided below in (19) and (28) for these quantities.)
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The mean equinox of J2000.0 to be considered is not the “rotational dy-
namical mean equinox of J2000.0” as used in the past, but the “inertial
dynamical mean equinox of J2000.0” to which the recent numerical or
analytical solutions refer. The latter is associated with the ecliptic in
the inertial sense, which is the plane perpendicular to the vector angular
momentum of the orbital motion of the Earth-Moon barycenter as com-
puted from the velocity of the barycenter relative to an inertial frame.
The rotational equinox is associated with the ecliptic in the rotational
sense, which is perpendicular to the vector angular momentum computed
from the velocity referred to the rotating orbital plane of the Earth-Moon
barycenter. (The difference between the two angular momenta is the an-
gular momentum associated with the rotation of the orbital plane.) See
Standish (1981) for more details. The numerical value for dα0 as derived
from Chapront et al. (2002) to be used in expression (18) is

dα0 = (−0.01460± 0.00050)′′. (19)

Quantities X̄ and Ȳ are given by:

X̄ = sinω sinψ,
Ȳ = − sin ε0 cosω + cos ε0 sinω cosψ (20)

where ε0 (= 84381.448′′) is the obliquity of the ecliptic at J2000.0, ω is
the inclination of the true equator of date on the fixed ecliptic of epoch
and ψ is the longitude, on the ecliptic of epoch, of the node of the true
equator of date on the fixed ecliptic of epoch; these quantities are such
that

ω = ωA + ∆ε1; ψ = ψA + ∆ψ1, (21)

where ψA and ωA are the precession quantities in longitude and obliquity
(Lieske et al., 1977) referred to the ecliptic of epoch and ∆ψ1, ∆ε1 are
the nutation angles in longitude and obliquity referred to the ecliptic
of epoch. (See the numerical developments provided for the precession
quantities in (30) and (31).) ∆ψ1, ∆ε1 can be obtained from the nutation
angles ∆ψ, ∆ε in longitude and obliquity referred to the ecliptic of date.
The following formulation from Aoki and Kinoshita (1983) has been
verified to provide an accuracy better than one microarcsecond after one
century:

∆ψ1 sinωA = ∆ψ sin εA cosχA −∆ε sinχA,
∆ε1 = ∆ψ sin εA sinχA + ∆ε cosχA,

(22)

ωA and εA being the precession quantities in obliquity referred to the
ecliptic of epoch and the ecliptic of date respectively and χA the plane-
tary precession along the equator (Lieske et al., 1977).

As VLBI observations have shown that there are deficiencies in the IAU
2000A of the order of 0.2 mas (Mathews et al., 2002), the IERS will con-
tinue to publish observed estimates of the corrections to the IAU 2000
Precession-Nutation Model. The observed differences with respect to
the conventional celestial pole position defined by the models are mon-
itored and reported by the IERS as “celestial pole offsets.” Such time
dependent offsets from the direction of the pole of the GCRS must be
provided as corrections δX and δY to the X and Y coordinates. These
corrections can be related to the current celestial pole offsets δψ and δε
using the relationship (20) betweenX and Y and the precession-nutation
quantities and (22) for the transformation from ecliptic of date to eclip-
tic of epoch. The relationship can be written with one microarcsecond
accuracy for one century:

δX = δψ sin εA + (ψA cos ε0 − χA)δε,
δY = δε− (ψA cos ε0 − χA)δψ sin εA.

(23)
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These observed offsets include the contribution of the Free Core Nuta-
tion (FCN) described in sub-section 5.5.1 on the IAU 2000 Precession-
Nutation Model. Using these offsets, the corrected celestial position of
the CIP is given by

X = X(IAU 2000) + δX, Y = Y (IAU 2000) + δY. (24)

This is practically equivalent to replacing the transformation matrix Q
with the rotation

Q̃ =

( 1 0 δX
0 1 δY

−δX −δY 1

)
QIAU, (25)

where QIAU represents the Q(t) matrix based on the IAU 2000 Preces-
sion-Nutation Model.

5.4.6 Position of the CEO in the GCRS

The numerical development of s compatible with the IAU 2000A Preces-
sion-Nutation Model as well as the corresponding celestial offset at
J2000.0 has been derived in a way similar to that based on the IERS
Conventions 1996 (Capitaine et al., 2000). It results from the expression
for s (8) using the developments of X and Y as functions of time given
by (15) and (16) (Capitaine et al., 2003a). The numerical development
is provided for the quantity s + XY/2, which requires fewer terms to
reach the same accuracy than a direct development for s.

The constant term for s, which was previously chosen so that
s(J2000.0) = 0, has now been fit (Capitaine et al., 2003b) in order to
ensure continuity of UT1 at the date of change (1 January 2003) consis-
tent with the Earth Rotation Angle (ERA) relationship and the current
VLBI procedure for estimating UT1 (see (36)).

The complete series for s + XY/2 with all terms larger than 0.1 µas
is available electronically on the IERS Convention Center website at
tab5.2c.txt and the terms larger than 0.5 µas over 25 years in the de-
velopment of s are provided in Table 5.2c with microarcsecond accuracy.

Table 5.2c Development of s(t) compatible with IAU 2000A Precession-Nutation
Model: all terms exceeding 0.5 µas during the interval 1975–2025 (unit µas).

s(t) = −XY/2 + 94 + 3808.35t− 119.94t2 − 72574.09t3 +
∑

k Ck sinαk

+1.71t sinΩ + 3.57t cos 2Ω + 743.53t2 sinΩ + 56.91t2 sin(2F − 2D + 2Ω)
+9.84t2 sin(2F + 2Ω)− 8.85t2 sin 2Ω

Argument αk Amplitude Ck

Ω −2640.73
2Ω −63.53
2F − 2D + 3Ω −11.75
2F − 2D + Ω −11.21
2F − 2D + 2Ω +4.57
2F + 3Ω −2.02
2F + Ω −1.98
3Ω +1.72
l′ + Ω +1.41
l′ − Ω +1.26
l + Ω +0.63
l − Ω +0.63
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5.5 IAU 2000A and IAU 2000B Precession-Nutation Model

5.5.1 Description of the Model

The IAU 2000A Precession-Nutation Model has been adopted by the IAU
(Resolution B1.6) to replace the IAU 1976 Precession Model (Lieske et
al., 1977) and the IAU 1980 Theory of Nutation (Wahr, 1981; Seidel-
mann, 1982). See Dehant et al. (1999) for more details. This model,
developed by Mathews et al. (2002), is based on the solution of the lin-
earized dynamical equation of the wobble-nutation problem and makes
use of estimated values of seven of the parameters appearing in the the-
ory, obtained from a least-squares fit of the theory to an up-to-date
precession-nutation VLBI data set (Herring et al., 2002). The nutation
series relies on the Souchay et al. (1999) Rigid Earth nutation series,
rescaled by 1.000012249 to account for the change in the dynamical el-
lipticity of the Earth implied by the observed correction to the lunisolar
precession of the equator. The nonrigid Earth transformation is the
MHB2000 model of Mathews et al. (2002) which improves the IAU 1980
Theory of Nutation by taking into account the effect of mantle anelas-
ticity, ocean tides, electromagnetic couplings produced between the fluid
outer core and the mantle as well as between the solid inner core and
fluid outer core (Buffett et al., 2002) and the consideration of nonlinear
terms which have hitherto been ignored in this type of formulation.
The resulting nutation series includes 678 lunisolar terms and 687 plan-
etary terms which are expressed as “in-phase” and “out-of-phase” com-
ponents with their time variations (see expression (29)). It provides the
direction of the celestial pole in the GCRS with an accuracy of 0.2 mas.
It includes the geodesic nutation contributions to the annual, semiannual
and 18.6-year terms to be consistent with including the geodesic preces-
sion pg in the precession model and so that the BCRS and GCRS are
without any time-dependent rotation. The IAU 1976 Precession Model
uses pg = 1.92′′/c and the theoretical geodesic nutation contribution
(Fukushima, 1991) used in the MHB model (Mathews et al., 2002) is, in
µas, for the nutations in longitude ∆ψg and obliquity ∆εg

∆ψg = −153 sin l′ − 2 sin 2l′ + 3 sinΩ,
∆εg = 1 cos Ω, (26)

where l′ is the mean anomaly of the Sun and Ω the longitude of the
ascending node of the Moon. On the other hand, the FCN, being a free
motion which cannot be predicted rigorously, is not considered a part of
the IAU 2000A model.
The IAU 2000 nutation series is associated with improved numerical
values for the precession rate of the equator in longitude and obliquity,
which correspond to the following correction to the IAU 1976 precession:

δψA = (−0.29965± 0.00040)′′/c,
δωA = (−0.02524± 0.00010)′′/c, (27)

as well as with the following offset (originally provided as frame bias
in dψbias and dεbias) of the direction of the CIP at J2000.0 from the
direction of the pole of the GCRS:

ξ0 = (−0.0166170± 0.0000100)′′,
η0 = (−0.0068192± 0.0000100)′′. (28)

The IAU 2000 Nutation Model is given by a series for nutation in longi-
tude ∆ψ and obliquity ∆ε, referred to the mean ecliptic of date, with t
measured in Julian centuries from epoch J2000.0:

∆ψ =
∑N

i=1(Ai +A′it) sin(ARGUMENT) + (A′′i +A′′′i t) cos(ARGUMENT),

∆ε =
∑N

i=1(Bi +B′
it) cos(ARGUMENT) + (B′′

i +B′′′
i t) sin(ARGUMENT).

(29)
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More details about the coefficients and arguments of these series (see
extract of the Tables 5.3a and 5.3b below) will be given in section 5.8.
These series are available electronically on the IERS Convention Cen-
ter website, for the lunisolar and planetary components, respectively at
tab5.3a.txt and tab5.3b.txt.

Extract from Tables 5.3a (lunisolar nutations) and 5.3b (planetary nutations) (available at <4>) pro-
viding the largest components for the “in-phase” and “out-of-phase” terms in longitude and obliquity.
Units are mas and mas/c for the coefficients and their time variations respectively. Periods are in
days.
l l′ F D Ω Period Ai A′i Bi B′

i A′′i A′′′i B′′
i B′′′

i

0 0 0 0 1 -6798.383 -17206.4161 -17.4666 9205.2331 0.9086 3.3386 0.0029 1.5377 0.0002
0 0 2 -2 2 182.621 -1317.0906 -0.1675 573.0336 -0.3015 -1.3696 0.0012 -0.4587 -0.0003
0 0 2 0 2 13.661 -227.6413 -0.0234 97.8459 -0.0485 0.2796 0.0002 0.1374 -0.0001
0 0 0 0 2 -3399.192 207.4554 0.0207 -89.7492 0.0470 -0.0698 0.0000 -0.0291 0.0000
0 1 0 0 0 365.260 147.5877 -0.3633 7.3871 -0.0184 1.1817 -0.0015 -0.1924 0.0005
0 1 2 -2 2 121.749 -51.6821 0.1226 22.4386 -0.0677 -0.0524 0.0002 -0.0174 0.0000
1 0 0 0 0 27.555 71.1159 0.0073 -0.6750 0.0000 -0.0872 0.0000 0.0358 0.0000
0 0 2 0 1 13.633 -38.7298 -0.0367 20.0728 0.0018 0.0380 0.0001 0.0318 0.0000
1 0 2 0 2 9.133 -30.1461 -0.0036 12.9025 -0.0063 0.0816 0.0000 0.0367 0.0000
0 -1 2 -2 2 365.225 21.5829 -0.0494 -9.5929 0.0299 0.0111 0.0000 0.0132 -0.0001

Period Longitude Obliquity
l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA Ai A′′i Bi B′′

i

0 0 1 -1 1 0 0 -1 0 -2 5 0 0 0 311921.26 -0.3084 0.5123 0.2735 0.1647
0 0 0 0 0 0 0 0 0 -2 5 0 0 1 311927.52 -0.1444 0.2409 -0.1286 -0.0771
0 0 0 0 0 0 -3 5 0 0 0 0 0 2 2957.35 -0.2150 0.0000 0.0000 0.0932
0 0 1 -1 1 0 -8 12 0 0 0 0 0 0 -88082.01 0.1200 0.0598 0.0319 -0.0641
0 0 0 0 0 0 0 0 0 2 0 0 0 2 2165.30 -0.1166 0.0000 0.0000 0.0505
0 0 0 0 0 0 0 4 -8 3 0 0 0 0 -651391.30 -0.0462 0.1604 0.0000 0.0000
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 583.92 0.1485 0.0000 0.0000 0.0000
0 0 0 0 0 0 0 8 -16 4 5 0 0 0 34075700.82 0.1440 0.0000 0.0000 0.0000
0 0 0 0 0 0 0 1 0 -1 0 0 0 0 398.88 -0.1223 -0.0026 0.0000 0.0000
0 0 0 0 1 0 0 -1 2 0 0 0 0 0 37883.60 -0.0460 -0.0435 -0.0232 0.0246

The IAU 2000A subroutine, provided by T. Herring, is available elec-
tronically on the IERS Convention Center website at <5>.
It produces the quantities to implement the IAU 2000A Precession-
Nutation Model based on the MHB 2000 model: nutation in longitude
and obliquity, plus the contribution of the corrections to the IAU 1976
precession rates, plus the frame bias dψbias and dεbias in longitude and
obliquity. The “total nutation” includes all components with the excep-
tion of the free core nutation (FCN). The software can also be used to
model the expected FCN based on the most recent astronomical obser-
vations.
As recommended by Resolution B1.6, an abridged model, designated
IAU 2000B, is available for those who need a model only at the 1 mas
level. Such a model has been developed by McCarthy and Luzum (2003).
It includes fewer than 80 lunisolar terms plus a bias to account for the
effect of the planetary terms in the time period under consideration.
It provides the celestial pole motion with an accuracy that does not
result in a difference greater than 1 mas with respect to that of the IAU
2000A model during the period 1995–2050. The IAU 2000B subroutine is
available electronically on the IERS Convention Center website at <6>.

5ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.f
6ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000B.f
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5.5.2 Precession Developments compatible with the IAU2000 Model

The numerical values for the precession quantities compatible with the
IAU 2000 Precession-Nutation Model can be provided by using the devel-
opments (30) of Lieske et al. (1977) to which the estimated corrections
(27) δψA and δωA to the IAU 1976 precession have to be added.
The expressions of Lieske et al. (1977) are

ψA = 5038.7784′′t− 1.07259′′t2 − 0.001147′′t3,
ωA = ε0 + 0.05127′′t2 − 0.007726′′t3,
εA = ε0 − 46.8150′′t− 0.00059′′t2 + 0.001813′′t3,
χA = 10.5526′′t− 2.38064′′t2 − 0.001125′′t3 ,

(30)

and
ζA = 2306.2181′′t+ 0.30188′′t2 + 0.017998′′t3,
θA = 2004.3109′′t− 0.42665′′t2 − 0.041833′′t3,
zA = 2306.2181′′t+ 1.09468′′t2 + 0.018203′′t3,

(31)

with ε0 = 84381.448′′.
Due to their theoretical bases, the original development of the precession
quantities as function of time can be considered as being expressed in
TDB.
The expressions compatible with the IAU 2000A precession and nutation
are:

ψA = 5038.47875′′t− 1.07259′′t2 − 0.001147′′t3,
ωA = ε0 − 0.02524′′t+ 0.05127′′t2 − 0.007726′′t3,
εA = ε0 − 46.84024′′t− 0.00059′′t2 + 0.001813′′t3,
χA = 10.5526′′t− 2.38064′′t2 − 0.001125′′t3 ,

(32)

and the following series has been developed (Capitaine et al., 2003c) in
order to match the 4-rotation series for precession R1(−ε0) · R3(ψA) ·
R1(ωA) · R3(−χA), called the “canonical 4-rotation method,” to sub-
microarcsecond accuracy over 4 centuries:

ζA = 2.5976176′′ + 2306.0809506′′t+ 0.3019015′′t2 + 0.0179663′′t3

−0.0000327′′t4 − 0.0000002′′t5,
θA = 2004.1917476′′t− 0.4269353′′t2 − 0.0418251′′t3

−0.0000601′′t4 − 0.0000001′′t5,
zA = −2.5976176′′ + 2306.0803226′′t+ 1.0947790′′t2 + 0.0182273′′t3

+0.0000470′′t4 − 0.0000003′′t5.
(33)

Note that the new expression for the quantities ζA and zA include a con-
stant term (with opposite signs) which originates from the ratio between
the precession rate in ωA and in ψA sin ε0.
TT is used in the above expressions in place of TDB. The largest term
in the difference TDB−TT being 1.7 ms × sin l′, the resulting error in
the precession quantity ψA is periodic, with an annual period and an
amplitude of 2.7′′ × 10−9, which is significantly under the required mi-
croarcsecond accuracy.

5.6 Procedure to be used for the Transformation consistent with IAU 2000
Resolutions

There are several ways to implement the IAU 2000 Precession-Nutation
Model, and the precession developments to be used should be consis-
tent with the procedure being used. The subroutines available for the
different procedures are described below.
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Using the new paradigm, the complete procedure to transform from the
GCRS to the ITRS compatible with the IAU 2000A precession-nutation
is based on the expressions provided by (15) and (16) and Tables 5.2 for
the positions of the CIP and the CEO in the GCRS. These already con-
tain the proper expressions for the new precession-nutation model and
the frame biases. Another procedure can also be used for the computa-
tion of the coordinates X and Y of the CIP in the GCRS using expres-
sions (18) to (22). This must be based on the MHB 2000 nutation series,
on offsets at J2000.0 as well as on precession quantities ψA, ωA, εA, χA,
taking into account the corrections to the IAU 1976 precession rates.
(See expressions (32).)

In support of the classical paradigm, the IAU2000A subroutine provides
the components of the precession-nutation model including the contri-
butions of the correction to the IAU 1976 precession rates for ζA, θZ , zA

(see expressions (31)). Expressions (33) give the same angles but taking
into account the IAU 2000 corrections.

The recommended option for implementing the IAU 2000A/B model
using the classical transformation between the TRS and the GCRS is
to follow a rigorous procedure described by Wallace (in Capitaine et
al., 2002). This procedure is composed of the classical nutation matrix
using the MHB 2000 series, the precession matrix including four rotations
(R1(−ε0) ·R3(ψA) ·R1(ωA) ·R3(−χA)) using the updated developments
(32) for these quantities and a separate rotation matrix for the frame
bias.

In the case when one elects to continue using the classical expressions
based on the IAU 1976 Precession Model and IAU 1980 Theory of Nu-
tation, one should proceed as in the past as described in the IERS Con-
ventions 1996 (McCarthy, 1996) and then apply the corrections to the
model provided by the appropriate IAU 2000A/B software.

5.7 Expression of Greenwich Sidereal Time referred to the CEO

Greenwich Sidereal Time (GST) is related to the “Earth Rotation Angle”
θ referred to the CEO by the following relationship (Aoki and Kinoshita,
1983; Capitaine and Gontier, 1993) at a microarcsecond level:

GST = dT0 + θ +
∫ t

t0

˙̂
(ψA + ∆ψ1) cos(ωA + ∆ε1)dt− χA + ∆ψ cos εA −∆ψ1 cosωA, (34)

∆ψ1, ∆ε1, given by (22), being the nutation angles in longitude and
obliquity referred to the ecliptic of epoch and χA, whose development is
given in (32), the planetary precession along the equator.

The last four parts of (34) account for the accumulated precession and
nutation in right ascension from J2000.0 to the epoch t. GST−θ provides
the right ascension of the CEO measured from the equinox along the
moving equator, and dT0 is a constant term to be fitted in order to
ensure continuity in UT1 at the date of change (1 January 2003). The
numerical expression consistent with the IAU 2000 Precession-Nutation
Model has been obtained, using computations similar to those performed
for s and following a procedure, which is described below, to ensure
consistency at a microarcsecond level with the new transformation as
well as continuity in UT1 at the date of change (Capitaine et al., 2003b).
The series providing the expression for Greenwich Sidereal Time based
on the IAU2000A Precession-Nutation Model is available on the IERS
Convention Center website at tab5.4.txt.

Referring to the notations similar to those used in Table 5.2c, the nu-
merical expression is
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GST = 0.014506′′ + θ + 4612.15739966′′t+ 1.39667721′′t2
−0.00009344′′t3 + 0.00001882′′t4 + ∆ψ cos εA
−
∑

k C
′
k sinαk − 0.00000087′′t sinΩ.

(35)

The last two terms of GST, −
∑

k C
′
k sinαk − 0.87 µas t sinΩ, are

the complementary terms to be added to the current “equation of the
equinoxes,” ∆ψ cos εA, to provide the relationship between GST and θ
with microarcsecond accuracy. This replaces the two complementary
terms provided in the IERS Conventions 1996. A secular term similar
to that appearing in the quantity s is included in expression (35). This
expression for GST used in the classical transformation based on the
IAU 2000A precession-nutation ensures consistency at the microarcsec-
ond level after one century with the new transformation using expres-
sions (14) for θ, (15) and (16) for the celestial coordinates of the CIP
and Table 5.2c for s. The numerical values for the constant term dT0 in
GST which ensures continuity in UT1 at the date of change (1 January
2003) and for the corresponding constant term in s have been found to
be

dT0 = +14506µas,
s0 = +94µas. (36)

The change in the polynomial part of GST due to the correction in the
precession rates (27) corresponds to a change dGMST (see also Williams,
1994) in the current relationship between GMST and UT1 (Aoki et al.,
1982). Its numerical expression derived from expressions (35) for GST
and (13) for θ(UT1), minus the expression for GMST1982(UT1), can be
written in microarcseconds as

dGMST = 14506− 274950.12t+ 117.21t2 − 0.44t3 + 18.82t4. (37)

The new expression for GST clearly distinguishes between θ, which is
expressed as a function of UT1, and the accumulated precession-nutation
in right ascension, which is expressed in TDB (or, in practice, TT),
whereas the GMST1982(UT1) expression used only UT1. This gives rise
to an additional difference in dGMST of (TT−UT1) multiplied by the
speed of precession in right ascension. Using TT−TAI=32.184 s, this
can be expressed as: 47µas +1.5µas (TAI−UT1), where TAI−UT1 is
in seconds. On 1 January 2003, this difference will be about 94µas (see
Gontier in Capitaine et al., 2002), using an estimated value of 32.3 s for
TAI−UT1. This contribution for the effect of time scales is included in
the value for dT0 and s0.

5.8 The Fundamental Arguments of Nutation Theory

5.8.1 The Multipliers of the Fundamental Arguments of Nutation Theory

Each of the lunisolar terms in the nutation series is characterized by a set
of five integers Nj which determines the ARGUMENT for the term as a
linear combination of the five Fundamental Arguments Fj , namely the
Delaunay variables (`, `′, F,D,Ω): ARGUMENT =

∑5
j=1NjFj , where

the values (N1, · · · , N5) of the multipliers characterize the term. The Fj

are functions of time, and the angular frequency of the nutation described
by the term is given by

ω ≡ d(ARGUMENT)/dt. (38)

The frequency thus defined is positive for most terms, and negative
for some. Planetary nutation terms differ from the above only in that
ARGUMENT =

∑14
j=1N

′
jF

′
j , F6 to F13, as noted in Table 5.3, are the

mean longitudes of the planets Mercury to Neptune including the Earth
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(lMe, lV e, lE , lMa, lJu, lSa, lUr, lNe) and F14 is the general precession
in longitude pa.
Over time scales involved in nutation studies, the frequency ω is effec-
tively time-independent, and one may write, for the kth term in the
nutation series,

ARGUMENT = ωkt+ αk. (39)

Different tables of nutations in longitude and obliquity do not necessarily
assign the same set of multipliers Nj to a particular term in the nutation
series. The differences in the assignments arises from the fact that the
replacement (Nj=1,14) →−(Nj=1,14) accompanied by reversal of the sign
of the coefficient of sin(ARGUMENT) in the series for ∆ψ and ∆ε leaves
these series unchanged.

5.8.2 Development of the Arguments of Lunisolar Nutation

The expressions for the fundamental arguments of nutation are given by
the following developments where t is measured in Julian centuries of
TDB (Simon et al., 1994: Tables 3.4 (b.3) and 3.5 (b)) based on IERS
1992 constants and Williams et al. (1991) for precession.

F1 ≡ l = Mean Anomaly of the Moon

= 134.96340251◦ + 1717915923.2178′′t+ 31.8792′′t2

+0.051635′′t3 − 0.00024470′′t4,

F2 ≡ l′ = Mean Anomaly of the Sun

= 357.52910918◦ + 129596581.0481′′t− 0.5532′′t2

+0.000136′′t3 − 0.00001149′′t4,

F3 ≡ F = L− Ω
= 93.27209062◦ + 1739527262.8478′′t− 12.7512′′t2

−0.001037′′t3 + 0.00000417′′t4,

F4 ≡ D = Mean Elongation of the Moon from the Sun

= 297.85019547◦ + 1602961601.2090′′t− 6.3706′′t2

+0.006593′′t3 − 0.00003169′′t4,

F5 ≡ Ω = Mean Longitude of the Ascending Node of the Moon

= 125.04455501◦ − 6962890.5431′′t+ 7.4722′′t2

+0.007702′′t3 − 0.00005939′′t4

(40)

where L is the Mean Longitude of the Moon.

5.8.3 Development of the Arguments for the Planetary Nutation

Note that in the MHB 2000 code, simplified expressions are used for the
planetary nutation. The maximum difference in the nutation amplitudes
is less than 0.1µas.
The mean longitudes of the planets used in the arguments for the plan-
etary nutations are those provided by Souchay et al. (1999), based on
theories and constants of VSOP82 (Bretagnon, 1982) and ELP 2000
(Chapront-Touzé and Chapront, 1983) and developments of Simon et al.
(1994). Their developments are given below in radians with t in Julian
centuries.
In the original expressions, t is measured in TDB. However, TT can be
used in place of TDB as the difference due to TDB−TT is 0.9 mas × sin l′
for the largest effect in the nutation arguments, which produces a neg-
ligible difference (less than 10−2µas with a period of one year) in the
corresponding amplitudes of nutation.
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F6 ≡ lMe = 4.402608842 + 2608.7903141574× t,

F7 ≡ lV e = 3.176146697 + 1021.3285546211× t,

F8 ≡ lE = 1.753470314 + 628.3075849991× t,

F9 ≡ lMa = 6.203480913 + 334.0612426700× t,

F10 ≡ lJu = 0.599546497 + 52.9690962641× t,

F11 ≡ lSa = 0.874016757 + 21.3299104960× t,

F12 ≡ lUr = 5.481293872 + 7.4781598567× t,

F13 ≡ lNe = 5.311886287 + 3.8133035638× t,

F14 ≡ pa = 0.024381750× t+ 0.00000538691× t2.

(41)

5.9 Prograde and Retrograde Nutation Amplitudes

The quantities ∆ψ(t) sin ε0 and ∆ε(t) may be viewed as the components
of a moving two-dimensional vector in the mean equatorial frame, with
the positive X and Y axes pointing along the directions of increasing
∆ψ and ∆ε, respectively. The purely periodic parts of ∆ψ(t) sin ε0 and
∆ε(t) for a term of frequency ωk are made up of in-phase and out-of-
phase parts

(∆ψip(t) sin ε0, ∆εip(t)) = (∆ψip
k sin ε0 sin(ωkt+ αk), ∆εipk cos(ωkt+ αk)),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψop
k sin ε0 cos(ωkt+ αk), ∆εop

k sin(ωkt+ αk)),
(42)

respectively. Each of these vectors may be decomposed into two uni-
formly rotating vectors, one constituting a prograde circular nutation
(rotating in the same sense as from the positive X axis towards the pos-
itive Y axis) and the other a retrograde one rotating in the opposite
sense. The decomposition is facilitated by factoring out the sign qk of
ωk from the argument, qk being such that

qkωk ≡ |ωk|. (43)

and writing
ωkt+ αk = qk(|ωk|t+ qkαk) ≡ qkχk, (44)

with χk increasing linearly with time. The pair of vectors above then
becomes

(∆ψip(t) sin ε0, ∆εip(t)) = (qk∆ψip
k sin ε0 sinχk, ∆εipk cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψop
k sin ε0 cosχk, qk∆εop

k sinχk).
(45)

Because χk increases linearly with time, the mutually orthogonal unit
vectors (sinχk,− cosχk) and (cosχk, sinχk) rotate in a prograde sense
and the vectors obtained from these by the replacement χk → −χk,
namely (− sinχk,− cosχk) and (cosχk,− sinχk) are in retrograde ro-
tation. On resolving the in-phase and out-of-phase vectors in terms of
these, one obtains

(∆ψip(t) sin ε0, ∆εip(t)) = Apro ip
k (sinχk, − cosχk) +Aret ip

k (− sinχk, − cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = Apro op
k (cosχk, sinχk) +Aret op

k (cosχk, − sinχk),
(46)

where
Apro ip

k = 1
2 (qk∆ψip

k sin ε0 −∆εipk ),

Aret ip
k = − 1

2 (qk∆ψip
k sin ε0 + ∆εipk ),

Apro op
k = 1

2 (∆ψop
k sin ε0 + qk∆εop

k ),

Aret op
k = 1

2 (∆ψop
k sin ε0 − qk∆εop

k ).

(47)
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The expressions providing the corresponding nutation in longitude and
in obliquity from circular terms are

∆ψip
k = qk

sin ε0

(
Apro ip

k −Aret ip
k

)
,

∆ψop
k = 1

sin ε0

(
Apro op

k +Aret op
k

)
,

∆εipk = −
(
Apro ip

k +Aret ip
k

)
,

∆εop
k = qk

(
Apro op

k −Aret op
k

)
.

(48)

The contribution of the k-term of the nutation to the position of the
Celestial Intermediate Pole (CIP) in the mean equatorial frame is thus
given by the complex coordinate

∆ψ(t) sin ε0 + i∆ε(t) = −i
(
Apro

k eiχk +Aret
k e−iχk

)
, (49)

where Apro
k and Aret

k are the amplitudes of the prograde and retrograde
components, respectively, and are given by

Apro
k = Apro ip

k + iApro op
k , Aret

k = Aret ip
k + iAret op

k . (50)

The decomposition into prograde and retrograde components is impor-
tant for studying the role of resonance in nutation because any resonance
(especially in the case of the nonrigid Earth) affects Apro

k and Aret
k un-

equally.

In the literature (Wahr, 1981) one finds an alternative notation, fre-
quently followed in analytic formulations of nutation theory, that is:

∆ε(t) + i∆ψ(t) sin ε0 = −i
(
Apro −

k e−iχk +Aret −
k eiχk

)
, (51)

with

Apro −
k = Apro ip

k − iApro op
k , Aret −

k = Aret ip
k − iAret op

k . (52)

Further detail concerning this topic can be found in Defraigne et al.,
(1995) and Bizouard et al. (1998).

5.10 Procedures and IERS Routines for Transformations from ITRS to
GCRS

Fortran routines that implement the IAU 2000 transformations are pro-
vided on the IERS Conventions web page, which is at <7>.

The following routines are provided:
BPN2000 CEO-based intermediate-to-celestial matrix
CBPN2000 equinox-based true-to-celestial matrix
EE2000 equation of the equinoxes (EE)
EECT2000 EE complementary terms
ERA2000 Earth Rotation Angle
GMST2000 Greenwich Mean Sidereal Time
GST2000 Greenwich (apparent) Sidereal Time
NU2000A nutation, IAU 2000A
NU2000B nutation, IAU 2000B
POM2000 form polar-motion matrix
SP2000 the quantity s′
T2C2000 form terrestrial to celestial matrix
XYS2000A X,Y, s

7ftp://maia.usno.navy.mil/conv2000/chapter5
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The above routines are to a large extent self-contained, but in some
cases use simple utility routines from the IAU Standards of Fundamental
Astronomy software collection. This may be found at <8>.
The SOFA collection includes its own implementations of the IAU 2000
models, together with tools to facilitate their rigorous use.
Two equivalent ways to implement the IAU Resolutions in the transfor-
mation from ITRS to GCRS provided by expression (1) can be used,
namely (a) the new transformation based on the Celestial Ephemeris
Origin and the Earth Rotation Angle and (b) the classical transforma-
tion based on the equinox and Greenwich Sidereal Time. They are called
respectively “CEO-based” and “equinox-based” transformations in the
following.
For both transformations, the procedure is to form the various com-
ponents of expression (1), or their classical counterparts, and then to
combine these components into the complete terrestrial-to-celestial ma-
trix.
Common to all cases is generating the polar-motion matrix, W (t) in
expression (1), by calling POM2000. This requires the polar coordinates
xp, yp and the quantity s′; the latter can be estimated using SP2000.
The matrix for the combined effects of nutation, precession and frame
bias is Q(t) in expression (1). For the CEO-based transformation, this
is the intermediate-to-celestial matrix and can be obtained using the
routine BPN2000, given the CIP position X,Y and the quantity s that
defines the position of the CEO. The IAU 2000A X,Y, s are available by
calling the routine XYS2000A. In the case of the equinox-based transfor-
mation, the counterpart to matrix Q(t) is the true-to-celestial matrix.
To obtain this matrix requires the nutation components ∆ψ and ∆ε;
these can be predicted using the IAU 2000A model by means of the rou-
tine NU2000A. Faster but lower-accuracy predictions are available from
the NU2000B routine, which implements the IAU 2000B truncated model.
Once ∆ψ and ∆ε are known, the true-to-celestial matrix can be obtained
by calling the routine CBPN2000.
The intermediate component is the angle for Earth rotation that de-
fines matrix R(t) in expression (1). For the CEO-based transformation,
the angle in question is the Earth Rotation Angle, θ, which can be ob-
tained by calling the routine ERA2000. The counterpart in the case of
the equinox-based transformation is the Greenwich (apparent) Sidereal
Time. This can be obtained by calling the routine GST2000, given the
nutation in longitude, ∆ψ, that was obtained earlier.
The three components are then assembled into the final terrestrial-to-
celestial matrix by means of the routine T2C2000.
Three methods of applying the above scheme are set out below.

Method (1): CEO-based transformation consistent with
IAU 2000A precession-nutation

This uses the new (X,Y, s, θ) transformation, which is consistent with
IAU 2000A Precession-Nutation.
Having called SP2000 to obtain the quantity s′, and knowing the polar
motion xp, yp, the matrix W (t) can be obtained by calling POM2000. The
Earth Rotation Angle provided by expression (13) can be predicted with
ERA2000, as a function of UT1. The X,Y, s series, based on expressions
(15) and (16) for X and Y , the coordinates of the CIP, and on Table 5.2c
for the quantity s, that defines the position of the CEO, can be gener-
ated using the XYS2000A routine. (Note that this routine computes the
full series for s rather than the summary model in Table 5.2c.) The

8http://www.iau-sofa.rl.ac.uk
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matrix Q(t) that transforms from the intermediate system to the GCRS
coordinates can then be generated by means of BPN2000. The finished
terrestrial-to-celestial matrix is obtained by calling the T2C2000 routine,
specifying the polar-motion matrix, the Earth Rotation Angle and the
intermediate-to-celestial matrix.

Method (2A): the equinox-based transformation, using
IAU 2000A precession-nutation

An alternative is the classical, equinox-based, transformation, using the
IAU 2000A Precession-Nutation Model and the new IAU-2000-compa-
tible expression for GST.

As for Method 1, the first step is to use SP2000 and POM2000 to obtain
the matrix W (t), given xp, yp. Next, compute the nutation components
(lunisolar + planetary) by calling NU2000A. The Greenwich (apparent)
Sidereal Time is predicted by calling GST2000. This requires ∆ψ and TT
as well as UT1. The matrix that transforms from the true equator and
equinox of date to GCRS coordinates can then be generated by means of
CBPN2000. Finally, the finished terrestrial-to-celestial matrix is obtained
by calling the T2C2000 routine, specifying the polar-motion matrix, the
Greenwich Sidereal Time and the intermediate-to-celestial matrix.

Method (2B): the classical transformation, using
IAU 2000B precession-nutation

The third possibility is to carry out the classical transformation as for
Method 2A, but based on the truncated IAU 2000B Precession-Nutation
Model. Using IAU 2000B limits the accuracy to about 1 mas, but the
computations are significantly less onerous than when using the full IAU
2000A model.

The same procedure as in Method (2A) is used, but substituting NU2000B
for NU2000A. Depending on the accuracy requirements, further efficiency
optimizations are possible, including setting s′ to zero, omitting the
equation of the equinoxes complementary terms and even neglecting the
polar motion.

5.11 Notes on the new Procedure to Transform from ICRS to ITRS

The transformation from the GCRS to ITRS, which is provided in detail
in this chapter for use in the IERS Conventions, is also part of the more
general transformation for computing directions of celestial objects in
intermediate systems.

The procedure to be followed in transforming from the celestial (ICRS)
to the terrestrial (ITRS) systems has been clarified to be consistent with
the improving observational accuracy. See Figure 5.1 (McCarthy and
Capitaine (in Capitaine et al., 2002)) for a diagram of the new and old
procedures to be followed. As before, we make use of an intermediate
reference system in transforming to a terrestrial system. In this case we
call that system the Intermediate Celestial Reference System. (See also
Seidelmann and Kovalevsky (2002).) The Celestial Intermediate Pole
(CIP) that is realized by the IAU2000A/B Precession-Nutation model
defines its equator and the Conventional Ephemeris Origin replaces the
equinox.

The position in this reference system is called the intermediate right
ascension and declination and is analogous to the previous designation
of “apparent right ascension and declination.”
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Fig. 5.1 Process to transform from celestial to terrestrial systems. Differences with the past process
are shown on the right of the diagram.
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Gravitational models commonly used in current (2003) precision or-
bital analysis by contributors to the International Laser Ranging Ser-
vice (ILRS) include EGM96 (Lemoine et al., 1998), JGM-3 (Tapley et
al., 1996), and GRIM5-C1 (Gruber et al., 2000). For products of in-
terest to IERS, similar accuracy is achievable with any of these models.
IERS, recognizing the continuous development of new gravitational mod-
els, and anticipating the results of upcoming geopotential mapping mis-
sions, recommends at this time the EGM96 model as the conventional
model. The GM⊕ and ae values reported with EGM96 (398600.4415
km3/s2 and 6378136.3 m) should be used as scale parameters with the
geopotential coefficients. The recommended GM⊕ = 398600.4418 should
be used with the two-body term when working with Geocentric Coordi-
nate Time (TCG) (398600.4415 or 398600.4356 should be used by those
still working with Terrestrial Time (TT) or Barycentric Dynamical Time
(TDB) units, respectively). EGM96 is available at <9>.
Values for the C21 and S21 coefficients are included in the EGM96 model.
The C21 and S21 coefficients describe the position of the Earth’s figure
axis. When averaged over many years, the figure axis should closely
coincide with the observed position of the rotation pole averaged over
the same time period. Any differences between the mean figure and
mean rotation pole averaged would be due to long-period fluid motions
in the atmosphere, oceans, or Earth’s fluid core (Wahr, 1987; 1990).
At present, there is no independent evidence that such motions are im-
portant. The EGM96 values for C21 and S21 give a mean figure axis
that corresponds to the mean pole position recommended in Chapter 4
Terrestrial Reference Frame.
This choice for C21 and S21 is realized as follows. First, to use the geopo-
tential coefficients to solve for a satellite orbit, it is necessary to rotate
from the Earth-fixed frame, where the coefficients are pertinent, to an
inertial frame, where the satellite motion is computed. This transfor-
mation between frames should include polar motion. We assume the
polar motion parameters used are relative to the IERS Reference Pole.
If x̄ and ȳ are the angular displacements of the pole of the Terrestrial
Reference Frame described in Chapter 4 relative to the IERS Reference
Pole, then the values

C̄21 =
√

3x̄C̄20 − x̄C̄22 + ȳS̄22,

S̄21 = −
√

3ȳC̄20 − ȳC̄22 − x̄S̄22,

where x̄ = 0.262 × 10−6 radians (equivalent to 0.054 arcsec) and
ȳ = 1.730× 10−6 radians (equivalent to 0.357 arcsec) are those deter-
mined from observations available from the IERS at <10>, so that
the mean figure axis coincides with the pole described in Chapter 4.
The EGM96 values at 1 January 2000 are C̄20 = −4.84165209 × 10−4

(tide free), C̄20 = −4.84169382 × 10−4 (zero tide), and dC̄20/dt =
+1.162755× 10−11/year.
This gives normalized coefficients of

C̄21(IERS) = −2.23 × 10−10, and
S̄21(IERS) = 14.48 × 10−10.

C̄21 and S̄21 are time variable. The values above are associated with the
epoch of 1 January 2000. The complete definition of the instantaneous
values of the two coefficients to use when computing orbits is given by:

C̄21 = C̄21(t0) + dC̄21/dt[t− t0], and
S̄21 = S̄21(t0) + dS̄21/dt[t− t0],

9http://www.nima.mil/GandG/wgsegm/egm96.html
10http://maia.usno.navy.mil/conv2000/chapter7/annual.pole
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where dC̄21/dt and dS̄21/dt are the time derivatives determined at epoch
t0 to be −0.337× 10−11/y and +1.606× 10−11/y respectively. It is also
necessary to account for the solid Earth pole tide described later in this
chapter.

6.1 Effect of Solid Earth Tides

The changes induced by the solid Earth tides in the free space potential
are most conveniently modeled as variations in the standard geopotential
coefficients Cnm and Snm (Eanes et al., 1983). The contributions ∆Cnm

and ∆Snm from the tides are expressible in terms of the k Love number.
The effects of ellipticity and of the Coriolis force due to Earth rotation
on tidal deformations necessitates the use of three k parameters, k(0)

nm

and k
(±)
nm (except for n = 2) to characterize the changes produced in

the free space potential by tides of spherical harmonic degree and order
(nm) (Wahr, 1981); only two parameters are needed for n = 2 because
k

(−)
2m = 0 is zero due to mass conservation.

Anelasticity of the mantle causes k(0)
nm and k

(±)
nm to acquire small imag-

inary parts (reflecting a phase lag in the deformational response of the
Earth to tidal forces), and also gives rise to a variation with frequency
which is particularly pronounced within the long period band. Though
modeling of anelasticity at the periods relevant to tidal phenomena (8
hours to 18.6 years) is not yet definitive, it is clear that the magnitudes
of the contributions from anelasticity cannot be ignored (see below).
Recent evidence relating to the role of anelasticity in the accurate mod-
eling of nutation data (Mathews et al., 2002) lends support to the model
employed herein, at least up to diurnal tidal periods; and there is no
compelling reason at present to adopt a different model for the long
period tides.

Solid Earth tides within the diurnal tidal band (for which (nm) = (21))
are not wholly due to the direct action of the tide generating potential
(TGP) on the solid Earth; they include the deformations (and associ-
ated geopotential changes) arising from other effects of the TGP, namely,
ocean tides and wobbles of the mantle and the core regions. Deforma-
tion due to wobbles arises from the incremental centrifugal potentials
caused by the wobbles; and ocean tides load the crust and thus cause
deformations. Anelasticity affects the Earth’s deformational response to
all these types of forcing.

The wobbles, in turn, are affected by changes in the Earth’s moment of
inertia due to deformations from all sources, and in particular, from the
deformation due to loading by the (nm) = (21) part of the ocean tide;
wobbles are also affected by the anelasticity contributions to all deforma-
tions, and by the coupling of the fluid core to the mantle and the inner
core through the action of magnetic fields at its boundaries (Mathews et
al., 2002). Resonances in the wobbles—principally, the Nearly Diurnal
Free Wobble resonance associated with the Free Core Nutation (FCN)—
and the consequent resonances in the contribution to tidal deformation
from the centrifugal perturbations associated with the wobbles, cause
the body tide and load Love/Shida number parameters of the diurnal
tides to become strongly frequency dependent. For the derivation of
resonance formulae of the form (6) below to represent this frequency
dependence, see Mathews et al., (1995). The resonance expansions as-
sume that the Earth parameters entering the wobble equations are all
frequency independent. However the ocean tide induced deformation
makes a frequency dependent contribution to deformability parameters
which are among the Earth parameters just referred to. It becomes nec-
essary therefore to add small corrections to the Love number parameters
computed using the resonance formulae. These corrections are included
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in the tables of Love number parameters given in this chapter and the
next.
The deformation due to ocean loading is itself computed in the first place
using frequency independent load Love numbers (see the penultimate
section of this chapter and the first section of Chapter 7). Corrections to
take account of the resonances in the load Love numbers are incorporated
through equivalent corrections to the body tide Love numbers, following
Wahr and Sasao (1981), as explained further below. These corrections
are also included in the tables of Love numbers.
The degree 2 tides produce time dependent changes in C2m and S2m,
through k

(0)
2m, which can exceed 10−8 in magnitude. They also produce

changes exceeding 3× 10−12 in C4m and S4m through k(+)
2m . (The direct

contributions of the degree 4 tidal potential to these coefficients are
negligible.) The only other changes exceeding this cutoff are in C3m and
S3m, produced by the degree 3 part of the tide generating potential.
The computation of the tidal contributions to the geopotential coeffi-
cients is most efficiently done by a three-step procedure. In Step 1, the
(2m) part of the tidal potential is evaluated in the time domain for each
m using lunar and solar ephemerides, and the corresponding changes
∆C2m and ∆S2m are computed using frequency independent nominal
values k2m for the respective k(0)

2m. The contributions of the degree 3
tides to C3m and S3m through k

(0)
3m and also those of the degree 2 tides

to C4m and S4m through k(+)
2m may be computed by a similar procedure;

they are at the level of 10−11.

Step 2 corrects for the deviations of the k(0)
21 of several of the constituent

tides of the diurnal band from the constant nominal value k21 assumed
for this band in the first step. Similar corrections need to be applied to
a few of the constituents of the other two bands also.
Steps 1 and 2 can be used to compute the total tidal contribution, includ-
ing the time independent (permanent) contribution to the geopotential
coefficient C̄20, which is adequate for a “conventional tide free” model
such as EGM96. When using a “zero tide” model, this permanent part
should not be counted twice, this is the goal of Step 3 of the computation.
See section 6.3.
With frequency-independent values knm (Step 1), changes induced by the
(nm) part of the tide generating potential in the normalized geopotential
coefficients having the same (nm) are given in the time domain by

∆C̄nm − i∆S̄nm =
knm

2n+ 1

3∑
j=2

GMj

GM⊕

(Re

rj

)n+1

P̄nm(sinΦj)e−imλj (1)

(with S̄n0 = 0), where

knm = nominal Love number for degree n and order m,

Re = equatorial radius of the Earth,

GM⊕ = gravitational parameter for the Earth,

GMj = gravitational parameter for the Moon (j = 2)
and Sun (j = 3),

rj = distance from geocenter to Moon or Sun,

Φj = body fixed geocentric latitude of Moon or Sun,

λj = body fixed east longitude (from Greenwich) of
Moon or Sun,

and P̄nm is the normalized associated Legendre function related
to the classical (unnormalized) one by

59



N
o
.
3
2 IERS

Technical
Note

6 Geopotential

P̄nm = NnmPnm, (2a)

where

Nnm =

√
(n−m)!(2n+ 1)(2− δom)

(n+m)!
. (2b)

Correspondingly, the normalized geopotential coefficients (C̄nm, S̄nm)
are related to the unnormalized coefficients (Cnm, Snm) by

Cnm = NnmC̄nm, Snm = NnmS̄nm. (3)

Equation (1) yields ∆C̄nm and ∆S̄nm for both n = 2 and n = 3 for all
m, apart from the corrections for frequency dependence to be evaluated
in Step 2. (The particular case (nm) = (20) needs special consideration,
however, as already indicated.)
One further computation to be done in Step 1 is that of the changes in
the degree 4 coefficients produced by the degree 2 tides. They are given
by

∆C̄4m − i∆S̄4m = k
(+)
2m

5

∑3
j=2

GMj

GM⊕

(
Re

rj

)3

P̄2m(sinΦj)e−imλj , (m = 0, 1, 2), (4)

which has the same form as Equation (1) for n = 2 except for the
replacement of k2m by k(+)

2m .
The parameter values for the computations of Step 1 are given in Ta-
ble 6.1. The choice of these nominal values has been made so as to
minimize the number of terms for which corrections will have to be ap-
plied in Step 2. The nominal value for m = 0 has to be chosen real
because there is no closed expression for the contribution to C̄20 from
the imaginary part of k(0)

20 .

Table 6.1 Nominal values of solid Earth tide external potential
Love numbers.

Elastic Earth Anelastic Earth

n m knm k+
nm Re knm Im knm k+

nm

2 0 0.29525 −0.00087 0.30190 −0.00000 −0.00089
2 1 0.29470 −0.00079 0.29830 −0.00144 −0.00080
2 2 0.29801 −0.00057 0.30102 −0.00130 −0.00057
3 0 0.093 · · ·
3 1 0.093 · · ·
3 2 0.093 · · ·
3 3 0.094 · · ·

The frequency dependence corrections to the ∆C̄nm and ∆S̄nm values
obtained from Step 1 are computed in Step 2 as the sum of contributions
from a number of tidal constituents belonging to the respective bands.
The contribution to ∆C̄20 from the long period tidal constituents of
various frequencies f is

Re
∑

f(2,0)(A0δkfHf ) eiθf =
∑

f(2,0)[(A0Hfδk
R
f ) cos θf − (A0Hfδk

I
f ) sin θf )], (5a)

while the contribution to (∆C̄21 − i∆S̄21) from the diurnal tidal con-
stituents and to ∆C̄22 − i∆S̄22 from the semidiurnals are given by

∆C̄2m − i∆S̄2m = ηm

∑
f(2,m)

(AmδkfHf ) eiθf , (m = 1, 2), (5b)
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where
A0 =

1
Re

√
4π

= 4.4228× 10−8 m−1, (5c)

Am =
(−1)m

Re

√
8π

= (−1)m(3.1274× 10−8) m−1, (m 6= 0), (5d)

η1 = −i, η2 = 1, (5e)

δkf = difference between kf defined as k(0)
2m at frequency f and

the nominal value k2m, in the sense kf − k2m, plus a
contribution from ocean loading,

δkR
f = real part of δkf , and

δkI
f = imaginary part of δkf , i.e., δkf = δkR

f + iδkI
f ,

Hf = amplitude (in meters) of the term at frequency f from
the harmonic expansion of the tide generating potential,
defined according to the convention of Cartwright and
Tayler (1971), and

θf = n̄ · β̄ =
∑6

i=1 niβi, or
θf = m(θg + π)− N̄ · F̄ = m(θg + π)−

∑5
j=1NjFj ,

where

β̄ = six-vector of Doodson’s fundamental arguments βi,
(τ, s, h, p,N ′, ps),

n̄ = six-vector of multipliers ni (for the term at frequency f)
of the fundamental arguments,

F̄ = five-vector of fundamental arguments Fj (the Delaunay
variables l, l′, F,D,Ω) of nutation theory,

N̄ = five-vector of multipliers Ni of the Delaunay variables for
the nutation of frequency −f + dθg/dt,

and θg is the Greenwich Mean Sidereal Time expressed in angle
units (i.e. 24h = 360◦; see Chapter 5).

(π in (θg + π) is now to be replaced by 180.)

For the fundamental arguments (l, l′, F,D,Ω) of nutation theory and the
convention followed here in choosing their multipliers Nj , see Chapter 5.
For conversion of tidal amplitudes defined according to different con-
ventions to the amplitude Hf corresponding to the Cartwright-Tayler
convention, use Table 6.5 given at the end of this chapter.

For diurnal tides, the frequency dependent values of any load or body tide
Love number parameter L (such as k(0)

21 or k(+)
21 in the present context)

may be represented as a function of the tidal excitation frequency σ by
a resonance formula

L(σ) = L0 +
3∑

α=1

Lα

(σ − σα)
, (6)

except for the small corrections referred to earlier. (They are to take
account of frequency dependent contributions to a few of the Earth’s de-
formability parameters, which make (6) inexact.) The σα, (α = 1, 2, 3),
are the respective resonance frequencies associated with the Chandler
wobble (CW), the retrograde free core nutation (FCN), and the pro-
grade free core nutation (PFCN, also known as the free inner core nu-
tation, FICN), and the Lα are the corresponding resonance coefficients.
All the parameters are complex. The σα and σ are expressed in cycles
per sidereal day, with the convention that positive (negative) frequencies
represent retrograde (prograde) waves. (This sign convention, followed
in tidal theory, is the opposite of that employed in analytical theories of
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nutation.) In particular, given the tidal frequency f in degrees per hour,
one has

σ = f/(15× 1.002737909),

the factor 1.002737909 being the number of sidereal days per solar day.
The values used herein for the σα are from Mathews et al. (2002),
adapted to the sign convention used here:

σ1 = − 0.0026010 − 0.0001361 i
σ2 = 1.0023181 + 0.000025 i
σ3 = 0.999026 + 0.000780 i.

(7)

They were estimated from a fit of nutation theory to precession rate and
nutation amplitude estimates found from an analyis of very long baseline
interferometry (VLBI) data.
Table 6.2 lists the values of L0 and Lα in resonance formulae of the
form (6) for k(0)

21 and k
(+)
21 . They were obtained by evaluating the rel-

evant expressions from Mathews et al. (1995), using values taken from
computations of Buffett and Mathews (unpublished) for the needed de-
formability parameters together with values obtained for the wobble res-
onance parameters in the course of computations of the nutation results
of Mathews et al. (2002). The deformability parameters for an elliptical,
rotating, elastic, and oceanless Earth model based on the 1 sec PREM
with the ocean layer replaced by solid, and corrections to these for the
effects of mantle anelasticity, were found by integration of the tidal defor-
mation equations. Anelasticity computations were based on the Widmer
et al. (1991) model of mantle Q. As in Wahr and Bergen (1986), a power
law was assumed for the frequency dependence of Q, with 200 s as the
reference period; the value α = 0.15 was used for the power law index.
The anelasticity contribution (out-of-phase and in-phase) to the tidal
changes in the geopotential coefficients is at the level of one to two per-
cent in-phase, and half to one percent out-of-phase, i.e., of the order of
10−10. The effects of anelasticity, ocean loading and currents, and elec-
tromagnetic couplings on the wobbles result in indirect contributions to
k

(0)
21 and k

(+)
21 which are almost fully accounted for through the values

of the wobble resonance parameters. Also shown in Table 6.2 are the
resonance parameters for the load Love numbers h′21, k

′
21, and l′21, which

are relevant to the solid Earth deformation caused by ocean tidal load-
ing and to the consequential changes in the geopotential. (Only the real
parts are shown: the small imaginary parts make no difference to the
effect to be now considered which is itself small.)

Table 6.2 Parameters in the resonance formulae for k(0)
21 , k(+)

21 and the load
Love numbers.

k(0) k(+)

α Re Lα Im Lα Re Lα Im Lα

0 0.29954 −0.1412× 10−2 −0.804× 10−3 0.237× 10−5

1 −0.77896× 10−3 −0.3711× 10−4 0.209× 10−5 0.103× 10−6

2 0.90963× 10−4 −0.2963× 10−5 −0.182× 10−6 0.650× 10−8

3 −0.11416× 10−5 0.5325× 10−7 −0.713× 10−9 −0.330× 10−9

Load Love Numbers (Real parts only)
h′21 l′21 k′21

0 −0.99500 0.02315 −0.30808
1 1.6583× 10−3 2.3232× 10−4 8.1874× 10−4

2 2.8018× 10−4 −8.4659× 10−6 1.4116× 10−4

3 5.5852× 10−7 1.0724× 10−8 3.4618× 10−7
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The expressions given in the penultimate section of this chapter for
the contributions from ocean tidal loading assume the constant nomi-
nal value k′2

(nom) = −0.3075 for k′ of the degree 2 tides. Further con-
tributions arise from the frequency dependence of k′21. These may be
expressed, following Wahr and Sasao (1981), in terms of an effective
ocean tide contribution δk(OT )(σ) to the body tide Love number k(0)

21 :

δk(OT )(σ) = [k′21(σ)− k′2
(nom)]

(
4πGρwR

5ḡ

)
A21(σ), (8)

where G is the constant of universal gravitation, ρw is the density of sea
water (1025 kg m−3), R is the Earth’s mean radius (6.371 × 106 m), ḡ
is the mean acceleration due to gravity at the Earth’s surface (9.820 m
s−2), and A21(σ) is the admittance for the degree 2 tesseral component
of the ocean tide of frequency σ cpsd:

A21(σ) = ζ21(σ)/H̄(σ).

ζ21 is the complex amplitude of the height of the (nm) = (21) compo-
nent of the ocean tide, and H̄ is the height equivalent of the amplitude
of the tide generating potential, the bar being a reminder that the spher-
ical harmonics used in defining the two amplitudes should be identically
normalized. Wahr and Sasao (1981) employed the factorized form

A21(σ) = fFCN (σ) fOD(σ),

wherein the first factor represents the effect of the FCN resonance, and
the second, that of other ocean dynamic factors. The following empirical
formulae (Mathews et al., 2002) which provide good fits to the FCN
factors of a set of 11 diurnal tides (Desai and Wahr, 1995) and to the
admittances obtainable from the ocean load angular momenta of four
principal tides (Chao et al., 1996) are used herein:

fOD(σ) = (1.3101− 0.8098 i)− (1.1212− 0.6030 i)σ,

fFCN (σ) = 0.1732 + 0.9687 feqm(σ),

feqm(σ) =
γ(σ)

1− (3ρw/5ρ̄)γ′(σ)
,

where γ = 1 + k− h and γ′ = 1 + k′ − h′, ρ̄ is the Earth’s mean density.
(Here k stands for k(0)

21 , and similarly for the other symbols. Only the
real parts need be used.) feqm is the FCN factor for a global equilibrium
ocean.

Table 6.3a shows the values of

δkf ≡ (k(0)
21 (σ)− k21) + δkOT

21 (σ),

along with the real and imaginary parts of the amplitude (A1δkfHf ).
The tides listed are those for which either of the parts is at least 10−13

after round-off. (A cutoff at this level is used for the individual terms
in order that accuracy at the level of 3 × 10−12 be not affected by the
accumulated contributions from the numerous smaller terms that are
disregarded.) Roughly half the value of the imaginary part comes from
the ocean tide term, and the real part contribution from this term is of
about the same magnitude.
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Table 6.3a The in-phase (ip) amplitudes (A1δk
R
f Hf ) and the out-of-phase (op) amplitudes

(A1δk
I
fHf ) of the corrections for frequency dependence of k(0)

21 , taking the nominal value k21

for the diurnal tides as (0.29830− i 0.00144). Units: 10−12. The entries for δkR
f and δkI

f are in
units of 10−5. Multipliers of the Doodson arguments identifying the tidal terms are given, as
also those of the Delaunay variables characterizing the nutations produced by these terms.

Name deg/hr Doodson τ s h p N ′ ps ` `′ F D Ω δkR
f δkI

f Amp. Amp.
No. 10−5 10−5 (ip) (op)

2Q1 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0
σ1 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0

13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0
Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1
ρ1 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -82 7 -1.3 0.1
O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -83 7 -6.8 0.6
τ1 14.02517 147,555 1 -1 2 0 0 0 0 0 0 2 0 -91 9 0.1 0.0

Nτ1 14.41456 153,655 1 0 -2 1 0 0 1 0 2 -2 2 -168 14 0.1 0.0
14.48520 155,445 1 0 0 -1 -1 0 -1 0 2 0 1 -193 16 0.1 0.0

LK1 14.48741 155,455 1 0 0 -1 0 0 -1 0 2 0 2 -194 16 0.4 0.0
NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 -197 16 1.3 -0.1

14.49890 155,665 1 0 0 1 1 0 1 0 0 0 1 -198 16 0.3 0.0
χ1 14.56955 157,455 1 0 2 -1 0 0 -1 0 0 2 0 -231 18 0.3 0.0

14.57176 157,465 1 0 2 -1 1 0 -1 0 0 2 1 -233 18 0.1 0.0
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -834 58 -1.9 0.1

14.95673 163,545 1 1 -2 0 -1 0 0 0 2 -2 1 -1117 76 0.5 0.0
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1138 77 -43.4 2.9

15.00000 164,554 1 1 -1 0 0 -1 0 -1 2 -2 2 -1764 104 0.6 0.0
S1 15.00000 164,556 1 1 -1 0 0 1 0 1 0 0 0 -1764 104 1.6 -0.1

15.02958 165,345 1 1 0 -2 -1 0 -2 0 2 0 1 -3048 92 0.1 0.0
15.03665 165,535 1 1 0 0 -2 0 0 0 0 0 -2 -3630 195 0.1 0.0
15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -3845 229 -8.8 0.5

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 -4084 262 470.9 -30.2
15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 -4355 297 68.1 -4.6
15.04548 165,575 1 1 0 0 2 0 0 0 0 0 2 -4665 334 -1.6 0.1
15.07749 166,455 1 1 1 -1 0 0 -1 0 0 1 0 85693 21013 0.1 0.0
15.07993 166,544 1 1 1 0 -1 -1 0 -1 0 0 -1 35203 2084 -0.1 0.0

ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 22794 358 -20.6 -0.3
15.08214 166,556 1 1 1 0 0 1 0 1 -2 2 -2 22780 358 0.3 0.0
15.08434 166,564 1 1 1 0 1 -1 0 -1 0 0 1 16842 -85 -0.3 0.0
15.11392 167,355 1 1 2 -2 0 0 -2 0 0 2 0 3755 -189 -0.2 0.0
15.11613 167,365 1 1 2 -2 1 0 -2 0 0 2 1 3552 -182 -0.1 0.0

φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 3025 -160 -5.0 0.3
15.12542 167,565 1 1 2 0 1 0 0 0 -2 2 -1 2892 -154 0.2 0.0
15.16427 168,554 1 1 3 0 0 -1 0 -1 -2 2 -2 1638 -93 -0.2 0.0

θ1 15.51259 173,655 1 2 -2 1 0 0 1 0 0 -2 0 370 -20 -0.5 0.0
15.51480 173,665 1 2 -2 1 1 0 1 0 0 -2 1 369 -20 -0.1 0.0
15.58323 175,445 1 2 0 -1 -1 0 -1 0 0 0 -1 325 -17 0.1 0.0

J1 15.58545 175,455 1 2 0 -1 0 0 -1 0 0 0 0 324 -17 -2.1 0.1
15.58765 175,465 1 2 0 -1 1 0 -1 0 0 0 1 323 -16 -0.4 0.0

SO1 16.05697 183,555 1 3 -2 0 0 0 0 0 0 -2 0 194 -8 -0.2 0.0
16.12989 185,355 1 3 0 -2 0 0 -2 0 0 0 0 185 -7 -0.1 0.0

OO1 16.13911 185,555 1 3 0 0 0 0 0 0 -2 0 -2 184 -7 -0.6 0.0
16.14131 185,565 1 3 0 0 1 0 0 0 -2 0 -1 184 -7 -0.4 0.0
16.14352 185,575 1 3 0 0 2 0 0 0 -2 0 0 184 -7 -0.1 0.0

ν1 16.68348 195,455 1 4 0 -1 0 0 -1 0 -2 0 -2 141 -4 -0.1 0.0
16.68569 195,465 1 4 0 -1 1 0 -1 0 -2 0 -1 141 -4 -0.1 0.0
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The values used for k(0)
21 (σ) in evaluating δkf are from an exact com-

putation necessarily involving use of the framework of nutation-wobble
theory which is outside the scope of this chapter. If the (approximate)
resonance formula were used instead for the computation, the resulting
numbers for δkR

f and δkI
f would require small corrections to match the

exact values. In units of 10−5, they are (in-phase, out-of-phase) (1, 1) for
Q1, (1, 1) for O1 and its companion having Doodson numbers 145,545,
(1, 0) for NO1, (0,−1) for P1, (244, 299) for ψ1, (12, 12) for φ1, (3, 2)
for J1, and (2, 1) for OO1 and its companion with Doodson numbers
185,565. These are the only tides for which the corrections would con-
tribute nonneglibily to the numbers listed in the last two columns of the
table.
Calculation of the correction due to any tidal constituent is illustrated by
the following example for K1. Given that Am = A1 = −3.1274 × 10−8,
and thatHf = 0.36870, θf = (θg+π), and k(0)

21 = (0.25746+0.00118 i) for
this tide, one finds on subtracting the nominal value (0.29830−0.00144 i)
that δkf = (−0.04084 + 0.00262 i). Equation (5b) then yields:

(∆C̄21)K1
= 470.9× 10−12 sin(θg + π)− 30.2× 10−12 cos(θg + π),

(∆S̄21)K1
= 470.9× 10−12 cos(θg + π) + 30.2× 10−12 sin(θg + π).

The variation of k(0)
20 across the zonal tidal band, (nm) = (20), is due to

mantle anelasticity; it is described by the formula

k
(0)
20 = 0.29525−5.796×10−4

{
cot

απ

2

[
1−

(
fm

f

)α]
+ i

(
fm

f

)α}
(9)

on the basis of the anelasticity model referred to earlier. Here f is the
frequency of the zonal tidal constituent, fm is the reference frequency
equivalent to a period of 200 s, and α = 0.15. The δkf in Table 6.3b are
the differences between k

(0)
20 computed from the above formula and the

nominal value k20 = 0.30190 given in Table 6.1.
The total variation in geopotential coefficient C̄20 is obtained by adding
to the result of Step 1 the sum of the contributions from the tidal con-
stituents listed in Table 6.3b computed using equation (5a). The tidal
variations in C̄2m and S̄2m for the other m are computed similarly, ex-
cept that equation (5b) is to be used together with Table 6.3a for m = 1
and Table 6.3c for m = 2.

6.2 Solid Earth Pole Tide

The pole tide is generated by the centrifugal effect of polar motion,
characterized by the potential

∆V (r, θ, λ) = −Ω2r2

2 sin 2θ (m1 cosλ+m2 sinλ)

= −Ω2r2

2 sin 2θ Re [(m1 − im2) eiλ].
(10)

(See sub-section 7.1.4 for further details, including the relation of the
wobble variables (m1,m2) to the polar motion variables (xp, yp).) The
deformation which constitutes this tide produces a perturbation

−Ω2r2

2
sin 2θ Re [k2 (m1 − im2) eiλ]

in the external potential, which is equivalent to changes in the geopo-
tential coefficients C21 and S21. Using for k2 the value 0.3077 + 0.0036 i
appropriate to the polar tide yields

∆C̄21 = −1.333× 10−9(m1 − 0.0115m2),
∆S̄21 = −1.333× 10−9(m2 + 0.0115m1),

where m1 and m2 are in seconds of arc.
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Table 6.3b Corrections for frequency dependence of k(0)
20 of the zonal tides due to anelasticity.

Units: 10−12. The nominal value k20 for the zonal tides is taken as 0.30190. The real
and imaginary parts δkR

f and δkI
f of δkf are listed, along with the corresponding in-

phase (ip) amplitude (A0Hfδk
R
f ) and out-of-phase (op) amplitude (−A0Hfδk

I
f ) to be

used in equation (5a).

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkR
f Amp. δkI

f Amp.
No. (ip) (op)
55,565 0.00221 0 0 0 0 1 0 0 0 0 0 1 0.01347 16.6 -0.00541 -6.7
55,575 0.00441 0 0 0 0 2 0 0 0 0 0 2 0.01124 -0.1 -0.00488 0.1

Sa 56,554 0.04107 0 0 1 0 0 -1 0 -1 0 0 0 0.00547 -1.2 -0.00349 0.8
Ssa 57,555 0.08214 0 0 2 0 0 0 0 0 -2 2 -2 0.00403 -5.5 -0.00315 4.3

57,565 0.08434 0 0 2 0 1 0 0 0 -2 2 -1 0.00398 0.1 -0.00313 -0.1
58,554 0.12320 0 0 3 0 0 -1 0 -1 -2 2 -2 0.00326 -0.3 -0.00296 0.2

Msm 63,655 0.47152 0 1 -2 1 0 0 1 0 0 -2 0 0.00101 -0.3 -0.00242 0.7
65,445 0.54217 0 1 0 -1 -1 0 -1 0 0 0 -1 0.00080 0.1 -0.00237 -0.2

Mm 65,455 0.54438 0 1 0 -1 0 0 -1 0 0 0 0 0.00080 -1.2 -0.00237 3.7
65,465 0.54658 0 1 0 -1 1 0 -1 0 0 0 1 0.00079 0.1 -0.00237 -0.2
65,655 0.55366 0 1 0 1 0 0 1 0 -2 0 -2 0.00077 0.1 -0.00236 -0.2

Msf 73,555 1.01590 0 2 -2 0 0 0 0 0 0 -2 0 -0.00009 0.0 -0.00216 0.6
75,355 1.08875 0 2 0 -2 0 0 -2 0 0 0 0 -0.00018 0.0 -0.00213 0.3

Mf 75,555 1.09804 0 2 0 0 0 0 0 0 -2 0 -2 -0.00019 0.6 -0.00213 6.3
75,565 1.10024 0 2 0 0 1 0 0 0 -2 0 -1 -0.00019 0.2 -0.00213 2.6
75,575 1.10245 0 2 0 0 2 0 0 0 -2 0 0 -0.00019 0.0 -0.00213 0.2

Mstm 83,655 1.56956 0 3 -2 1 0 0 1 0 -2 -2 -2 -0.00065 0.1 -0.00202 0.2
Mtm 85,455 1.64241 0 3 0 -1 0 0 -1 0 -2 0 -2 -0.00071 0.4 -0.00201 1.1

85,465 1.64462 0 3 0 -1 1 0 -1 0 -2 0 -1 -0.00071 0.2 -0.00201 0.5
Msqm 93,555 2.11394 0 4 -2 0 0 0 0 0 -2 -2 -2 -0.00102 0.1 -0.00193 0.2
Mqm 95,355 2.18679 0 4 0 -2 0 0 -2 0 -2 0 -2 -0.00106 0.1 -0.00192 0.1

Table 6.3c Amplitudes (A2δkfHf ) of the corrections for frequency dependence of k(0)
22 , taking the

nominal value k22 for the sectorial tides as (0.30102 − i 0.00130). Units: 10−12. The
corrections are only to the real part.

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkR
f Amp.

No.
N2 245,655 28.43973 2 -1 0 1 0 0 1 0 2 0 2 0.00006 -0.3
M2 255,555 28.98410 2 0 0 0 0 0 0 0 2 0 2 0.00004 -1.2

6.3 Treatment of the Permanent Tide

The degree 2 zonal tide generating potential has a mean (time average)
value that is nonzero. This time independent (nm) = (20) potential
produces a permanent deformation and a consequent time independent
contribution to the geopotential coefficient C̄20. In formulating a geopo-
tential model, two approaches may be taken (see Chapter 1). When the
time independent contribution is included in the adopted value of C̄20,
then the value is termed “zero tide” and will be noted here C̄zt

20. This
is the case for the JGM-3 model. If the time independent contribution
is not included in the adopted value of C̄20, then the value is termed
“conventional tide free” and will be noted here C̄tf

20 . This is the case of
the EGM96 model.

When using the EGM96 geopotential model as originally disseminated,
i.e. as a “conventional tide free” model with C̄tf

20 = −0.4841653717×10−3

at epoch 2000, the full tidal model given by (1), computed according to
the preceding sections, should be used.
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In the case of a “zero tide” geopotential model, the model of tidal effects
to be added should not once again contain a time independent part. One
must not then use the expression (1) as it stands for modeling ∆C̄20; its
permanent part must first be restored. This is Step 3 of the computation,
which provides us with ∆C̄20.
The symbol ∆C̄20 will hereafter be reserved for the temporally varying
part of (1) while the full expression will be redesignated as ∆C̄20

∗ and
the time independent part ∆C̄perm

20 . Thus

∆C̄20 = ∆C̄∗20 − 〈∆C̄20
∗〉, (11)

where

∆C̄∗20 =
k20

5

3∑
j=2

GMj

GM⊕

(
Re

rj

)3

P̄20(sinΦj),

〈∆C̄∗20〉 = A0H0k20 = (4.4228× 10−8)(−0.31460)k20. (12)

In evaluating it, the same value must be used for k20 in both ∆C̄∗20 and
〈∆C̄20〉. With k20 = 0.30190, 〈∆C̄20〉 = −4.201 × 10−9. EGM96 has
been computed using k20 = 0.3, therefore 〈∆C̄20〉 = −4.173× 10−9 and
C̄zt

20 = −0.484169382× 10−3 at epoch 2000.
The use of “zero tide” values and the subsequent removal of the effect
of the permanent tide from the tide model is presented for consistency
with the 18th IAG General Assembly Resolution 16.

6.4 Effect of the Ocean Tides

The dynamical effects of ocean tides are most easily incorporated by pe-
riodic variations in the normalized Stokes’ coefficients. These variations
can be written as

∆C̄nm − i∆S̄nm = Fnm

∑
s(n,m)

−∑
+

(C±snm ∓ iS±snm)e±iθf , (13)

where

Fnm =
4πGρw

ge

√
(n+m)!

(n−m)!(2n+ 1)(2− δom)

(
1 + k′n
2n+ 1

)
,

ge and G are given in Chapter 1,
ρw = density of seawater = 1025 kg m−3,
k′n = load deformation coefficients (k′2 =−0.3075,

k′3 =−0.195, k′4 =−0.132, k′5 =−0.1032, k′6 =−0.0892),
C±snm, S

±
snm = ocean tide coefficients (m) for the tide constituent s
θs = argument of the tide constituent s as defined in the

solid tide model (Chapter 7).
The summation over + and − denotes the respective addition of the
retrograde waves using the top sign and the prograde waves using the
bottom sign. The C±snm and S±snm are the coefficients of a spherical
harmonic decomposition of the ocean tide height for the ocean tide due
to the constituent s of the tide generating potential.
For each constituent s in the diurnal and semidiurnal tidal bands, these
coefficients were obtained from the CSR 3.0 ocean tide height model
(Eanes and Bettadpur, 1995), which was estimated from the TOPEX/
Poseidon satellite altimeter data. For each constituent s in the long
period band, the self-consistent equilibrium tide model of Ray and Cart-
wright (1994) was used. The list of constituents for which the coefficients
were determined was obtained from the Cartwright and Tayler (1971)
expansion of the tide generating potential.
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These ocean tide height harmonics are related to the Schwiderski con-
vention (Schwiderski, 1983) according to

C±snm − iS±snm = −iĈ±snme
i(ε±snm+χs), (14)

where
Ĉ±snm = ocean tide amplitude for constituent s using the

Schwiderski notation,
ε±snm = ocean tide phase for constituent s, and
χs is obtained from Table 6.4, with Hs being the Cartwright

and Tayler (1971) amplitude at frequency s.

Table 6.4 Values of χs for long-period, diurnal
and semidiurnal tides.

Tidal Band Hs > 0 Hs < 0
Long Period π 0
Diurnal π

2 −π
2

Semidiurnal 0 π

For clarity, the terms in equation 1 are repeated in both conventions:

∆C̄nm = Fnm

∑
s(n,m)

[(C+
snm +C−snm) cos θs +(S+

snm +S−snm) sin θs] (15a)

or

∆C̄nm = Fnm

∑
s(n,m)

[Ĉ+
snm sin(θs + ε+snm + χs) + Ĉ−snm sin(θs + ε−snm + χs)], (15b)

∆S̄nm = Fnm

∑
s(n,m)

[(S+
snm−S−snm) cos θs− (C+

snm−C−snm) sin θs] (15c)

or

∆S̄nm = Fnm

∑
s(n,m)

[Ĉ+
snm cos(θs + ε+snm +χs)− Ĉ−snm cos(θs + ε−snm +χs)]. (15d)

The orbit element perturbations due to ocean tides can be loosely grou-
ped into two classes. The resonant perturbations arise from coefficients
for which the order (m) is equal to the first Doodson’s argument multi-
plier n1 of the tidal constituent s (See Note), and have periodicities from
a few days to a few years. The non-resonant perturbations arise when
the order m is not equal to index n1. The most important of these are
due to ocean tide coefficients for which m = n1 + 1 and have periods of
about 1 day.
Certain selected constituents (e.g. Sa and S2) are strongly affected by
atmospheric mass distribution (Chapman and Lindzen, 1970). The res-
onant harmonics (for m = n1) for some of these constituents were deter-
mined by their combined effects on the orbits of several satellites. These
multi-satellite values then replaced the corresponding values from the
CSR 3.0 altimetric ocean tide height model.
Based on the predictions of the linear perturbation theory outlined in
Casotto (1989), the relevant tidal constituents and spherical harmonics
were selected for several geodetic and altimetric satellites. For geode-
tic satellites, both resonant and non-resonant perturbations were ana-
lyzed,whereas for altimetric satellites, only the non-resonant perturba-
tions were analyzed. For the latter, the adjustment of empirical parame-
ters during orbit determination removes the errors in modeling resonant
accelerations. The resulting selection of ocean tidal harmonics was then
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merged into a single recommended ocean tide force model. With this
selection the error of omission on TOPEX is approximately 5 mm along-
track, and for Lageos it is 2 mm along-track. The recommended ocean
tide harmonic selection is available via anonymous ftp from <11>.
For high altitude geodetic satellites like Lageos, in order to reduce the
required computing time, it is recommended that out of the complete
selection, only the constituents whose Cartwright and Tayler amplitudes
Hs is greater than 0.5 mm be used, with their spherical harmonic expan-
sion terminated at maximum degree and order 8. The omission errors
from this reduced selection on Lageos is estimated at approximately 1
cm in the transverse direction for short arcs.
NOTE: The Doodson variable multipliers (n̄) are coded into the argu-
ment number (A) after Doodson (1921) as:

A = n1(n2 + 5)(n3 + 5).(n4 + 5)(n5 + 5)(n6 + 5).

6.5 Conversion of Tidal Amplitudes defined according to Different
Conventions

The definition used for the amplitudes of tidal terms in the recent high-
accuracy tables differ from each other and from Cartwright and Tayler
(1971). Hartmann and Wenzel (1995) tabulate amplitudes in units of
the potential (m2s−2), while the amplitudes of Roosbeek (1996), which
follow the Doodson (1921) convention, are dimensionless. To convert
them to the equivalent tide heights Hf of the Cartwright-Tayler conven-
tion, multiply by the appropriate factors from Table 6.5. The following
values are used for the constants appearing in the conversion factors:
Doodson constant D1 = 2.63358352855 m2 s−2; ge ≡ g at the equa-
torial radius = 9.79828685 (from GM = 3.986004415 × 1014 m3 s−2,
Re = 6378136.55 m).

Table 6.5 Factors for conversion to Cartwright-Tayler ampli-
tudes from those defined according to Doodson’s
and Hartmann and Wenzel’s conventions.

From Doodson From Hartmann & Wenzel

f20 = −
√

4π√
5

D1
ge

= −0.426105 f ′20 = 2
√

π
ge

= 0.361788

f21 = − 2
√

24π
3
√

5
D1
ge

= −0.695827 f ′21 = −
√

8π
ge

= −0.511646

f22 =
√

96π
3
√

5
D1
ge

= 0.695827 f ′22 =
√

8π
ge

= 0.511646

f30 = −
√

20π√
7

D1
ge

= −0.805263 f ′30 = 2
√

π
ge

= 0.361788

f31 =
√

720π
8
√

7
D1
ge

= 0.603947 f ′31 =
√

8π
ge

= 0.511646

f32 =
√

1440π
10
√

7
D1
ge

= 0.683288 f ′32 =
√

8π
ge

= 0.511646

f33 = −
√

2880π
15
√

7
D1
ge

= −0.644210 f ′33 = −
√

8π
ge

= −0.511646

11ftp.csr.utexas.edu/pub/tide
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7 Displacement of Reference Points

Models describing the displacements of reference points due to various
effects are provided. These models relate the regularized position XR(t)
of the reference points (see Chapter 4) to their instantaneous positions.
Two kinds of displacements are distinguished: those that affect the ref-
erence markers on the crust and those that affect the reference points
of the instruments, which are technique-dependent. The first category
includes (a) deformations of the solid Earth due to ocean tidal loading
as well as those due to the body tides arising from the direct effect of the
external tide generating potential and centrifugal perturbations caused
by Earth rotation variations, including the pole tide, (b) atmospheric
loading. The second category presently only includes the thermal defor-
mation of a VLBI antenna.

7.1 Displacement of Reference Markers on the Crust

7.1.1 Local Site Displacement due to Ocean Loading

Ocean tides cause a temporal variation of the ocean mass distribution
and the associated load on the crust and produce time-varying defor-
mations of the Earth. The modeling of the associated site displacement
is dealt with in this section. The displacement model does not include
the translation of the solid Earth that counterbalances the motion of the
oceans’ center of mass. This convention follows Farrell (1972).

Ocean Loading

Three-dimensional site displacements due to ocean tide loading are com-
puted using the following scheme. Let ∆c denote a displacement compo-
nent (radial, west, south) at a particular site and time t. Let W denote
the tide generating potential (e.g. Hartmann and Wenzel, 1995; Tamura,
1987; Cartwright and Tayler, 1971; Cartwright and Edden, 1973),

W = g
∑

j

KjP
mj

2 (cosψ) cos(ωjt+ χj +mjλ), (1)

where only degree two harmonics are retained. The symbols designate
colatitude ψ, longitude λ, tidal angular velocity ωj , amplitude Kj and
the astronomical argument χj at t = 0h. Spherical harmonic order mj

distinguishes the fundamental bands, i.e. long-period (m = 0), diurnal
(m = 1) and semidiurnal (m = 2). The parameters Hj and ωj are used
to obtain the most completely interpolated form

∆c =
∑

j

acj cos(ωjt+ χj − φcj), (2)

with

acj cosφcj = Hj

[
Ack cos Φck

H̄k

(1− p) + Ac,k+1 cos Φc,k+1

H̄k+1
p

]
,

acj sinφcj = Hj

[
Ack sin Φck

H̄k

(1− p) + Ac,k+1 sin Φc,k+1

H̄k+1
p

]
.

For each site, the amplitudes Ack and phases Φck, 1 ≤ k ≤ 11, are taken
from models such as those listed in Table 7.2. For clarity, symbols written
with bars overhead designate tidal potential quantities associated with
the small set of partial tides represented in the table. These are the
semidiurnal waves M2, S2, N2,K2, the diurnal waves K1, O1, P1, Q1, and
the long-period waves Mf ,Mm, and Ssa.

72



7.1 Displacement of Reference Markers on the Crust

N
o
.
3
2IERS

Technical
Note

Interpolation is possible only within a fundamental band, i.e. we demand

m̄k = mj = m̄k+1. (3)

Then

p =
ωj − ω̄k

ω̄k+1 − ω̄k
, ω̄k ≤ ωj ≤ ω̄k+1.

If no ω̄k or ω̄k+1 can be found meeting (3), p is set to zero or one,
respectively.

A shorter form of (2) is obtained if the summation considers only the
tidal species shown in Table 7.1 and corrections for the modulating effect
of the lunar node. Then,

∆c =
∑

j

fjAcj cos(ωjt+ χj + uj − Φcj), (4)

where fj and uj depend on the longitude of the lunar node. The as-
tronomical arguments needed in (4) can be computed with subroutine
ARG. The code for this subroutine can be obtained by anonymous ftp
to <12>. The Tamura tide potential is available from the International
Centre for Earth Tides, Observatoire Royal de Belgique, Bruxelles.

Information similar to that provided in Table 7.1 is available electron-
ically from the ocean loading service site at <13>. Some precomputed
tables are available at <14>.

Coefficients for stations that are farther away than 10 km from precom-
puted ones should always be recomputed.

The coefficients shown in Table 7.1 have been computed according to
Scherneck (1991). Tangential displacements are to be taken positive in
west and south directions. Tables are available derived from different
ocean tide maps, GOT99.2 (Ray, 1999), CSR4.0 and CSR 3.0 (Eanes
and Bettadpur, 1995), and models due to LeProvost et al. (1994). The
automatic service computes coefficients selectably from a range of eleven
ocean tide models, see Table 7.2.

The use of the most recent of these models is recommended (GOT00.2
for a TOPEX/POSEIDON derived solution, FES99 for a hydrodynamic
solution). However, older models might be preferred for internal con-
sistency. Since many space geodesy stations are inland or near coasts,
the accuracy of the tide models in the shelf areas is more crucial than in
the open sea. Refined coastlines have been derived from the topographic
data sets ETOPO5 and Terrain Base (Row et al., 1995) of the National
Geophysical Data Center, Boulder, CO. Ocean tide mass budgets have
been constrained using a uniform co-oscillating oceanic layer. Load con-
volution employed a disk-generating Green’s function method (Farrell,
1972; Zschau, 1983; Scherneck, 1990). An assessment of the accuracy of
the loading model is given in Scherneck (1993).

Additional contributions to ocean-induced displacement arise from the
frequency dependence of the load Love numbers due to the Nearly Diur-
nal Free Wobble in the diurnal tidal band. The effect of this dependence
may be taken into account, following Wahr and Sasao (1981), by incre-
menting the body tide Love numbers as explained further below.

12maia.usno.navy.mil/conv2000/chapter7
13http://www.oso.chalmers.se/∼loading
14http://www.oso.chalmers.se/∼hgs/README.html
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Table 7.1 Sample of ocean loading table file. Each site record shows a header with the site name,
the CDP monument number, geographic coordinates and comments. First three rows of
numbers designate amplitudes (meter), radial, west, south, followed by three lines with
the corresponding phase values (degrees).

Columns designate partial tides M2, S2, N2,K2,K1, O1, P1, Q1,Mf ,Mm, and Ssa.
$$

ONSALA60 7213
$$
$$ Computed by H.G. Scherneck, Uppsala University, 1989
$$ ONSALA 7213 lon/lat: 11.9263 57.3947
.00384 .00091 .00084 .00019 .00224 .00120 .00071 .00003 .00084 .00063 .00057
.00124 .00034 .00031 .00009 .00042 .00041 .00015 .00006 .00018 .00010 .00010
.00058 .00027 .00021 .00008 .00032 .00017 .00009 .00004 .00007 .00001 .00020

-56.0 -46.1 -90.7 -34.4 -44.5 -123.2 -49.6 178.4 14.9 37.3 24.6
75.4 97.6 40.8 94.8 119.0 25.4 98.7 -14.1 -177.0 -126.7 -175.8
84.2 131.3 77.7 103.9 17.2 -55.0 25.2 -165.0 173.3 121.8 91.3

Table 7.2 Ocean tide models available at the automatic loading service.
Model code Reference Input Resolution

SCHW Schwiderski and Szeto (1981) Tide gauge 1◦ × 1◦

CSR3.0, CSR4.0 Eanes (1994) Topex/Poseidon Altim. 1◦ × 1◦

Eanes and Bettadpur (1995) T/P + LEPR loading 0.5◦ × 0.5◦

TPX0.5 Egbert et al. (1994) inverse hydrodyn, solution
from T/P Altim. 256 × 512

FES94 (LEPR) Le Provost et al. (1994) numerical model 0.5◦ × 0.5◦

FES95
FES98 Le Provost et al. (1998) num. mdl. + assim. Altim. 0.5◦ × 0.5◦

FES99 Lefèvre et al. (2000) numerical model 0.25◦ × 0.25◦

GOT99.2, GOT00.2 Ray (1999) T/P 0.5◦ × 0.5◦

NAO99.b Matsumoto et al. (2000) num. + T/P assim. 0.5◦ × 0.5◦

7.1.2 Effects of the Solid Earth Tides

Site displacements caused by tides of spherical harmonic degree and
order (nm) are characterized by the Love number hnm and the Shida
number lnm. The effective values of these numbers depend on station
latitude and tidal frequency (Wahr, 1981). The latitude dependence and
a small interband variation are caused by the Earth’s ellipticity and the
Coriolis force due to Earth rotation. A strong frequency dependence
within the diurnal band is produced by the Nearly Diurnal Free Wobble
resonance associated with the free core nutation (FCN) in the wobbles
of the Earth and its core regions which contribute to the tidal defor-
mations via their centrifugal effects. Additionally, the resonance in the
deformation due to ocean tidal loading, which is not included in the
computations of the last section which use constant load Love numbers,
may be represented in terms of effective contributions to h21 and l21.
A further frequency dependence, which is most pronounced in the long-
period tidal band, arises from mantle anelasticity leading to corrections
to the elastic Earth Love numbers. The contributions to the Love num-
ber parameters from anelasticity and ocean tidal loading as well as those
from the centrifugal perturbations due to the wobbles have imaginary
parts which cause the tidal displacements to lag slightly behind the tide
generating potential. All these effects need to be taken into account
when an accuracy of 1 mm is desired in determining station positions.
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In order to account for the latitude dependence of the effective Love and
Shida numbers, the representation in terms of multiple h and l parame-
ters employed by Mathews et al. (1995) is used. In this representation,
parameters h(0) and l(0) play the roles of h2m and l2m, while the latitude
dependence is expressed in terms of additional parameters h(2), h′ and
l(1), l(2), l′. These parameters are defined through their contributions to
the site displacement as given by equations (5) below. Their numerical
values as listed in the Conventions 1996 have since been revised, and the
new values presented in Table 7.4 are used here. These values pertain
to the elastic Earth and anelasticity models referred to in Chapter 6.
The vector displacement due to a tidal term of frequency f is given in
terms of the several parameters by the following expressions that result
from evaluation of the defining equation (6) of Mathews et al. (1995):
For a long-period tide of frequency f :

∆~rf =
√

5
4πHf

{ [
h(φ)

(
3
2 sin2 φ− 1

2

)
+
√

4π
5 h

′
]
cos θf r̂

+3l(φ) sinφ cosφ cos θf n̂

+cosφ
[
3l(1) sin2 φ−

√
4π
5 l

′
]
sin θf ê

}
.

(5a)

For a diurnal tide of frequency f :

∆~rf = −
√

5
24πHf

{
h(φ)3 sinφ cosφ sin(θf + λ) r̂

+
[
3l(φ) cos 2φ− 3l(1) sin2 φ+

√
24π
5 l′
]
sin(θf + λ) n̂

+
[(

3l(φ)−
√

24π
5 l′
)

sinφ− 3l(1) sinφ cos 2φ
]
cos(θf + λ) ê

}
.

(5b)

For a semidiurnal tide of frequency f :

∆~rf =
√

5
96πHf{ [h(φ)3 cos2 φ cos(θf + 2λ) r̂

−6 sinφ cosφ[l(φ) + l(1)] cos(θf + 2λ) n̂
−6 cosφ[l(φ) + l(1) sin2 φ] sin(θf + 2λ) ê}.

(5c)

In the above expressions,

h(φ) = h(0) + h(2)[(3/2) sin2 φ− 1/2],
l(φ) = l(0) + l(2)[(3/2) sin2 φ− 1/2],

(6)

Hf = amplitude (m) of the tidal term of frequency f ,

φ = geocentric latitude of station,

λ = east longitude of station,

θf = tide argument for tidal constituent with frequency f ,

r̂ = unit vector in the radial direction,

ê = unit vector in the east direction,

n̂ = unit vector at right angles to r̂ in the northward direction.

The convention used in defining the tidal amplitude Hf is as in Cart-
wright and Tayler (1971). To convert amplitudes defined according to
other conventions that have been employed in recent more accurate ta-
bles, use the conversion factors given in Chapter 6, Table 6.5.
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Equations (5) assume that the Love and Shida number parameters are all
real. Generalization to the case of complex parameters is done simply by
making the following replacements for the combinations L cos(θf +mλ)
and L sin(θf +mλ), wherever they occur in those equations:

L cos(θf +mλ) → LR cos(θf +mλ)− LI sin(θf +mλ), (7a)

L sin(θf +mλ) → LR sin(θf +mλ) + LI cos(θf +mλ), (7b)

where L is a generic symbol for h(0), h(2), h′, l(0), l(1), l(2), and l′, and LR

and LI stand for their respective real and imaginary parts.
The complex values of these 7 parameters are computed for the diurnal
body tides from resonance formulae of the form given in equation (6) of
Chapter 6 using the values listed in equation (7) of that chapter for the
resonance frequencies σα and those listed in Table 7.3 for the coefficients
L0 and Lα relating to each of the multiple h and l Love/Shida numbers.
The manner in which σα and the Lα were computed is explained in
Chapter 6, where mention is also made of the models used for the elastic
Earth and for mantle anelasticity. As was noted in that chapter, the
frequency dependence of the ocean tide contributions to certain Earth
parameters in the equations of motion for the wobbles has the effect
of making the resonance formulae inexact. The difference between the
exact and resonance formula values is included in the tabulated values of
h

(0)
21 and l

(0)
21 in Table 7.4. (The only case where this difference makes a

contribution above the cut-off in Table 7.5a is in the radial displacement
due to the ψ1 tide.) Also included in the values listed in Table 7.4 are the
resonant ocean tidal loading corrections outlined in the next paragraph.

Table 7.3 Parameters in the Resonance Formulae for the Displacement
Love Numbers.

h(0) h(2)

α Re Lα Im Lα Re Lα Im Lα

0 0.60671× 10+0 −0.2420× 10−2 −0.615× 10−3 −0.122× 10−4

1 −0.15777× 10−2 −0.7630× 10−4 0.160× 10−5 0.116× 10−6

2 0.18053× 10−3 −0.6292× 10−5 0.201× 10−6 0.279× 10−8

3 −0.18616× 10−5 0.1379× 10−6 −0.329× 10−7 −0.217× 10−8

l(0) l(1)

α Re Lα Im Lα Re Lα Im Lα

0 .84963× 10−1 −.7395× 10−3 .121× 10−2 .136× 10−6

1 −.22107× 10−3 −.9646× 10−5 −.316× 10−5 −.166× 10−6

2 −.54710× 10−5 −.2990× 10−6 .272× 10−6 −.858× 10−8

3 −.29904× 10−7 −.7717× 10−8 −.545× 10−8 .827× 10−11

l(2) l′

α Re Lα Im Lα Re Lα Im Lα

0 .19334× 10−3 −.3819× 10−5 −.221× 10−3 −.474× 10−7

1 −.50331× 10−6 −.1639× 10−7 .576× 10−6 .303× 10−7

2 −.66460× 10−8 .5076× 10−9 .128× 10−6 −.378× 10−8

3 .10372× 10−7 .7511× 10−9 −.655× 10−8 −.291× 10−9

Site displacements caused by solid Earth deformations due to ocean tidal
loading have been dealt with in the first section of this chapter. Constant
nominal values were assumed for the load Love numbers in computing
these. The values used for tides of degree 2 were
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h′2
(nom) = −1.001, l′2

(nom) = 0.0295, k′2
(nom) = −0.3075.

Since resonances in the diurnal band cause the values of the load Love
numbers too to vary, corrections need to be applied to the results of the
first section. These corrections can be expressed in terms of effective
ocean tide contributions δh(OT ) and δl(OT ) to the respective body tide
Love numbers h(0)

21 and l(0)21 . δh(OT ) and δl(OT ) are given by expressions
of the form (8) of Chapter 6, with appropriate replacements. They were
computed using the same ocean tide admittances as in that chapter,
and using the resonance parameters listed in Table 6.2 for the load Love
numbers; they are included in the values listed in Table 7.4 under h(0)R

and h(0)I for the diurnal tides.

The variation of h(0)
20 and l

(0)
20 across the zonal tidal band, (nm) = (20),

due to mantle anelasticity, is described by the formulae

h
(0)
20 = 0.5998−9.96×10−4

{
cot

απ

2

[
1−

(
fm

f

)α]
+ i

(
fm

f

)α}
, (8a)

l
(0)
20 = 0.0831− 3.01× 10−4

{
cot

απ

2

[
1−

(
fm

f

)α]
+ i

(
fm

f

)α}
(8b)

on the basis of the anelasticity model already referred to. Here f is the
frequency of the zonal tidal constituent, fm is the reference frequency
equivalent to a period of 200 s, and α = 0.15.

Table 7.4 lists the values of h(0), h(2), h′, l(0), l(1), l(2), and l′ for those
tidal frequencies for which they are needed for use in the computational
procedure described below. The tidal frequencies shown in the table are
in cycles per sidereal day (cpsd). Periods, in solar days, of the nutations
associated with the diurnal tides are also shown.

Computation of the variations of station coordinates due to solid Earth
tides, like that of geopotential variations, is done most efficiently by the
use of a two-step procedure. The evaluations in the first step use the
expression in the time domain for the full degree 2 tidal potential or for
the parts that pertain to particular bands (m = 0, 1, or 2). Nominal
values common to all the tidal constituents involved in the potential and
to all stations are used for the Love and Shida numbers h2m and l2m

in this step. They are chosen with reference to the values in Table 7.4
so as to minimize the computational effort needed in Step 2. Along
with expressions for the dominant contributions from h(0) and l(0) to the
tidal displacements, relatively small contributions from some of the other
parameters are included in Step 1 for reasons of computational efficiency.
The displacements caused by the degree 3 tides are also computed in the
first step, using constant values for h3 and l3.

Corrections to the results of the first step are needed to take account of
the frequency dependent deviations of the Love and Shida numbers from
their respective nominal values, and also to compute the out-of-phase
contributions from the zonal tides. Computations of these corrections
constitute Step 2. The total displacement due to the tidal potential is
the sum of the displacements computed in Steps 1 and 2.

The full scheme of computation is outlined in the chart on page 79.
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Table 7.4 Displacement Love number parameters for degree 2 tides. Super-
scripts R and I identify the real and imaginary parts, respectively.

Name Period Frequency h(0)R h(0)I h(2) h′

Semidiurnal -2 cpsd .6078 -.0022 -.0006
Diurnal

2Q1 6.86 0.85461 .6039 -.0027 -.0006
σ1 7.10 0.85946 .6039 -.0026 -.0006

135,645 9.12 0.89066 .6036 -.0026 -.0006
Q1 9.13 0.89080 .6036 -.0026 -.0006
ρ1 9.56 0.89565 .6035 -.0026 -.0006

145,545 13.63 0.92685 .6028 -.0025 -.0006
O1 13.66 0.92700 .6028 -.0025 -.0006
τ1 14.77 0.93246 .6026 -.0025 -.0006

Nτ1 23.94 0.95835 .6011 -.0024 -.0006
NO1 27.55 0.96381 .6005 -.0023 -.0006
χ1 31.81 0.96865 .5998 -.0023 -.0006
π1 121.75 0.99181 .5878 -.0015 -.0006
P1 182.62 0.99454 .5817 -.0011 -.0006
S1 365.26 0.99727 .5692 -.0004 -.0006

165,545 6798.38 0.99985 .5283 .0023 -.0007
K1 infinity 1.00000 .5236 .0030 -.0007

165,565 -6798.38 1.00015 .5182 .0036 -.0007
165,575 -3399.19 1.00029 .5120 .0043 -.0007

ψ1 -365.26 1.00273 1.0569 .0036 -.0001
166,564 -346.64 1.00288 .9387 -.0050 -.0003

φ1 -182.62 1.00546 .6645 -.0059 -.0006
θ1 -31.81 1.03135 .6117 -.0030 -.0006
J1 -27.55 1.03619 .6108 -.0030 -.0006

OO1 -13.66 1.07300 .6080 -.0028 -.0006
Long period

55,565 6798.38 .000147 .6344 -.0093 -.0006 .0001
Ssa 182.62 .005461 .6182 -.0054 -.0006 .0001
Mm 27.55 .036193 .6126 -.0041 -.0006 .0001
Mf 13.66 .073002 .6109 -.0037 -.0006 .0001

75,565 13.63 .073149 .6109 -.0037 -.0006 .0001

Name Period Frequency l(0)R l(0)I l(1) l(2) l′

Semidiurnal -2 cpsd .0847 -.0007 .0024 .0002
Diurnal

Q1 9.13 0.89080 .0846 -.0006 .0012 .0002 -.0002
145,545 13.63 0.92685 .0846 -.0006 .0012 .0002 -.0002

O1 13.66 0.92700 .0846 -.0006 .0012 .0002 -.0002
NO1 27.55 0.96381 .0847 -.0006 .0012 .0002 -.0002

P1 182.62 0.99454 .0853 -.0006 .0012 .0002 -.0002
165,545 6798.38 0.99985 .0869 -.0006 .0011 .0002 -.0003

K1 infinity 1.00000 .0870 -.0006 .0011 .0002 -.0003
165,565 -6798.38 1.00015 .0872 -.0006 .0011 .0002 -.0003

ψ1 -365.26 1.00273 .0710 -.0020 .0019 .0002 .0001
φ1 -182.62 1.00546 .0828 -.0007 .0013 .0002 -.0002
J1 -27.55 1.03619 .0845 -.0006 .0012 .0002 -.0002

OO1 -13.66 1.07300 .0846 -.0006 .0012 .0002 -.0002
Long period

55,565 6798.38 .000147 .0936 -.0028 .0000 .0002
Ssa 182.62 .005461 .0886 -.0016 .0000 .0002
Mm 27.55 .036193 .0870 -.0012 .0000 .0002
Mf 13.66 .073002 .0864 -.0011 .0000 .0002

75,565 13.63 .073149 .0864 -.0011 .0000 .0002
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CORRECTIONS FOR THE STATION TIDAL DISPLACEMENTS

Step 1: Corrections to be computed in the time domain

in-phase for degree 2 and 3 Nominal values

. for degree 2 → eq (9) h2 → h(φ) = h(0) + h(2)[(3 sin2 φ− 1)/2]

l2 → l(φ) = l(0) + l(2)[(3 sin2 φ− 1)/2]

h(0) = 0.6078, h(2) = −0.0006; l(0) = 0.0847, l(2) = 0.0002
. for degree 3 → eq (10) h3 = 0.292 and l3 = 0.015

out-of-phase for degree 2 only Nominal values
. diurnal tides → eq (14) hI = −0.0025 and lI = −0.0007
. semidiurnal tides → eq (15) hI = −0.0022 and lI = −0.0007

contribution from latitude dependence Nominal values

. diurnal tides → eq (12) l(1) = 0.0012

. semidiurnal tides → eq (13) l(1) = 0.0024

Step 2: Corrections to be computed in the frequency domain and to be added to results of Step 1

in-phase for degree 2
. diurnal tides → eqs (16) → Sum over all the components of Table 7.5a
. semidiurnal tides negligible

in-phase and out-of-phase for degree 2

. long-period tides → eqs (17) → Sum over all the components of Table 7.5b

Displacement due to degree 2 tides, with nominal values for
h

(0)
2m and l

(0)
2m

The first stage of the Step 1 calculations employs real nominal values h2

and l2 common to all the degree 2 tides for the Love and Shida numbers.
It is found to be computationally most economical to choose these to be
the values for the semidiurnal tides (which have very little intra-band
variation). On using the nominal values, the vector displacement of the
station due to the degree 2 tides is given by

∆~r =
3∑

j=2

GMjR
4
e

GM⊕R3
j

{
h2 r̂

(
3
2
(R̂j · r̂)2 −

1
2

)
+ 3l2(R̂j · r̂)[R̂j − (R̂j · r̂) r̂]

}
, (9)

where h(0)
22 and l

(0)
22 of the semidiurnal tides are chosen as the nominal

values h2 and l2. The out-of-phase displacements due to the imaginary
parts of the Love numbers are dealt with separately below. In equation
(9),

GMj = gravitational parameter for the Moon (j = 2)
or the Sun (j = 3),

GM⊕ = gravitational parameter for the Earth,
R̂j , Rj = unit vector from the geocenter to Moon or Sun and

the magnitude of that vector,
Re = Earth’s equatorial radius,
r̂, r = unit vector from the geocenter to the station and

the magnitude of that vector,
h2 = nominal degree 2 Love number,
l2 = nominal degree 2 Shida number.

Note that the part proportional to h2 gives the radial (not vertical)
component of the tide-induced station displacement, and the terms in l2
represent the vector displacement transverse to the radial direction (and
not in the horizontal plane).
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The computation just described may be generalized to include the lati-
tude dependence arising through h(2) by simply adding h(2)[(3/2) sin2 φ−
(1/2)] to the constant nominal value given above, with h(2) = −0.0006.
The addition of a similar term (with l(2) = 0.0002) to the nominal value
of l2 takes care of the corresponding contribution to the transverse dis-
placement. The resulting incremental displacements are small, not ex-
ceeding 0.4 mm radially and 0.2 mm in the transverse direction.

Displacements due to degree 3 tides

The Love numbers of the degree 3 tides may be taken as real and constant
in computations to the degree of accuracy aimed at here. The vector
displacement due to these tides is then given by

∆~r =
3∑

j=2

GMjR
5
e

GM⊕R4
j

{
h3 r̂

(
5
2
(R̂j · r̂)3 −

3
2
(R̂j · r̂)

)
+ l3

(
15
2

(R̂j · r̂)2 −
3
2

)
[R̂j − (R̂j · r̂)r̂]

}
. (10)

Only the Moon’s contribution (j = 2) need be computed, the term due to
the Sun being quite ignorable. The transverse part of the displacement
(10) does not exceed 0.2 mm, but the radial displacement can reach 1.7
mm.

Contributions to the transverse displacement due to the l(1)

term

The imaginary part of l(1) is completely ignorable, as is the intra-band
variation of Re l(1); and l(1) is effectively zero in the zonal band.

In the expressions given below, and elsewhere in this chapter,

Φj = body fixed geocentric latitude of Moon or Sun, and
λj = body fixed east longitude (from Greenwich) of Moon or Sun.

The following formulae may be employed when the use of Cartesian
coordinates Xj , Yj , Zj of the body relative to the terrestrial reference
frame is preferred:

P 0
2 (sinΦj) = 1

R2
j

(
3
2Z

2
j − 1

2R
2
j

)
, (11a)

P 1
2 (sinΦj) cosλj = 3XjZj

R2
j
,

P 1
2 (sinΦj) sinλj = 3YjZj

R2
j
,

(11b)

P 2
2 (sinΦj) cos 2λj = 3

R2
j
(X2

j − Y 2
j ),

P 2
2 (sinΦj) sin 2λj = 6

R2
j
XjYj .

(11c)

Contribution from the diurnal band (with l(1) = 0.0012):

δ~t = −l(1) sinφ
3∑

j=2

GMjR
4
e

GM⊕R3
j

P 1
2 (sinΦj)[sinφ cos(λ− λj) n̂− cos 2φ sin(λ− λj) ê]. (12)

Contribution from the semidiurnal band (with l(1) = 0.0024):

δ~t = −1
2
l(1) sinφ cosφ

3∑
j=2

GMjR
4
e

GM⊕R3
j

P 2
2 (sinΦj)[cos 2(λ− λj) n̂+ sinφ sin 2(λ− λj) ê]. (13)

The contributions of the l(1) term to the transverse displacements caused
by the diurnal and semidiurnal tides could be up to 0.8 mm and 1.0 mm
respectively.
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Out of phase contributions from the imaginary parts of h(0)
2m and

l
(0)
2m

In the following, hI and lI stand for the imaginary parts of h(0)
2m and l(0)2m.

Contributions δr to radial and δ~t to transverse displacements from diur-
nal tides (with hI = −0.0025, lI = −0.0007):

δr = −3
4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj sin 2φ sin(λ− λj), (14a)

δ~t = −3
2
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj [cos 2φ sin(λ− λj) n̂+ sinφ cos(λ− λj) ê]. (14b)

Contributions from semidiurnal tides (with hI=−0.0022, lI=−0.0007):

δr = −3
4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj cos2 φ sin 2(λ− λj), (15a)

δ~t =
3
4
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj [sin 2φ sin 2(λ− λj) n̂− 2 cosφ cos 2(λ− λj) ê]. (15b)

The out-of-phase contributions from the zonal tides has no closed ex-
pression in the time domain.
Computations of Step 2 are to take account of the intra-band variation
of h(0)

2m and l
(0)
2m. Variations of the imaginary parts are negligible except

as stated below. For the zonal tides, however, the contributions from
the imaginary part have to be computed in Step 2.

Correction for frequency dependence of the Love and Shida
numbers
(a) Contributions from the diurnal band

Corrections to the radial and transverse station displacements δr and δ~t
due to a diurnal tidal term of frequency f are obtainable from equation
(5b):

δr = [δR(ip)
f sin(θf + λ) + δR

(op)
f cos(θf + λ)] sin 2φ, (16a)

δ~t = [δT (ip)
f cos(θf + λ)− δT

(op)
f sin(θf + λ)] sinφ ê

+ [δT (ip)
f sin(θf + λ) + δT

(op)
f cos(θf + λ)] cos 2φ n̂,

(16b)

where (
δR

(ip)
f

δR
(op)
f

)
= − 3

2

√
5

24πHf

(
δhR

f

δhI
f

)
,(

δT
(ip)
f

δT
(op)
f

)
= −3

√
5

24πHf

(
δlRf
δlIf

)
,

(16c)

and

δhR
f and δhI

f are the differences of h(0)R and h(0)I at frequency f
from the nominal values h2 and hI used in equations (9) and
(14a), respectively,

δlRf and δlIf are the differences of l(0)R and l(0)I at frequency f
from the nominal values l2 and lI used in equations (9) and
(14b), respectively.
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Table 7.5a Corrections due to the frequency variation of Love and Shida numbers for diurnal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values are
h2 = 0.6078 and l2 = 0.0847 for the real parts, and hI = −0.0025 and lI = −0.0007 for
the imaginary parts. Frequencies shown are in degrees per hour.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R(ip)
f ∆R(op)

f ∆T (ip)
f ∆T (op)

f

Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -0.08 0.00 -0.01 0.01
13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -0.10 0.00 0.00 0.00

O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -0.51 0.00 -0.02 0.03
NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 0.06 0.00 0.00 0.00
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -0.06 0.00 0.00 0.00
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1.23 -0.07 0.06 0.01

15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -0.22 0.01 0.01 0.00
K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 12.00 -0.78 -0.67 -0.03

15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 1.73 -0.12 -0.10 0.00
ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 -0.50 -0.01 0.03 0.00
φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 -0.11 0.01 0.01 0.00

(b) Contributions from the long-period band

Corrections δr and δ~t due to a zonal tidal term of frequency f include
both in-phase (ip) and out-of-phase (op) parts. From equations (5a) and
(7) one finds that

δr =
(

3
2

sin2 φ− 1
2

)
(δR(ip)

f cos θf + δR
(op)
f sin θf ), (17a)

and
δ~t = (δT (ip)

f cos θf + δT
(op)
f sin θf ) sin 2φ n̂, (17b)

where (
δR

(ip)
f

δR
(op)
f

)
=

√
5
4πHf

(
δhR

f

−δhI
f

)
,

and (
δT

(ip)
f

δT
(op)
f

)
= 3

2

√
5
4πHf

(
δlRf
−δlIf

)
.

(17c)

Table 7.5b Corrections due to frequency variation of Love and Shida numbers for zonal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values
are h = 0.6078 and l = 0.0847.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R(ip)
f ∆R(op)

f ∆T (ip)
f ∆T (op)

f

0.00221 55,565 0 0 0 0 1 0 0 0 0 0 1 0.47 0.16 0.23 0.07
Ssa 0.08214 57,555 0 0 2 0 0 0 0 0 -2 2 -2 -0.20 -0.11 -0.12 -0.05
Mm 0.54438 65,455 0 1 0 -1 0 0 -1 0 0 0 0 -0.11 -0.09 -0.08 -0.04
Mf 1.09804 75,555 0 2 0 0 0 0 0 0 -2 0 -2 -0.13 -0.15 -0.11 -0.07

1.10024 75,565 0 2 0 0 1 0 0 0 -2 0 -1 -0.05 -0.06 -0.05 -0.03

Values of ∆Rf and ∆Tf listed in Tables 7.5a and 7.5b are for the con-
stituents that must be taken into account to ensure an accuracy of 1
mm.
A FORTRAN program for computing the various corrections is available
at <15>.

15ftp://omaftp.oma.be/dist/astro/dehant/IERS/
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7.1.3 Permanent deformation

The tidal model described above does contain in principle a time inde-
pendent part so that the coordinates obtained by taking into account
this model in the analysis will be “conventional tide free” values. (Note
that they do not correspond to what would be observed in the absence
of tidal perturbation. See the discussion in Chapter 1.) This section
allows a user to compute “mean tide” coordinates from “conventional
tide free” coordinates.
Specifically, the degree 2 zonal tide generating potential includes a spec-
tral component of zero frequency and amplitude H0 = −0.31460 m, and
its effect enters the tidal displacement model through the time indepen-
dent component of the expression (9). Evaluation of this component
may be done using equations (5a) and (6) with Hf = H0, θf = 0, and
with the same nominal values for the Love number parameters as were
used in Step 1: h2 = 0.6078, l2 = 0.0847 along with h(2) = −0.0006
and l(2) = 0.0002. One finds the radial component of the permanent
displacement according to (9) to be

[−0.1206 + 0.0001P2(sinφ)]P2(sinφ) m, (18a)

and the transverse component to be

[−0.0252− 0.0001P2(sinφ)] sin 2φ m (18b)

northwards, where P2(sinφ) = (3 sin2 φ− 1)/2.
These are the components of the vector to be added to the “conventional
tide free” computed tide-corrected position to obtain the “mean tide”
position. The radial component of this restitution to obtain the “mean
tide” values amounts to about −12 cm at the poles and about +6 cm at
the equator.

7.1.4 Rotational Deformation due to Polar Motion

The variation of station coordinates caused by the pole tide can amount
to a couple of centimeters and needs to be taken into account.
Let us choose x̂, ŷ and ẑ as a terrestrial system of reference. The ẑ axis
is oriented along the Earth’s mean rotation axis, the x̂ axis is in the
direction of the adopted origin of longitude and the ŷ axis is orthogonal
to the x̂ and ẑ axes and in the plane of the 90◦ E meridian.
The centrifugal potential caused by the Earth’s rotation is

V =
1
2
[r2|~Ω|2 − (~r · ~Ω)2], (19)

where ~Ω = Ω(m1 x̂+m2 ŷ+(1+m3) ẑ). Ω is the mean angular velocity
of rotation of the Earth; m1, m2 describe the time dependent offset of
the instantaneous rotation pole from the mean, and m3, the fractional
variation in the rotation rate; r is the geocentric distance to the station.
Neglecting the variations in m3 which induce displacements that are
below the mm level, the m1 and m2 terms give a first order perturbation
in the potential V (Wahr, 1985)

∆V (r, θ, λ) = −Ω2r2

2
sin 2θ (m1 cosλ+m2 sinλ). (20)

The radial displacement Sr and the horizontal displacements Sθ and Sλ

(positive upwards, south and east respectively in a horizon system at
the station) due to ∆V are obtained using the formulation of tidal Love
numbers (Munk and MacDonald, 1960):

Sr = h2
∆V
g
, Sθ =

`2
g
∂θ∆V, Sλ =

`2
g

1
sin θ

∂λ∆V. (21)
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The position of the Earth’s mean rotation pole has a secular variation,
and its coordinates in the Terrestrial Reference Frame discussed in Chap-
ter 4 are given, in terms of the polar motion variables (xp, yp) defined in
Chapter 5, by appropriate running averages x̄p and −ȳp. Then

m1 = xp − x̄p, m2 = −(yp − ȳp). (22)

For the most accurate results, estimates of the mean pole should be used.
These are provided by the IERS Earth Orientation Centre and are made
available at <16>. It is also possible to approximate the pole path by
a linear trend. The estimates below are derived from the same IERS
Earth Orientation Centre data.
x̄p(t) = x̄p(t0) + (t− t0)ẋp(t0), ȳp = ȳp(t0) + (t− t0)ẏp(t0), (23a)

x̄p(t0) = 0.054, ẋp(t0) = 0.00083, ȳp(t0) = 0.357, ẏp(t0) = 0.00395, (23b)

where x̄p, ȳp are in arcseconds, their rates are in arcseconds per year,
and t0 is 2000.
Using Love number values appropriate to the frequency of the pole tide
(h = 0.6027, l = 0.0836) and r = a = 6.378× 106m, one finds

Sr = −32 sin 2θ (m1 cosλ+m2 sinλ) mm,
Sθ = −9 cos 2θ (m1 cosλ+m2 sinλ) (mm),
Sλ = 9 cos θ (m1 sinλ−m2 cosλ) mm,

(24)

with m1 and m2 given in seconds of arc.
Taking into account that m1 and m2 vary, at most, 0.8 arcsec, the max-
imum radial displacement is approximately 25 mm, and the maximum
horizontal displacement is about 7 mm.
If X, Y , and Z are Cartesian coordinates of a station in a right-handed
equatorial coordinate system, the changes in them due to polar motion
are

[dX, dY, dZ]T = RT [Sθ, Sλ, Sr]T , (25)

where

R =

( cos θ cosλ cos θ sinλ − sin θ
− sinλ cosλ 0

sin θ cosλ sin θ sinλ cos θ

)
. (26)

7.1.5 Atmospheric Loading

Temporal variations in the geographic distribution of atmospheric mass
load the Earth and deform its surface. For example, pressure variations
on the order of 20 HPa (and even larger) at mid-latitudes, are observed
in synoptic pressure systems with length scales for 1000-2000 km and
periods of approximately two weeks. Seasonal pressure changes due to air
mass movements between the continents and oceans can have amplitudes
of up to 10 HPa in particular over the large land masses of the Northern
Hemisphere. At the interannual periods, basin-wide air pressure signals
with amplitudes of several HPa also contribute to the spectrum of the
loading signal.
Other surface loads due to changes in snow and ice cover, soil mois-
ture and groundwater, as well as ocean-bottom pressure also contribute
to surface displacements. For example, at seasonal time scales, it is
expected that the contribution of hydrological loads to surface displace-
ments exceeds the one from air pressure (Blewitt et al., 2001). However,
while the atmospheric load is fairly well known from global air pressure
data sets, no suffcient models for ocean bottom pressure, snow and soil
moisture exists at this time. Therefore, in the following, focus is on
atmospheric loading. However, the discussion applies also to any other
surface load.

16ftp://maia.usno.navy.mil/conv2000/chapter7/annual.pole
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Theoretical studies by Rabbel and Zschau (1985), Rabbel and Schuh
(1986), vanDam and Wahr (1987), and Manabe et al. (1991) demon-
strate that vertical crustal displacements of up to 25 mm are possible at
mid-latitude stations due to synoptic pressure systems. Annual signals
in the vertical are on the order of 1-2 mm but maximum signals of more
than 3 mm are possible over large parts of Asia, Antarctica, Australia
and Greenland (Mangarotti et al., 2001; Dong et al., 2002). Pressure
loading effects are larger at higher latitude sites due to the more inten-
sive weather systems (larger in amplitude and more spatially coherent)
found there. Effects are smaller at mid-latitude sites and at locations
within 500 km of the sea or ocean due to the inverted barometer re-
sponse of the ocean. In all cases, horizontal crustal deformations are
about one-third the amplitude of the vertical effects.

Two basic methods for computing atmospheric loading corrections to
geodetic data have been applied so far: 1) using geophysical models or
simple approximations derived from these models and 2) using empirical
models based on site-dependent data.

The standard geophysical model approach is based on the estimation of
atmospheric loading effects (vertical and horizontal deformations, grav-
ity, tilt and strain) via the convolution of Green’s functions with a global
surface pressure field. The geophysical approach is analogous to methods
used to calculate ocean tidal loading effects. However, due to the contin-
uous spectrum of the atmospheric pressure variations, the compution of
the atmospheric loading signal must be carried out in the time domain.
The major advantage of the geophysical model approach is that load-
ing effects can be computed in a standardized way for any point on the
Earth’s surface more or less instantaneously. The geophysical approach
currently suffers from a number of problems including: the requirement
of a global pressure data set, a minimum of 24 hours in time delay in
the availability of the global pressure data set, limitations of the pres-
sure data itself (low temporal and spatial resolution), uncertainties in
the Green’s functions and uncertainties in the ocean response model.

In the empirical approach, site-dependent pressure loading effects are
computed by determining the fit of local pressure variations to the geode-
tic observations of the vertical crustal motion. This approach is likely
to produce better results (than the geophysical approach) for a given
site but has a number of drawbacks as well. 1.) Geodetic observations
have to be available for a certain period of time before a reliable regres-
sion coeffcient can be determined; this period of time may be as large
as serveral years. 2.) The regression coefficients cannot be extraploated
to a new site (for which no data exist); 4.) The regression coefficient
has been observed to change with time and with observing technique;
4.) Regression coefficients at coastal sites are time dependent due to in-
terannual changes in the regional weather pattern (H.-P. Plag, personal
communication, 2002); 5.) The regession coefficient can only be used
for vertical crustal motions; and 6.) It is uncertain that other pressure
correlated geodetic signals are not being ‘absorbed’ into the regression
coefficient determination. So while this approach would lower the scatter
on a given geodetic time series the most, one would always be uncertain
whether only atmospheric loading effects were being removed with the
correlation coefficient.

In a hybrid method, regression coefficients determined from a geophysical
model instead of geodetic observations could be used to operationally
correct observed vertical position determinations from local air pressure
alone. The vertical deformation caused by the change in pressure, in
this case, can then be given in terms of a local pressure anomaly. The
regression coefficients can be determined by fitting local pressure to the
vertical deformation predicted by the geophysical model. Regression
coefficients determined in this manner would still suffer from both the
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uncertainty in the Green’s function and the quality of the air pressure
data.

In February 2002, the Special Bureau on Loading (SBL) was established
within the IERS. The charge of the SBL is to promote, stimulate and
coordinate work and progress towards a service providing information
on Earth surface deformation due to surface mass loading, including
the atmosphere, ocean and continental hydrosphere. In establishing the
SBL the IERS is recommending that the convention for computing at-
mospheric loading corrections will be based on the geophysical model
approach.

At the 2002 IERS Meeting in Munich, the IERS adopted the conven-
tion that corrections for surface load variations including the atmosphere
should be determined using the geophysical model approach. Further,
these corrections should be obtained from the IERS SBL. The point of
this recommendation is to ensure that comparisons of geodetic time se-
ries between different observing techniques or within the same technique
but at different times and locations have a consistent atmospheric pres-
sure loading (and later also non-tidal ocean and continental hydrological
loading) correction applied.

The ultimate goal of the SBL is to provide in near real-time a consistent
global solution data set, describing at the surface, deformation due to
all surface loads (including atmospheric pressure variations) in reference
frames relevant for direct comparison with geodetic observing techniques.
The SBL will provide global gridded solutions of 3-D displacements and
time series of displacements for all IERS sites. Time series will be deter-
mined from 1985 to the present. Displacements will be determined for
both the European Center for Medium Range Weather Forecasts and the
National Center for Environmental Prediction operational pressure data
sets for the inverted barometer and the non-inverted barometer ocean
models. For more information see: <17>.

Regression coefficients based on a geophysical model are already available
for a number of VLBI sites through the SBL web page and the IERS
Convention’s web page <18>. The regression coefficients were computed
using 18 years of the NCEP Reanalysis Data (1 Jan. 1980 to 31 Dec.
1997). The data are 6 hourly values of surface pressure given on a
2.5◦×2.5◦ global grid. Vertical crustal motions at a particular site are
modeled by convolving Farrell’s (1972) Greens functions for a Gutenberg-
Bullen A Earth model. The ocean was assumed to be inverse barometric
for the calculations. The regression results (mm/mbar) are determined
via a linear regression between the modeled crustal displacements and
the local surface pressure determined from the NCEP data set. An
inverted barometer model was used in determining the ocean’s response
to pressure.

For more information on atmospheric pressure loading and geodetic time
series, see the references listed in the extended bibliography.

7.2 Displacement of Reference Points of Instruments

7.2.1 VLBI Antenna Thermal Deformation

The following has been excerpted from the Explanatory Supplement to
the IERS Conventions (1996) Chapters 6 and 7 (Schuh, 1999).

Most VLBI telescopes are of Cassegrain type with alt-azimuth or polar
mount and secondary focus. Figures 7.1 and 7.2, based on Nothnagel
et al. (1995), show the principles of these antenna mounts. The height
of the concrete foundation is denoted by hf , the height of the antenna

17http://www.gdiv.statkart.no/sbl
18ftp://maia.usno.navy.mil/conv2000/chapter7/atmospheric.regr
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Fig. 7.2 Polar telescope mount.

pillar by hp, the height of the vertex by hv, the height of the subreflector
by hs and the declination shaft by hd.

Then, the thermal deformation effect ∆τ in s on the VLBI delay mea-
surement τ can be modeled. For alt-azimuth mounts

∆τ = 1
c ·
[
γf · (T (t−∆tf )− T0) · (hf · sin(ε))

+γa · (T (t−∆ta)− T0) · (hp · sin(ε) + hv − 1.8 · hs)
]
.

(28)

For polar mounts

∆τ = 1
c ·
[
γf · (T (t−∆tf )− T0) · (hf · sin(ε))

+γa · (T (t−∆ta)− T0) · (hp · sin(ε)
+hv − 1.8 · hs + hd · cos(δ))

]
.

(29)

In the above equations (28) and (29) c in m/s is the speed of light, γf

and γa in 1/◦C are the expansion coefficents for the foundation and for
the antenna, respectively, and hf , hp, hv, hs and hd are the dimensions
of the telescopes in m. For prime focus antennas, the factor for hs is 0.9
instead of 1.8. The temperature of the telescope structure is denoted by
T , and T0 is a reference temperature, e.g. 20◦C which is the usual ref-
erence temperature used when designing and constructing buildings. If
the actual temperature of the telescope structure is not available, which
might be the case at most VLBI sites, the surrounding air temperature
can be taken instead. The time delay between the change in the sur-
rounding air temperature and the expansion of the telescope structure is
denoted by ∆tf for the foundation part and by ∆ta for the antenna part
and depend strongly on the material of the telescope. Measurements
yielded values of ∆ta=2 hours for a steel telescope structure (Nothnagel
et al., 1995) and of ∆tf=6 hours for a concrete telescope structure (El-
gered and Carlsson, 1995). The elevation and declination of the observed
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radio source are denoted by ε and δ. Table 7.6 contains the dimensions
of some frequently used geodetic VLBI antennas and mean expansion
coefficients.

Table 7.7 gives the thermal variation ∆τ of the VLBI delay observable,
based on the telescope dimensions and expansion coefficients given in
Table 7.6 and equations (28) and (29). Temperature variation (T − T0)
of 10◦C and radio source elevations between 5◦ and 90◦ were entered,
time lags ∆tf and ∆ta were assumed to be zero.

For big VLBI telescopes, variations in the VLBI delay observations of
several picoseconds can occur. Regarding a baseline of two telescopes
with the signal from the radio source arriving first at site 1, the total
effect on the measured delay on the baseline is:

∆τbaseline = ∆τ1 −∆τ2.

Table 7.6 Dimensions and expansion coefficients of frequently used geodetic
VLBI telescopes.

Telescope Foundation part Antenna part
(concrete) (steel)

hf γf hp hv hs hd γa

m 1/◦C m m m m 1/◦C
Effelsberg 0.0 1.0× 10−5 50.0 8.5 28.0 − 1.2× 10−5

Hartebeesthoek 0.0 1.0× 10−5 12.7 2.3 9.4 6.7 1.2× 10−5

Madrid 3.0 1.0× 10−5 16.8 2.7 10.8 − 1.2× 10−5

Matera 3.0 1.0× 10−5 10.5 3.8 5.7 − 1.2× 10−5

Medicina 2.3 1.0× 10−5 15.5 4.3 4.3 − 1.2× 10−5

Noto 2.2 1.0× 10−5 15.7 4.2 5.0 − 1.2× 10−5

O’Higgins 1.0 1.0× 10−5 6.2 − − − 1.2× 10−5

Onsala 11.3 1.0× 10−5 2.9 3.4 5.5 − 1.2× 10−5

Westford 16.9 1.0× 10−5 2.0 3.0 3.6 − 1.2× 10−5

Wettzell 8.0 1.0× 10−5 4.0 3.7 7.9 − 1.2× 10−5

Table 7.7 Thermal variations ∆τ in ps of the
VLBI delay observable for frequently
used geodetic VLBI telescopes for a
temperature variation of 10◦C and dif-
ferent radio source elevations.

Telescope (T − T0)=10◦C
Elevation ε

5◦ 30◦ 60◦ 90◦

∆τ ∆τ ∆τ ∆τ
ps ps ps ps

Effelsberg −15.0 −6.8 +0.6 +3.2
Hartebeesthoek −7.8 −5.0 −1.9 +0.1
Madrid −6.0 −2.8 0.0 +1.0
Matera −2.1 0.0 +1.9 +2.6
Medicina −0.8 +2.1 +4.6 +5.6
Noto −1.3 +1.6 +4.2 +5.1
O’Higgins 0.2 +1.4 +2.4 +2.8
Onsala −2.2 −0.1 +1.7 +2.3
Westford −0.8 +1.8 +4.2 +5.0
Wettzell −3.8 −2.0 −0.5 0.0
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8 Tidal Variations in the Earth’s Rotation

Periodic variations in UT1 due to tidal deformation of the polar moment
of inertia were first derived by Yoder et al. (1981) and included the
tidal deformation of the Earth with a decoupled core, an elastic mantle
and an equilibrium ocean tide. This model used effective Love numbers
that differ from the bulk value of 0.301 because of the oceans and the
fluid core, producing different theoretical values of the ratio k/C for the
fortnightly and monthly terms. However, Yoder et al. recommend the
value of 0.94 for k/C for both cases. Tables in previous IERS Technical
Notes defined UT1R−UTC, ∆−∆R, and ω−ωR where ∆ refers to the
length of day and ω the Earth’s rotational speed.

Periodic variations in UT1 due to tidal deformations for an Earth model
with a decoupled core and an inelastic mantle have been computed by
Defraigne and Smits (1999). The mantle inelasticity model is the same
as for the displacement and potential Love numbers (Chapters 6 and
7), i.e. a frequency dependence of (fm/f)α where α = 0.15, fm is the
seismic frequency corresponding to a period of 200 s, and f is the tidal
frequency. The ocean effects are included in the model using a transfer
function that is constant with frequency (kocean=0.044) computed by
Mathews et al. (2002) for an equilibrium ocean tide model. Note that
Dickman (2003) finds a value kocean=0.04323 for dynamic oceans. The
decision to use a constant admittance is due to the absence of agreement
between the existing models of non-equilibrium ocean tide effects for the
long-period tides (Dickman, 1993; Seiler and Wünsch, 1995).

Table 8.1 provides corrections for the tidal variations in the Earth’s
rotation with periods from five days to 18.6 years. These corrections
(δUT1, δ∆, δω) represent the effect of tidal deformation on the physical
variations in the rotation of the Earth. To obtain variations free from
tidal effects, these corrections should be subtracted from the observed
UT1−UTC, length of day (∆) and rotation velocity (ω).

δUT1 =
62∑

i=1

Bi sin ξi + Ci cos ξi,

δ∆ =
62∑

i=1

B′
i cos ξi + C ′i sin ξi,

δω =
62∑

i=1

B′′
i cos ξi + C ′′i sin ξi,

ξi =
5∑

j=1

aijαj ,

Bi, Ci, B′
i, C

′
i, B

′′
i , and C ′′i are given in columns 7–12 respectively in

Table 8.1. aij = integer multipliers of the αj (l, l′, F , D or Ω) for the
ith tide given in the first five columns of Table 8.1.

To avoid confusion among possible tidal models, it is recommended that
the terms δUT1, δ∆, δω be followed by the model name in parenthesis,
e.g. δUT1(Defraigne and Smits, 1999).

Software to provide corrections modeling the diurnal and sub-diurnal
variations in polar motion and UT1 are available from the IERS Con-
ventions web page. These are provided by Eanes (2000) and are based
on Ray et al. (1994). The software includes 71 tidal constituents with
amplitudes on the order of tenths of milliarcseconds in polar motion and
tens of microseconds in UT1.
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Table 8.1 Zonal tide terms. δUT1, δ∆, and δω represent the regularized forms of
UT1, the duration of the day ∆, and the angular velocity of the Earth,
ω. The units are 10−4 s for UT1, 10−5 s for ∆, and 10−14 rad/s for ω.

ARGUMENT PERIOD δUT1 δ∆ δω
Coefficient of

l l′ F D Ω Days Sin Cos Cos Sin Cos Sin
1 0 2 2 2 5.64 -0.02 0.00 0.26 0.00 -0.22 0.00
2 0 2 0 1 6.85 -0.04 0.00 0.38 0.00 -0.32 0.00
2 0 2 0 2 6.86 -0.10 0.00 0.91 0.00 -0.76 0.00
0 0 2 2 1 7.09 -0.05 0.00 0.45 0.00 -0.38 0.00
0 0 2 2 2 7.10 -0.12 0.00 1.09 0.01 -0.92 -0.01
1 0 2 0 0 9.11 -0.04 0.00 0.27 0.00 -0.22 0.00
1 0 2 0 1 9.12 -0.41 0.00 2.84 0.02 -2.40 -0.01
1 0 2 0 2 9.13 -1.00 0.01 6.85 0.04 -5.78 -0.03
3 0 0 0 0 9.18 -0.02 0.00 0.12 0.00 -0.11 0.00

-1 0 2 2 1 9.54 -0.08 0.00 0.54 0.00 -0.46 0.00
-1 0 2 2 2 9.56 -0.20 0.00 1.30 0.01 -1.10 -0.01
1 0 0 2 0 9.61 -0.08 0.00 0.50 0.00 -0.42 0.00
2 0 2 -2 2 12.81 0.02 0.00 -0.11 0.00 0.09 0.00
0 1 2 0 2 13.17 0.03 0.00 -0.12 0.00 0.10 0.00
0 0 2 0 0 13.61 -0.30 0.00 1.39 0.01 -1.17 -0.01
0 0 2 0 1 13.63 -3.22 0.02 14.86 0.09 -12.54 -0.08
0 0 2 0 2 13.66 -7.79 0.05 35.84 0.22 -30.25 -0.18
2 0 0 0 -1 13.75 0.02 0.00 -0.10 0.00 0.08 0.00
2 0 0 0 0 13.78 -0.34 0.00 1.55 0.01 -1.31 -0.01
2 0 0 0 1 13.81 0.02 0.00 -0.08 0.00 0.07 0.00
0 -1 2 0 2 14.19 -0.02 0.00 0.11 0.00 -0.09 0.00
0 0 0 2 -1 14.73 0.05 0.00 -0.20 0.00 0.17 0.00
0 0 0 2 0 14.77 -0.74 0.00 3.14 0.02 -2.65 -0.02
0 0 0 2 1 14.80 -0.05 0.00 0.22 0.00 -0.19 0.00
0 -1 0 2 0 15.39 -0.05 0.00 0.21 0.00 -0.17 0.00
1 0 2 -2 1 23.86 0.05 0.00 -0.13 0.00 0.11 0.00
1 0 2 -2 2 23.94 0.10 0.00 -0.26 0.00 0.22 0.00
1 1 0 0 0 25.62 0.04 0.00 -0.10 0.00 0.08 0.00

-1 0 2 0 0 26.88 0.05 0.00 -0.11 0.00 0.09 0.00
-1 0 2 0 1 26.98 0.18 0.00 -0.41 0.00 0.35 0.00
-1 0 2 0 2 27.09 0.44 0.00 -1.02 -0.01 0.86 0.01
1 0 0 0 -1 27.44 0.54 0.00 -1.23 -0.01 1.04 0.01
1 0 0 0 0 27.56 -8.33 0.06 18.99 0.13 -16.03 -0.11
1 0 0 0 1 27.67 0.55 0.00 -1.25 -0.01 1.05 0.01
0 0 0 1 0 29.53 0.05 0.00 -0.11 0.00 0.09 0.00
1 -1 0 0 0 29.80 -0.06 0.00 0.12 0.00 -0.10 0.00

-1 0 0 2 -1 31.66 0.12 0.00 -0.24 0.00 0.20 0.00
-1 0 0 2 0 31.81 -1.84 0.01 3.63 0.02 -3.07 -0.02
-1 0 0 2 1 31.96 0.13 0.00 -0.26 0.00 0.22 0.00
1 0 -2 2 -1 32.61 0.02 0.00 -0.04 0.00 0.03 0.00

-1 -1 0 2 0 34.85 -0.09 0.00 0.16 0.00 -0.13 0.00
0 2 2 -2 2 91.31 -0.06 0.00 0.04 0.00 -0.03 0.00
0 1 2 -2 1 119.61 0.03 0.00 -0.02 0.00 0.01 0.00
0 1 2 -2 2 121.75 -1.91 0.02 0.98 0.01 -0.83 -0.01
0 0 2 -2 0 173.31 0.26 0.00 -0.09 0.00 0.08 0.00
0 0 2 -2 1 177.84 1.18 -0.01 -0.42 0.00 0.35 0.00
0 0 2 -2 2 182.62 -49.06 0.43 16.88 0.15 -14.25 -0.13
0 2 0 0 0 182.63 -0.20 0.00 0.07 0.00 -0.06 0.00
2 0 0 -2 -1 199.84 0.05 0.00 -0.02 0.00 0.01 0.00
2 0 0 -2 0 205.89 -0.56 0.01 0.17 0.00 -0.14 0.00
2 0 0 -2 1 212.32 0.04 0.00 -0.01 0.00 0.01 0.00
0 -1 2 -2 1 346.60 -0.05 0.00 0.01 0.00 -0.01 0.00
0 1 0 0 -1 346.64 0.09 0.00 -0.02 0.00 0.01 0.00
0 -1 2 -2 2 365.22 0.82 -0.01 -0.14 0.00 0.12 0.00

(continued on next page)
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(Table 8.1: continued)
0 1 0 0 0 365.26 -15.65 0.15 2.69 0.03 -2.27 -0.02
0 1 0 0 1 386.00 -0.14 0.00 0.02 0.00 -0.02 0.00
1 0 0 -1 0 411.78 0.03 0.00 0.00 0.00 0.00 0.00
2 0 -2 0 0 1095.17 -0.14 0.00 -0.01 0.00 0.01 0.00

-2 0 2 0 1 1305.47 0.43 -0.01 -0.02 0.00 0.02 0.00
-1 1 0 1 0 3232.85 -0.04 0.00 0.00 0.00 0.00 0.00
0 0 0 0 2 3399.18 8.20 0.11 0.15 0.00 -0.13 0.00
0 0 0 0 1 6798.38 -1689.54 -25.04 -15.62 0.23 13.18 -0.20

Table 8.2a Coefficients of sin(argument) and cos(argument) of diurnal variations in pole
coordinates xp and yp caused by ocean tides. The units are µas; χ denotes
GMST+π.

argument Doodson Period xp yp

Tide χ l l′ F D Ω number (days) sin cos sin cos
1 -1 0 -2 -2 -2 117.655 1.2113611 0.0 0.9 -0.9 -0.1
1 -2 0 -2 0 -1 125.745 1.1671262 0.1 0.6 -0.6 0.1

2Q1 1 -2 0 -2 0 -2 125.755 1.1669259 0.3 3.4 -3.4 0.3
1 0 0 -2 -2 -1 127.545 1.1605476 0.1 0.8 -0.8 0.1

σ1 1 0 0 -2 -2 -2 127.555 1.1603495 0.5 4.2 -4.1 0.5
1 -1 0 -2 0 -1 135.645 1.1196993 1.2 5.0 -5.0 1.2

Q1 1 -1 0 -2 0 -2 135.655 1.1195148 6.2 26.3 -26.3 6.2
1 1 0 -2 -2 -1 137.445 1.1136429 0.2 0.9 -0.9 0.2

RO1 1 1 0 -2 -2 -2 137.455 1.1134606 1.3 5.0 -5.0 1.3
1 0 0 -2 0 0 145.535 1.0761465 -0.3 -0.8 0.8 -0.3
1 0 0 -2 0 -1 145.545 1.0759762 9.2 25.1 -25.1 9.2

O1 1 0 0 -2 0 -2 145.555 1.0758059 48.8 132.9 -132.9 48.8
1 -2 0 0 0 0 145.755 1.0750901 -0.3 -0.9 0.9 -0.3

T01 1 0 0 0 -2 0 147.555 1.0695055 -0.7 -1.7 1.7 -0.7
1 -1 0 -2 2 -2 153.655 1.0406147 -0.4 -0.9 0.9 -0.4
1 1 0 -2 0 -1 155.445 1.0355395 -0.3 -0.6 0.6 -0.3
1 1 0 -2 0 -2 155.455 1.0353817 -1.6 -3.5 3.5 -1.6

M1 1 -1 0 0 0 0 155.655 1.0347187 -4.5 -9.6 9.6 -4.5
1 -1 0 0 0 -1 155.665 1.0345612 -0.9 -1.9 1.9 -0.9

χ1 1 1 0 0 -2 0 157.455 1.0295447 -0.9 -1.8 1.8 -0.9
π1 1 0 -1 -2 2 -2 162.556 1.0055058 1.5 3.0 -3.0 1.5

1 0 0 -2 2 -1 163.545 1.0028933 -0.3 -0.6 0.6 -0.3
P1 1 0 0 -2 2 -2 163.555 1.0027454 26.1 51.2 -51.2 26.1

1 0 1 -2 2 -2 164.554 1.0000001 -0.2 -0.4 0.4 -0.2
S1 1 0 -1 0 0 0 164.556 0.9999999 -0.6 -1.2 1.2 -0.6

1 0 0 0 0 1 165.545 0.9974159 1.5 3.0 -3.0 1.5
K1 1 0 0 0 0 0 165.555 0.9972695 -77.5 -151.7 151.7 -77.5

1 0 0 0 0 -1 165.565 0.9971233 -10.5 -20.6 20.6 -10.5
1 0 0 0 0 -2 165.575 0.9969771 0.2 0.4 -0.4 0.2

ψ1 1 0 1 0 0 0 166.554 0.9945541 -0.6 -1.2 1.2 -0.6
φ1 1 0 0 2 -2 2 167.555 0.9918532 -1.1 -2.1 2.1 -1.1

TT1 1 -1 0 0 2 0 173.655 0.9669565 -0.7 -1.4 1.4 -0.7
J1 1 1 0 0 0 0 175.455 0.9624365 -3.5 -7.3 7.3 -3.5

1 1 0 0 0 -1 175.465 0.9623003 -0.7 -1.4 1.4 -0.7
SO1 1 0 0 0 2 0 183.555 0.9341741 -0.4 -1.1 1.1 -0.4

1 2 0 0 0 0 185.355 0.9299547 -0.2 -0.5 0.5 -0.2
OO1 1 0 0 2 0 2 185.555 0.9294198 -1.1 -3.4 3.4 -1.1

1 0 0 2 0 1 185.565 0.9292927 -0.7 -2.2 2.2 -0.7
1 0 0 2 0 0 185.575 0.9291657 -0.1 -0.5 0.5 -0.1

ν1 1 1 0 2 0 2 195.455 0.8990932 0.0 -0.6 0.6 0.0
1 1 0 2 0 1 195.465 0.8989743 0.0 -0.4 0.4 0.0
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Table 8.2b Coefficients of sin(argument) and cos(argument) of semidiurnal variations in
pole coordinates xp and yp caused by ocean tides. The units are µas; χ
denotes GMST+ π.

argument Doodson Period xp yp

Tide χ l l′ F D Ω number (days) sin cos sin cos
2 -3 0 -2 0 -2 225.855 0.5484264 -0.5 0.0 0.6 0.2
2 -1 0 -2 -2 -2 227.655 0.5469695 -1.3 -0.2 1.5 0.7

2N2 2 -2 0 -2 0 -2 235.755 0.5377239 -6.1 -1.6 3.1 3.4
µ2 2 0 0 -2 -2 -2 237.555 0.5363232 -7.6 -2.0 3.4 4.2

2 0 1 -2 -2 -2 238.554 0.5355369 -0.5 -0.1 0.2 0.3
2 -1 -1 -2 0 -2 244.656 0.5281939 0.5 0.1 -0.1 -0.3
2 -1 0 -2 0 -1 245.645 0.5274721 2.1 0.5 -0.4 -1.2

N2 2 -1 0 -2 0 -2 245.655 0.5274312 -56.9 -12.9 11.1 32.9
2 -1 1 -2 0 -2 246.654 0.5266707 -0.5 -0.1 0.1 0.3

ν2 2 1 0 -2 -2 -2 247.455 0.5260835 -11.0 -2.4 1.9 6.4
2 1 1 -2 -2 -2 248.454 0.5253269 -0.5 -0.1 0.1 0.3
2 -2 0 -2 2 -2 253.755 0.5188292 1.0 0.1 -0.1 -0.6
2 0 -1 -2 0 -2 254.556 0.5182593 1.1 0.1 -0.1 -0.7
2 0 0 -2 0 -1 255.545 0.5175645 12.3 1.0 -1.4 -7.3

M2 2 0 0 -2 0 -2 255.555 0.5175251 -330.2 -27.0 37.6 195.9
2 0 1 -2 0 -2 256.554 0.5167928 -1.0 -0.1 0.1 0.6

λ2 2 -1 0 -2 2 -2 263.655 0.5092406 2.5 -0.3 -0.4 -1.5
L2 2 1 0 -2 0 -2 265.455 0.5079842 9.4 -1.4 -1.9 -5.6

2 -1 0 0 0 0 265.655 0.5078245 -2.4 0.4 0.5 1.4
2 -1 0 0 0 -1 265.665 0.5077866 -1.0 0.2 0.2 0.6

T2 2 0 -1 -2 2 -2 272.556 0.5006854 -8.5 3.5 3.3 5.1
S2 2 0 0 -2 2 -2 273.555 0.5000000 -144.1 63.6 59.2 86.6
R2 2 0 1 -2 2 -2 274.554 0.4993165 1.2 -0.6 -0.5 -0.7

2 0 0 0 0 1 275.545 0.4986714 0.5 -0.2 -0.2 -0.3
K2 2 0 0 0 0 0 275.555 0.4986348 -38.5 19.1 17.7 23.1

2 0 0 0 0 -1 275.565 0.4985982 -11.4 5.8 5.3 6.9
2 0 0 0 0 -2 275.575 0.4985616 -1.2 0.6 0.6 0.7
2 1 0 0 0 0 285.455 0.4897717 -1.8 1.8 1.7 1.0
2 1 0 0 0 -1 285.465 0.4897365 -0.8 0.8 0.8 0.5
2 0 0 2 0 2 295.555 0.4810750 -0.3 0.6 0.7 0.2
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8 Tidal Variations in the Earth’s Rotation

Table 8.3a Coefficients of sin(argument) and cos(argument) of diurnal variations in UT1 and
LOD caused by ocean tides. The units are µs; χ denotes GMST+ π.

argument Doodson Period UT1 LOD
Tide χ l l′ F D Ω number (days) sin cos sin cos

1 -1 0 -2 -2 -2 117.655 1.2113611 0.40 -0.08 -0.41 -2.06
1 -2 0 -2 0 -1 125.745 1.1671262 0.19 -0.06 -0.32 -1.05

2Q1 1 -2 0 -2 0 -2 125.755 1.1669259 1.03 -0.31 -1.69 -5.57
1 0 0 -2 -2 -1 127.545 1.1605476 0.22 -0.07 -0.39 -1.21

σ1 1 0 0 -2 -2 -2 127.555 1.1603495 1.19 -0.39 -2.09 -6.43
1 -1 0 -2 0 -1 135.645 1.1196993 0.97 -0.47 -2.66 -5.42

Q1 1 -1 0 -2 0 -2 135.655 1.1195148 5.12 -2.50 -14.02 -28.72
1 1 0 -2 -2 -1 137.445 1.1136429 0.17 -0.09 -0.51 -0.97

RO1 1 1 0 -2 -2 -2 137.455 1.1134606 0.91 -0.47 -2.68 -5.14
1 0 0 -2 0 0 145.535 1.0761465 -0.09 0.07 0.41 0.54
1 0 0 -2 0 -1 145.545 1.0759762 3.03 -2.28 -13.31 -17.67

O1 1 0 0 -2 0 -2 145.555 1.0758059 16.02 -12.07 -70.47 -93.58
1 -2 0 0 0 0 145.755 1.0750901 -0.10 0.08 0.46 0.60

T01 1 0 0 0 -2 0 147.555 1.0695055 -0.19 0.15 0.91 1.14
1 -1 0 -2 2 -2 153.655 1.0406147 -0.08 0.07 0.45 0.50
1 1 0 -2 0 -1 155.445 1.0355395 -0.06 0.05 0.31 0.35
1 1 0 -2 0 -2 155.455 1.0353817 -0.31 0.27 1.65 1.87

M1 1 -1 0 0 0 0 155.655 1.0347187 -0.86 0.75 4.56 5.20
1 -1 0 0 0 -1 155.665 1.0345612 -0.17 0.15 0.91 1.04

χ1 1 1 0 0 -2 0 157.455 1.0295447 -0.16 0.14 0.84 0.98
π1 1 0 -1 -2 2 -2 162.556 1.0055058 0.31 -0.19 -1.18 -1.97

1 0 0 -2 2 -1 163.545 1.0028933 -0.06 0.03 0.22 0.39
P1 1 0 0 -2 2 -2 163.555 1.0027454 5.51 -3.10 -19.40 -34.54

1 0 1 -2 2 -2 164.554 1.0000001 -0.05 0.02 0.16 0.30
S1 1 0 -1 0 0 0 164.556 0.9999999 -0.13 0.07 0.44 0.84

1 0 0 0 0 1 165.545 0.9974159 0.35 -0.17 -1.07 -2.19
K1 1 0 0 0 0 0 165.555 0.9972695 -17.62 8.55 53.86 111.01

1 0 0 0 0 -1 165.565 0.9971233 -2.39 1.16 7.30 15.07
1 0 0 0 0 -2 165.575 0.9969771 0.05 -0.03 -0.16 -0.33

ψ1 1 0 1 0 0 0 166.554 0.9945541 -0.14 0.06 0.41 0.91
φ1 1 0 0 2 -2 2 167.555 0.9918532 -0.27 0.11 0.70 1.69

TT1 1 -1 0 0 2 0 173.655 0.9669565 -0.29 0.04 0.28 1.87
J1 1 1 0 0 0 0 175.455 0.9624365 -1.61 0.19 1.22 10.51

1 1 0 0 0 -1 175.465 0.9623003 -0.32 0.04 0.24 2.09
SO1 1 0 0 0 2 0 183.555 0.9341741 -0.41 -0.01 -0.04 2.74

1 2 0 0 0 0 185.355 0.9299547 -0.21 -0.01 -0.03 1.44
OO1 1 0 0 2 0 2 185.555 0.9294198 -1.44 -0.04 -0.25 9.70

1 0 0 2 0 1 185.565 0.9292927 -0.92 -0.02 -0.16 6.23
1 0 0 2 0 0 185.575 0.9291657 -0.19 0.00 -0.03 1.30

ν1 1 1 0 2 0 2 195.455 0.8990932 -0.40 -0.02 -0.17 2.77
1 1 0 2 0 1 195.465 0.8989743 -0.25 -0.02 -0.11 1.77
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Table 8.3b Coefficients of sin(argument) and cos(argument) of semidiurnal variations in
UT1 and LOD caused by ocean tides. The units are µs; χ denotes GMST+ π.

argument Doodson Period UT1 LOD
Tide χ l l′ F D Ω number (days) sin cos sin cos

2 -3 0 -2 0 -2 225.855 0.5484264 -0.09 -0.01 -0.12 1.02
2 -1 0 -2 -2 -2 227.655 0.5469695 -0.22 -0.03 -0.37 2.57

2N2 2 -2 0 -2 0 -2 235.755 0.5377239 -0.64 -0.18 -2.06 7.44
µ2 2 0 0 -2 -2 -2 237.555 0.5363232 -0.74 -0.22 -2.61 8.72

2 0 1 -2 -2 -2 238.554 0.5355369 -0.05 -0.02 -0.18 0.58
2 -1 -1 -2 0 -2 244.656 0.5281939 0.03 0.01 0.16 -0.39
2 -1 0 -2 0 -1 245.645 0.5274721 0.14 0.06 0.70 -1.68

N2 2 -1 0 -2 0 -2 245.655 0.5274312 -3.79 -1.56 -18.57 45.20
2 -1 1 -2 0 -2 246.654 0.5266707 -0.03 -0.01 -0.18 0.41

ν2 2 1 0 -2 -2 -2 247.455 0.5260835 -0.70 -0.30 -3.57 8.33
2 1 1 -2 -2 -2 248.454 0.5253269 -0.03 -0.01 -0.16 0.38
2 -2 0 -2 2 -2 253.755 0.5188292 0.05 0.02 0.27 -0.60
2 0 -1 -2 0 -2 254.556 0.5182593 0.06 0.03 0.31 -0.68
2 0 0 -2 0 -1 255.545 0.5175645 0.60 0.27 3.23 -7.34

M2 2 0 0 -2 0 -2 255.555 0.5175251 -16.19 -7.15 -86.79 196.58
2 0 1 -2 0 -2 256.554 0.5167928 -0.05 -0.02 -0.26 0.59

λ2 2 -1 0 -2 2 -2 263.655 0.5092406 0.11 0.03 0.43 -1.37
L2 2 1 0 -2 0 -2 265.455 0.5079842 0.42 0.12 1.44 -5.25

2 -1 0 0 0 0 265.655 0.5078245 -0.11 -0.03 -0.36 1.32
2 -1 0 0 0 -1 265.665 0.5077866 -0.05 -0.01 -0.16 0.58

T2 2 0 -1 -2 2 -2 272.556 0.5006854 -0.44 -0.02 -0.24 5.48
S2 2 0 0 -2 2 -2 273.555 0.5000000 -7.55 -0.16 -2.00 94.83
R2 2 0 1 -2 2 -2 274.554 0.4993165 0.06 0.00 0.00 -0.80

2 0 0 0 0 1 275.545 0.4986714 0.03 0.00 -0.01 -0.34
K2 2 0 0 0 0 0 275.555 0.4986348 -2.10 0.04 0.52 26.51

2 0 0 0 0 -1 275.565 0.4985982 -0.63 0.01 0.19 7.91
2 0 0 0 0 -2 275.575 0.4985616 -0.07 0.00 0.02 0.86
2 1 0 0 0 0 285.455 0.4897717 -0.15 0.04 0.48 1.87
2 1 0 0 0 -1 285.465 0.4897365 -0.06 0.02 0.21 0.82
2 0 0 2 0 2 295.555 0.4810750 -0.05 0.02 0.24 0.63
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9 Tropospheric Model

9.1 Optical Techniques

The formulation of Marini and Murray (1973) is commonly used in laser
ranging. The formula has been tested by comparison with ray tracing
radiosonde profiles.
The correction to a one-way range is

∆R =
f(λ)

f(φ,H)
· A+B

sinE +
B/(A+B)
sinE + 0.01

, (1)

where
A = 0.002357P0 + 0.000141e0, (2)

B = (1.084× 10−8)P0T0K + (4.734× 10−8)
P 2

0

T0

2
(3− 1/K)

, (3)

K = 1.163− 0.00968 cos 2φ− 0.00104T0 + 0.00001435P0, (4)

where

∆R = range correction (meters),
E = true elevation of satellite,
P0 = atmospheric pressure at the laser site

(in 10−1 kPa, equivalent to millibars),
T0 = atmospheric temperature at the laser site

(degrees Kelvin),
e0 = water vapor pressure at the laser site

(10−1 kPa, equivalent to millibars),
f(λ) = laser frequency parameter

(λ = wavelength in micrometers),
f(φ,H) = laser site function, and

φ = geodetic latitude.

Additional definitions of these parameters are available. The water vapor
pressure, e0, should be calculated from a relative humidity measurement,
Rh(%) by

e0 =
Rh

100
× esfw,

where the saturation vapor pressure, es, is computed using the following
formula (Giacomo, 1982; Davis, 1992):

es = 0.01exp(1.2378847× 10−5T 2
0 − 1.9121316× 10−2T0 + 33.93711047− 6.3431645× 103T−1

0 )

The enhancement factor, fw, is computed by (Giacomo, 1982):

fw = 1.00062 + 3.14× 10−6P0 + 5.6× 10−7(T0 − 273.15)2.

The laser frequency parameter, f(λ), is

f(λ) = 0.9650 +
0.0164
λ2

+
0.000228

λ4
.

f(λ) = 1 for a ruby laser, [i.e. f(0.6943) = 1], while f(λG) = 1.02579
and f(λIR) = 0.97966 for green and infrared YAG lasers.
The laser site function is

f(φ,H) = 1− 0.0026 cos 2φ− 0.00031H,

where φ is the geodetic latitude of the site and H is the height above
the geoid (km).
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9 Tropospheric Model

Traditionally the correction of the atmospheric delay at optical wave-
lengths has been performed using the formulation of Marini and Murray
(1973), a model developed for the 0.6943 µm wavelength. The model
includes the zenith delay determination and the mapping function, to
project the zenith delay to a given elevation angle, in a non-explicit
form. In the last few years, the computation of the refractive index at
optical wavelengths has received special attention and, as a consequence,
the International Association of Geodesy (IUGG, 1999) recommended a
new procedure to compute the group refractivity, following Ciddor (1996)
and Ciddor and Hill (1999). Based on this formulation, Mendes et al.
(2002) have derived new mapping functions for optical wavelengths, us-
ing a large database of ray tracing radiosonde profiles. These mapping
functions are tailored for the 0.532 µm wavelength and are valid for el-
evation angles greater than 3 degrees, if we neglect the contribution of
horizontal refractivity gradients. The new mapping functions represent
a significant improvement over other mapping functions available and
have the advantage of being easily combined with different zenith de-
lay models. The analysis of two years of SLR data from LAGEOS and
LAGEOS 2 indicate a clear improvement both in the estimated station
heights and adjusted tropospheric zenith delay biases (Mendes et al.,
2002).
For the computation of the zenith delay, the available models seem to
have identical precision, but variable biases. Preliminary results indicate
that the Saastamoinen (1973) zenith delay model, updated with the
dispersion factor given in Ciddor (1996) gives satisfactory results, but
further studies are needed to validate it over the entire spectrum of
wavelengths encountered in satellite laser ranging today (355 to 1064
nm).

9.2 Radio Techniques

The non-dispersive delay imparted by the atmosphere on a radio sig-
nal up to 30 GHz in frequency, is divided into “hydrostatic” and “wet”
components. The hydrostatic delay is caused by the refractivity of the
dry gases in the troposphere and by the nondipole component of water
vapor refractivity. The dipole component of the water vapor refractivity
is responsible for the wet delay. The hydrostatic delay component typi-
cally accounts for about 90% of the total delay at any given site but is
highly predictable based on surface pressure. For the most accurate a
priori hydrostatic delay, desirable when the accuracy of the estimate of
the zenith wet delay is important, the formula of Saastamoinen (1972)
as given by Davis et al. (1985) should be used.

Dhz =
[(0.0022768± 0.0000005)]P0

fs(φ,H)
where

Dhz = zenith hydrostatic delay in meters,
P0 = total atmospheric pressure in millibars at the antenna

reference point (e.g. intersection of the axes of rotation
for a radio antenna),

fs(φ,H) = (1− 0.00266 cos 2φ− 0.00028H), where φ is the geodetic
latitude of the site and H is the height above the
geoid (km).

In precise applications where millimeter accuracy is desired, the delay
must be estimated with the other geodetic quantities of interest. The
estimation is facilitated by a simple parameterization of the tropospheric
delay, where the line of sight delay, DL, is expressed as a function of four
parameters as follows:
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DL = mh(e)Dhz +mw(e)Dwz +mg(e)[GN cos(a) +GE sin(a)].

The four parameters in this expression are the zenith hydrostatic delay,
Dhz, the zenith wet delay, Dwz, and a horizontal delay gradient with
components GN and GE . mh, mw and mg are the hydrostatic, wet, and
gradient mapping functions, respectively, and e is the elevation angle at
which the signal is received. a is the azimuth angle in which the sig-
nal is received, measured east of north. The estimation of tropospheric
gradients was shown by Chen and Herring (1997) and MacMillan (1995)
to be beneficial in VLBI, and by Bar-sever et al. (1998) to be bene-
ficial in GPS. Davis et al. (1993) and MacMillan (1995) recommend
using either mg(e) = mh(e) cot(e) or mg(e) = mw(e) cot(e). Chen and
Herring (1997) propose using mg(e) = 1/(sin e tan e+ 0.0032). The var-
ious forms agree to within 10% for elevation angles higher then 10◦, but
the differences reach 50% for 5◦ elevation due to the singularity of the
cot(e) function. The estimate of gradients is only worthwhile when us-
ing data lower than 15◦ in elevation. In the case of GPS analyses, such
low-elevation data should be deweighted because of multipath effects.

Comparisons of many mapping functions with the ray tracing of a global
distribution of radiosonde data have been made by Mendes and Langley
(1998b). For observations below 10◦ elevation, which may be included in
geodetic programs in order to increase the precision of the vertical com-
ponent of the site position, the mapping functions of Lanyi (1984) as
modified by Sovers and Jacobs (1996), Ifadis (1986), Herring (1992, des-
ignated MTT) and Niell (1996, designated NMF) are the most accurate.
Only the last three were developed for observations below an elevation
of 6◦, with MTT and NMF being valid to 3◦ and Ifadis to 2◦. Each of
these mapping functions consists of a component for the water vapor and
a component for either the total atmosphere (Lanyi) or the hydrostatic
contribution to the total delay (Ifadis, MTT, and NMF). In all cases
the wet mapping should be used as the function partial derivative for
estimating the residual atmosphere zenith delay.

The most commonly used hydrostatic and wet mapping functions in pre-
cise geodetic applications are those derived by Lanyi (1984) as modified
by Sovers and Jacobs (1996), Herring (1992), and Niell (1996). The first
two allow for input of meteorological data although Lanyi’s function re-
quires information on the vertical temperature profile for best results,
whereas Herring’s requires only surface data. Niell’s mapping function
is based on global climatology of the delay and requires only input of
time and location. Only the wet zenith delay is typically estimated, and
an a priori value is used for the hydrostatic zenith delay.

The parameters of the atmosphere that are readily accessible at the
time of the observation are the surface temperature, pressure, and rel-
ative humidity. The mapping functions of Lanyi, Ifadis, and Herring
were developed to make use of this information. Lanyi additionally
requires parameterization in terms of the height of a surface isother-
mal layer, the lapse rate from the top of this layer to the tropopause,
and the height of the tropopause. If only the surface meteorology is
used without also modeling these parameters (as described, for example,
in Sovers and Jacobs (1996)), the agreement with radiosonde-derived
delays is significantly worse than any of the other mapping functions.
Mendes and Langley (1998a) found that the use of nominal values to
parametrize the Lanyi mapping function degrades its performance sig-
nificantly. They concluded that the best results are obtained using ei-
ther an interpolation scheme developed by Sovers and Jacobs (1996) or
having the temperature-profile parameters predicted from surface mean
temperature using models (Mendes and Langley, 1998a).

101



N
o
.
3
2 IERS

Technical
Note

9 Tropospheric Model

The mapping functions of Niell differ from the other three in being inde-
pendent of surface meteorology. The hydrostatic mapping function relies
instead on the greater contribution by the conditions in the atmosphere
above approximately 1 km, which are strongly season dependent, while
the wet mapping function depends only on latitude.
Based on comparison with total delays calculated by ray tracing tem-
perature and relative humidity profiles from a globally distributed set
of radiosonde data, Mendes and Langley (1998b) conclude that Ifadis,
Lanyi (which must be used with temperature profile modeling), and
NMF provide the best accuracy down to 10◦, while Ifadis and NMF are
the most accurate at 6◦. Niell (1996) compared the hydrostatic and wet
mapping functions directly with ray tracing of radiosonde profiles and
found that Ifadis, MTT, and NMF are comparable in accuracy at 5◦
elevation. (Lanyi was tested without temperature profile modeling.)
A recent assessment study using more than 32,000 traces corresponding
to a one-year data set of radiosonde profiles from 50 stations distributed
worldwide (Mendes and Langley, 1998b) concluded that none of these
mapping functions has a clear supremacy over the others, for all eleva-
tion angles and at all latitudes. Nevertheless, the Ifadis mapping function
yields the best overall performance, both in bias and rms scatter, espe-
cially for lower elevation angles. In the absence of reliable meteorological
data, NMF is preferred.
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10 General Relativistic Models for Space-time Coordinates and

Equations of Motion

10.1 Time Coordinates

IAU resolution A4 (1991) set the framework presently used to define the
barycentric reference system (BRS) and the geocentric reference sys-
tem (GRS). Its third recommendation defined Barycentric Coordinate
Time (TCB) and Geocentric Coordinate Time (TCG) as time coordi-
nates of the BRS and GRS, respectively. In the fourth recommendation
another time coordinate is defined for the GRS, Terrestrial Time (TT).
This framework was further refined by the IAU Resolutions B1.3 and
B1.4 (2000) to provide consistent definitions for the coordinates and
metric tensor of the reference systems at the full post-Newtonian level
(Soffel, 2000). At the same time IAU Resolution B1.5 (2000) applied
this framework to time coordinates and time transformations between
reference systems, and IAU Resolution B1.9 (2000) re-defined Terres-
trial Time (Petit, 2000). TT differs from TCG by a constant rate,
dTT/dTCG = 1 − LG, where LG is a defining constant. The value
of LG (see Table 1.1) has been chosen to provide continuity with the
former definition of TT, i.e. that the unit of measurement of TT agrees
with the SI second on the geoid. The difference between TCG and TT
may be expressed as

TCG− TT = LG × (MJD− 43144.0)× 86400 s,

where MJD refers to the modified Julian date of International Atomic
Time (TAI). TAI is a realization of TT, apart from a constant offset:
TT = TAI + 32.184 s.
Before 1991, previous IAU definitions of the time coordinates in the
barycentric and geocentric frames required that only periodic differences
exist between Barycentric Dynamical Time (TDB) and Terrestrial Dy-
namical Time (TDT) (Kaplan, 1981). As a consequence, the spatial co-
ordinates in the barycentric frame had to be rescaled to keep the speed
of light unchanged between the barycentric and the geocentric frames
(Misner, 1982; Hellings, 1986). Thus, when barycentric (or TDB) units
of length were compared to geocentric (or TDT) units of length, a scale
difference, L, appeared (see also Chapter 1). This is no longer required
with the use of the TCG/TCB time scales.
The relation between TCB and TDB is linear. It may be given in seconds
by

TCB− TDB = LB× (MJD−43144.0)×86400+P0, P0 ≈ 6.55×10−5s.

However, since no precise definition of TDB exists, there is no definitive
value of LB and such an expression should be used with caution.
Figure 10.1 shows graphically the relationships between the time scales.
See IERS Technical Note 13, pages 137–142 for copies of the IAU Resolu-
tion A4 (1991) and Appendix 1 of this volume for copies of the resolutions
of the 24th IAU General Assembly (2000) relating to reference systems
and time coordinates.
The difference between Barycentric Coordinate Time (TCB) and Geo-
centric Coordinate Time (TCG) involves a four-dimensional transforma-
tion,

TCB− TCG = c−2

{∫ t

t0

[
v2

e

2
+ Uext(~xe)]dt+ ~ve · (~x− ~xe)

}
+O(c−4),

where ~xe and ~ve denote the barycentric position and velocity of the
Earth’s center of mass, ~x is the barycentric position of the observer and
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Uext is the Newtonian potential of all of the solar system bodies apart
from the Earth evaluated at the geocenter. In this formula, t is TCB
and t0 is chosen to be consistent with 1977 January 1, 0h0m0s TAI. This
formula is only valid to within the neglected terms, of order 10−16 in
rate, and IAU Resolution B1.5 (2000) provides formulas to compute the
O(c−4) terms within given uncertainty limits.

Former definitions
TDT

Terrestrial Dynamical Time
TDT TT

Present definitions
TT

Terrestrial Time

Linear transformation
dTT/dTCG 1   LG

TCG
Geocentric Coordinate Time

4-dimensional
space-time

transformation

Dropping of linear terms

TDB
Barycentric Dynamical Time

TCB
Barycentric Coordinate Time

TDB TCB LB T
T (date in days    1977 January 1, 0h) TAI 86400 s

Fig. 10.1 Relations between time scales.

An approximation of the TCB−TCG formula is given by

(TCB− TCG) =
LC × (TT − TT0) + P (TT )− P (TT0)

(1− LB)
+c−2 ~ve·(~x−~xe)

where TT0 corresponds to JD 2443144.5 TAI (1977 January 1, 0 h) and
where the values of LC and LB may be found in Table 1.1. Periodic
terms denoted by P (TT ) have a maximum amplitude of around 1.6
ms and can be evaluated by the “FB” analytical model (Fairhead and
Bretagnon, 1990; Bretagnon 2001). Alternately, P (TT ) − P (TT0) may
be provided by a numerical time ephemeris such as TE405 (Irwin and
Fukushima, 1999), which provides values with an accuracy of 0.1 ns
from 1600 to 2200. Irwin (2003) has shown that TE405 and the 2001
version of the FB model differ by less than 15 ns over the years 1600
to 2200 and by only a few ns over several decades around the present
time. Finally a series, HF2002, providing the value of LC×(TT−TT0)+
P (TT )−P (TT0) as a function of TT over the years 1600–2200 has been
fit (Harada and Fukushima, 2002) to TE405. This fit differs from TE405
by less than 3 ns over the years 1600–2200 with an RMS error of 0.5 ns.
Note that in this section on the computation of TCB−TCG, TT is used
as a time argument while the actual argument of the different realizations
is Teph (see Chapter 3). The resulting error in TCB−TCG is at most
approximately 20 ps.
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The time ephemeris TE405 is available in a Chebyshev form at <19>.
The 2001 version of the FB model is available at <20>, where the
files of interest are fb2001.f, fb2001.dat, fb2001.in, fb2001.out, and
README.fb2001.f. The HF2002 model is available in the same di-
rectory, where the files of interest are Xhf2002.f, HF2002.DAT and
hf2002.out.

10.2 Equations of Motion for an Artificial Earth Satellite 21

The relativistic treatment of the near-Earth satellite orbit determination
problem includes corrections to the equations of motion, the time trans-
formations, and the measurement model. The two coordinate systems
generally used when including relativity in near-Earth orbit determina-
tion solutions are the solar system barycentric frame of reference and
the geocentric or Earth-centered frame of reference.

Ashby and Bertotti (1986) constructed a locally inertial E-frame in the
neighborhood of the gravitating Earth and demonstrated that the gravi-
tational effects of the Sun, Moon, and other planets are basically reduced
to their tidal forces, with very small relativistic corrections. Thus the
main relativistic effects on a near-Earth satellite are those described by
the Schwarzschild field of the Earth itself. This result makes the geocen-
tric frame more suitable for describing the motion of a near-Earth satel-
lite (Ries et al., 1989). Later on, two advanced relativistic formalisms
have been elaborated to treat the problem of astronomical reference sys-
tems in the first post-Newtonian approximation of general relativity. One
formalism is due to Brumberg and Kopeikin (Kopeikin, 1988; Brumberg
and Kopeikin, 1989; Brumberg, 1991) and another one is due to Damour,
Soffel and Xu (Damour, Soffel, Xu, 1991, 1992, 1993, 1994). These allow
a full post-Newtonian treatment (Soffel, 2000) and form the basis of IAU
Resolutions B1.3 and B1.4 (2000).

The relativistic correction to the acceleration of an artificial Earth satel-
lite is

∆~̈r = GME

c2r3

{
[2(β + γ)GME

r − γ~̇r · ~̇r]~r + 2(1 + γ)(~r · ~̇r)~̇r
}

+

(1 + γ)GME

c2r3

[
3
r2 (~r × ~̇r)(~r · ~J) + (~̇r × ~J)

]
+{

(1 + 2γ)
[
~̇R×

(
−GMS

~R
c2R3

)
× ~̇r
]}
,

(1)

where

c = speed of light,

β, γ = PPN parameters equal to 1 in General Relativity,

~r is the position of the satellite with respect to the Earth,
~R is the position of the Earth with respect to the Sun,
~J is the Earth’s angular momentum per unit mass

(| ~J | ∼= 9.8× 108m2/s), and

GME and GMS are the gravitational coefficients of the Earth and
Sun, respectively.

19ftp://astroftp.phys.uvic.ca in the directory /pub/irwin/tephemeris
20ftp://maia.usno.navy.mil in the directory /conv2000/chapter10/software
21The IAU Resolutions B1.3 and B1.4 (2000) and references therein now provide a consistent framework for the defi-

nition of the geocentric and barycentric reference systems at the full post-Newtonian level using harmonic coordinates.
The equations of motion for spherically-symmetric and uniformly rotating bodies in these systems are the same as those
previously derived in a Parametrized Post-Newtonian system.
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The effects of Lense-Thirring precession (frame-dragging), geodesic (de
Sitter) precession have been included. The relativistic effects of the
Earth’s oblateness have been neglected here but, if necessary, they could
be included using the full post-Newtonian framework of IAU Resolutions
B1.3 and B1.4 (2000). The independent variable of the satellite equations
of motion may be, depending on the time transformation being used,
either TT or TCG. Although the distinction is not essential to compute
this relativistic correction, it is important to account for it properly in
the Newtonian part of the acceleration.

10.3 Equations of Motion in the Barycentric Frame
(see footnote 21 preceeding page)

The n-body equations of motion for the solar system frame of reference
(the isotropic Parameterized Post-Newtonian system with Barycentric
Coordinate Time (TCB) as the time coordinate) are required to describe
the dynamics of the solar system and artificial probes moving about the
solar system (for example, see Moyer, 1971). These are the equations
applied to the Moon’s motion for Lunar Laser Ranging (Newhall et al.,
1987). In addition, relativistic corrections to the laser range measure-
ment, the data timing, and the station coordinates are required (see
Chapter 11).
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11 General Relativistic Models for Propagation

11.1 VLBI Time Delay

11.1.1 Historical Background

To resolve differences between numerous procedures used in the 1980s
to model the VLBI delay, and to arrive at a standard model, a work-
shop was held at the U. S. Naval Observatory on 12 October 1990. The
proceedings of this workshop have been published (Eubanks, 1991) and
the model given there was called the ‘consensus model.’ It was derived
from a combination of five different relativistic models for the geode-
tic delay. These are the Masterfit/Modest model, due to Fanselow and
Thomas (see Treuhaft and Thomas, in Eubanks (1991), and Sovers and
Fanselow (1987)), the I. I. Shapiro model (see Ryan, in Eubanks, (1991)),
the Hellings-Shahid-Saless model (Shahid-Saless et al., 1991) and in Eu-
banks (1991), the Soffel, Muller, Wu and Xu model (Soffel et al., 1991)
and in Eubanks (1991), and the Zhu-Groten model (Zhu and Groten,
1988) and in Eubanks (1991). At the same epoch, a relativistic model of
VLBI observations was also presented in Kopeikin (1990) and in Klioner
(1991).

The ‘consensus model’ formed the basis of that proposed in the IERS
Standards (McCarthy, 1992). Over the years, there was considerable
discussion and misunderstanding on the interpretation of the stations’
coordinates obtained from the VLBI analyses. Particularly the IERS
Conventions (McCarthy, 1996) proposed a modification of the delay, er-
roneously intending to comply with the XXIIst General Assembly of the
International Astronomical Union in 1991 and the XXIst General As-
sembly of the International Union of Geodesy and Geophysics in 1991
Resolutions defining the Geocentric reference system. It seems, however,
that this modification was not implemented by IERS analysis centers.

In the presentation below, the model is developed in the frame of the
IAU Resolutions i.e. general relativity (γ = 1) using the Barycentric
Celestial Reference System (BCRS) and Geocentric Celestial Reference
System (GCRS) (as defined in the Appendix). However two approaches
are presented for its usage, depending on the choice of coordinate time
in the geocentric system. It is discussed how the Terrestrial Reference
System (TRS) VLBI station coordinates submitted to the IERS, and
the resulting ITRF2000 coordinates (Chapter 4), should be interpreted
in relation to the IAU and IUGG Resolutions.

The ‘step-by-step’ procedure presented here to compute the VLBI time
delay is taken from (Eubanks, 1991) and the reader is urged to consult
that publication for further details.

11.1.2 Specifications and Domain of Application

The model is designed primarily for the analysis of VLBI observations
of extra-galactic objects acquired from the surface of the Earth.22 All
terms of order 10−13 seconds or larger are included to ensure that the
final result is accurate at the picosecond level. It is assumed that a
linear combination of dual frequency measurements is used to remove
the dispersive effect of the ionosphere, so that atmospheric effects are
only due to the troposphere.

The model is not intended for use with observations of sources in the
solar system, nor is it intended for use with observations made from
space-based VLBI, from either low or high Earth orbit, or from the
surface of the Moon (although it would be suitable with obvious changes
for observations made entirely from the Moon).

22The case of radio sources inside our galaxy has been considered in e.g. Sovers and Fanselow (1987); Klioner (1991)
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The geocentric celestial reference system (GCRS) is kinematically non-
rotating (not dynamically non-rotating) and, included in the precession
constant and nutation series, are the effects of the geodesic precession
(∼ 19 milli arc seconds / y). If needed, Soffel et al. (1991) and Shahid-
Saless et al. (1991) give details of a dynamically inertial VLBI delay
equation. At the picosecond level, there is no practical difference for
VLBI geodesy and astrometry except for the adjustment in the preces-
sion constant.

11.1.3 The Analysis of VLBI Measurements: Definitions and Interpretation of Results

In principle, the observable quantities in the VLBI technique are recor-
ded signals measured in the proper time of the station clocks. On the
other hand, the VLBI model is expressed in terms of coordinate quan-
tities in a given reference system (see Chapter 10 for a presentation of
the different coordinate times used). For practical considerations, par-
ticularly because the station clocks do not produce ideal proper time
(they even are, in general, synchronized and syntonized to UTC to some
level, i.e. they have the same rate as the coordinate time Terrestrial
Time (TT)), the VLBI delay produced by a correlator center may be
considered to be, within the uncertainty aimed at in this chapter, equal
to the TT coordinate time interval dTT between two events: the arrival
of a radio signal from the source at the reference point of the first station
and the arrival of the same signal at the reference point of the second
station. Note that we model here only the propagation delay and do
not account for the desynchronization or desyntonization of the station
clocks. From a TT coordinate interval, dTT , one may derive a Geocentric
Coordinate Time (TCG) coordinate interval, dTCG, by simple scaling:
dTCG = dTT /(1 − LG), where LG is given in Table 1.1. In the follow-
ing, two different approaches are presented using two different geocentric
coordinate system with either TCG or TT as coordinate time.
The VLBI model presented below (formula (9)) relates the TCG coor-
dinate interval dTCG = tv2 − tv1 to a baseline ~b expressed in GCRS
coordinates (see the definition of notations in the next section). In the
first approach, therefore, if the VLBI delay was scaled to a TCG coordi-
nate interval, as described above, the results of the VLBI analysis would
be directly obtained in terms of the spatial coordinates of the GCRS,
as is recommended by the IUGG Resolution 2 (1991) and IAU Resolu-
tion B6 (1997), i.e. one would obtain TRS coordinates that are termed
“consistent with TCG,” here denoted xTCG.
In the second approach, if the VLBI model (formula (9)) is used with
VLBI delays as directly provided by correlators (i.e. equivalent to a TT
coordinate interval dTT without transformation to TCG), the baseline
~b is not expressed in GCRS but in some other coordinate system. The
transformation of these coordinates to GCRS reduces, at the level of
uncertainty considered here, to a simple scaling. The TRS space coordi-
nates resulting from the VLBI analysis (here denoted xV LBI) are then
termed “consistent with TT” and the TRS coordinates recommended by
the IAU and IUGG resolutions, xTCG, may be obtained a posteriori by
xTCG = xV LBI/(1− LG) (see Petit, 2000).
All VLBI analysis centers submitting to the IERS have used this second
approach and, therefore, the VLBI space coordinates are of the type
xV LBI . For continuity, an ITRF workshop (November 2000) decided
to continue to use this approach, making it the present conventional
choice for submission to the IERS. Note that the use of space coordinates
“consistent with TT” is also the present conventional choice of SLR
analysis results submitted to the IERS. At the ITRF workshop, it was
also decided that the coordinates should not be re-scaled to xTCG for the
computation of ITRF2000 (see Chapter 4) so that the scale of ITRF2000
does not comply with IAU and IUGG resolutions.
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11.1.4 The VLBI Delay Model

Table 11.1 Notation used in the model.
ti the TCG time of arrival of a radio signal at the ith VLBI receiver
Ti the TCB time of arrival of a radio signal at the ith VLBI receiver
tgi

the “geometric” TCG time of arrival of a radio signal at the ith VLBI receiver including
the gravitational “bending” delay and the change in the geometric delay caused by the
existence of the atmospheric propagation delay but neglecting the atmospheric
propagation delay itself

tvi the “vacuum” TCG time of arrival of a radio signal at the ith VLBI receiver including
the gravitational delay but neglecting the atmospheric propagation delay and the change
in the geometric delay caused by the existence of the atmospheric propagation delay

δtatmi the atmospheric propagation TCG delay for the ith receiver = ti − tgi

TiJ
the approximation to the TCB time that the ray path to station i passed closest to
gravitating body J

∆Tgrav the differential TCB gravitational time delay
~xi(ti) the GCRS radius vector of the ith receiver at ti

~b ~x2(t1)− ~x1(t1) and is thus the GCRS baseline vector at the time of arrival t1
δ~b a variation (e.g. true value minus a priori value) in the GCRS baseline vector
~wi the geocentric velocity of the ith receiver
K̂ the unit vector from the barycenter to the source in the absence of gravitational or

aberrational bending
k̂i the unit vector from the ith station to the source after aberration
~Xi the barycentric radius vector of the ith receiver
~X⊕ the barycentric radius vector of the geocenter
~XJ the barycentric radius vector of the J th gravitating body
~RiJ

the vector from the J th gravitating body to the ith receiver
~R⊕J

the vector from the J th gravitating body to the geocenter
~R⊕� the vector from the Sun to the geocenter
N̂iJ

the unit vector from the J th gravitating body to the ith receiver
~V⊕ the barycentric velocity of the geocenter
U the gravitational potential at the geocenter, neglecting the effects of the Earth’s mass.

At the picosecond level, only the solar potential need be included in U so that
U = GM�/|~R⊕� |

Mi the rest mass of the ith gravitating body
M⊕ the rest mass of the Earth
c the speed of light
G the Gravitational Constant

Vector magnitudes are expressed by the absolute value sign [|x| = (Σx2
i )

1
2 ]. Vectors and scalars

expressed in geocentric coordinates are denoted by lower case (e.g. ~x and t), while quantities in
barycentric coordinates are in upper case (e.g. ~X and T ). A lower case subscript (e.g. ~xi) denotes
a particular VLBI receiver, while an upper case subscript (e.g. ~xJ) denotes a particular gravitating
body. The SI system of units is used throughout.

Although the delay to be calculated is the time of arrival at station
2 minus the time of arrival at station 1, it is the time of arrival at
station 1 that serves as the time reference for the measurement. Unless
explicitly stated otherwise, all vector and scalar quantities are assumed
to be calculated at t1, the time of arrival at station 1 including the effects
of the troposphere. The VLBI hardware provides the UTC time tag for
this event. For quantities such as ~XJ , V⊕, ~wi, or U it is assumed that
a table (or numerical formula) is available as a function of a given time
argument. The UTC time tag should be transformed to the appropriate
timescale corresponding to the time argument to be used to compute
each element of the geometric model.
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The baseline vector~b is given in the kinematically non-rotating GCRS. It
must be transformed to the rotating terrestrial reference frame defined
in Chapter 4 of the present VLBI Conventions in accordance to the
transformations introduced in Chapter 5.

(a) Gravitational Delay23

The general relativistic delay, ∆Tgrav, is given for the J th gravitating
body by

∆TgravJ
= 2

GMJ

c3
ln
|~R1J

|+ ~K · ~R1J

|~R2J
|+ ~K · ~R2J

. (1)

At the picosecond level it is possible to simplify the delay due to the
Earth, ∆Tgrav⊕ , which becomes

∆Tgrav⊕ = 2
GM⊕

c3
ln
|~x1|+ ~K · ~x1

|~x2|+ ~K · ~x2

. (2)

The Sun, the Earth and Jupiter must be included, as well as the other
planets in the solar system along with the Earth’s Moon, for which the
maximum delay change is several picoseconds. The major satellites of
Jupiter, Saturn and Neptune should also be included if the ray path
passes close to them. This is very unlikely in normal geodetic observ-
ing but may occur during planetary occultations. Note that in case of
observations very close to some massive bodies, extra terms (e.g. due
to the multipole moments and spin of the bodies) should be taken into
account to obtain an uncertainty of 1 ps (see Klioner, 1991).

The effect on the bending delay of the motion of the gravitating body
during the time of propagation along the ray path is small for the Sun but
can be several hundred picoseconds for Jupiter (see Sovers and Fanselow
(1987) page 9). Since this simple correction, suggested by Sovers and
Fanselow (1987) and Hellings (1986) among others, is sufficient at the
picosecond level, it was adapted for the consensus model. It is also
necessary to account for the motion of station 2 during the propagation
time between station 1 and station 2. In this model ~RiJ

, the vector from
the J th gravitating body to the ith receiver, is iterated once, giving

t1J
= min

[
t1, t1 −

K̂ · ( ~XJ(t1)− ~X1(t1))
c

]
, (3)

so that
~R1J

(t1) = ~X1(t1)− ~XJ(t1J
), (4)

and

~R2J
= ~X2(t1)−

~V⊕
c

(K̂ ·~b)− ~XJ(t1J
). (5)

Only this one iteration is needed to obtain picosecond level accuracy for
solar system objects.
~X1(t1) is not tabulated, but can be inferred from ~X⊕(t1) using

~Xi(t1) = ~X⊕(t1) + ~xi(t1), (6)

which is of sufficient accuracy for use in equations 3, 4, and 5, when
substituted into equation 1 but not for use in computing the geometric

23The formulas in this section are unchanged from the previous edition of the Conventions. The more advanced theory
in Kopeikin and Schäfer (1999) provides a rigorous physical solution for the light propagation in the field of moving
bodies. For Earth-based VLBI, the formulas in this section and those proposed in Kopeikin and Schäfer (1999) are
numerically equivalent with an uncertainty of 0.1 ps (Klioner and Soffel, 2001).
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delay. The total gravitational delay is the sum over all gravitating bodies
including the Earth,

∆Tgrav =
∑

J

∆TgravJ
. (7)

(b) Geometric Delay
In the barycentric frame the vacuum delay equation is, to a sufficient
level of approximation:

T2 − T1 = −1
c
K̂ · ( ~X2(T2)− ~X1(T1)) + ∆Tgrav. (8)

This equation is converted into a geocentric delay equation using known
quantities by performing the relativistic transformations relating the
barycentric vectors ~Xi to the corresponding geocentric vectors ~xi, thus
converting equation 8 into an equation in terms of ~xi. The related trans-
formation between barycentric and geocentric time can be used to derive
another equation relating T2 − T1 and t2 − t1, and these two equations
can then be solved for the geocentric delay in terms of the geocentric
baseline vector ~b. In the rational polynomial form the total geocentric
vacuum delay is given by

tv2 − tv1 =
∆Tgrav − K̂·~b

c

[
1− (1+γ)U

c2 − |~V⊕|2
2c2 − ~V⊕·~w2

c2

]
− ~V⊕·~b

c2 (1 + K̂ · ~V⊕/2c)

1 + K̂·(~V⊕+~w2)
c

. (9)

Given this expression for the vacuum delay, the total delay is found to
be

t2 − t1 = tv2 − tv1 + (δtatm2 − δtatm1) + δtatm1

K̂ · (~w2 − ~w1)
c

. (10)

For convenience the total delay can be divided into separate geometric
and propagation delays. The geometric delay is given by

tg2 − tg1 = tv2 − tv1 + δtatm1

K̂ · (~w2 − ~w1)
c

, (11)

and the total delay can be found at some later time by adding the prop-
agation delay:

t2 − t1 = tg2 − tg1 + (δtatm2 − δtatm1). (12)

The tropospheric propagation delay in equations 11 and 12 need not be
from the same model. The estimate in equation 12 should be as accurate
as possible, while the δtatm model in equation 11 need only be accurate to
about an air mass (∼ 10 nanoseconds). If equation 10 is used instead, the
model should be as accurate as is possible. Note that the tropospheric
delay is computed in the rest frame of each station and can be directly
added to the geocentric delay (equation 11), at the uncertainty level
considered here (see Eubanks, 1991; Treuhaft and Thomas, 1991).

If δ~b is the difference between the a priori baseline vector and the true
baseline, the true delay may be computed from the a priori delay as
follows. If δ~b is less than roughly three meters, then it suffices to add
−(K̂ · δ~b)/c to the a priori delay. If this is not the case, however, the a
priori delay must be modified by adding

∆(tg2 − tg1) = −
K̂·δ~b

c

1 + K̂·(~V⊕+~w2)
c

−
~V⊕ · δ~b
c2

. (13)
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(c) Observations Close to the Sun
For observations made very close to the Sun, higher order relativistic
time delay effects become increasingly important. The largest correction
is due to the change in delay caused by the bending of the ray path by the
gravitating body described in Richter and Matzner (1983) and Hellings
(1986). The change to ∆Tgrav is

δTgravi
=

4G2M2
i

c5

~b · (N̂1i
+ K̂)

(|~R|1i
+ ~R1i

· K̂)2
, (14)

which should be added to the ∆Tgrav in equation 1.

(d) Summary
Assuming that the reference time is the UTC time arrival of the VLBI
signal at receiver 1, and that it is transformed to the appropriate time-
scale to be used to compute each element of the geometric model, the
following steps are recommended to compute the VLBI time delay.

1. Use equation 6 to estimate the barycentric station vector for re-
ceiver 1.

2. Use equations 3, 4, and 5 to estimate the vectors from the Sun, the
Moon, and each planet except the Earth to receiver 1.

3. Use equation 1 to estimate the differential gravitational delay for
each of those bodies.

4. Use equation 2 to find the differential gravitational delay due to the
Earth.

5. Sum to find the total differential gravitational delay.
6. Compute the vacuum delay from equation 9.
7. Calculate the aberrated source vector for use in the calculation of

the tropospheric propagation delay:

~ki = K̂ +
~V⊕ + ~wi

c
− K̂

K̂ · (~V⊕ + ~wi)
c

. (15)

8. Add the geometric part of the tropospheric propagation delay to
the vacuum delay, equation 11.

9. The total delay can be found by adding the best estimate of the
tropospheric propagation delay

t2 − t1 = tg2 − tg1 + [δtatm2(t1 −
K̂ ·~b
c

,~k2)− δtatm1(~k1)]. (16)

10. If necessary, apply equation 13 to correct for “post-model” changes
in the baseline by adding equation 13 to the total time delay from
equation step 9.

11.2 Laser Ranging

In a reference system centered on an ensemble of masses, if a light sig-
nal is emitted from x1 at coordinate time t1 and is received at x2 at
coordinate time t2, the coordinate time of propagation is given by

t2 − t1 =
|~x2(t2)− ~x1(t1)|

c
+
∑

J

2GMJ

c3
ln
(
rJ1 + rJ2 + ρ

rJ1 + rJ2 − ρ

)
, (17)

where the sum is carried out over all bodies J with mass MJ centered at
xJ and where rJ1 = |~x1 − ~xJ |, rJ2 = |~x2 − ~xJ | and ρ = |~x2 − ~x1|.
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For near-Earth satellites (SLR), practical analysis is done in the geocen-
tric frame of reference, and the only body to be considered is the Earth
(Ries et al., 1988). For lunar laser ranging (LLR), which is formulated
in the solar system barycentric reference frame, the Sun and the Earth
must be taken into account, with the contribution of the Moon being of
order 1 ps (i.e. about 1 mm for a return trip). Moreover, in the analysis
of LLR data, the body-centered coordinates of an Earth station and a
lunar reflector should be transformed into barycentric coordinates. The
transformation of ~r, a geocentric position vector expressed in the GCRS,
to ~rb, the vector expressed in the BCRS, is provided with an uncertainty
lower than 1 mm by the equation

~rb = ~r

(
1− U

c2

)
− 1

2

(
~V · ~r
c2

)
~V , (18)

where U is the gravitational potential at the geocenter (excluding the
Earth’s mass) and ~V is the barycentric velocity of the Earth. A similar
equation applies to the selenocentric reflector coordinates.

In general, however, the geocentric and barycentric systems are chosen so
that the geocentric space coordinates are “consistent with TT” (position
vector ~rTT ) and that the barycentric space coordinates are “consistent
with TDB” (position vector ~rTDB). The transformation of ~rTT to ~rTDB ,
is then given by

~rTDB = ~rTT

(
1− U

c2
− LC

)
− 1

2

(
~V · ~rTT

c2

)
~V , (19)

where LC is given in Table 1.1.
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A IAU Resolutions Adopted at the XXIVth General Assembly

A.1 Resolution B1.1: Maintenance and Establishment of Reference
Frames and Systems

The XXIVth International Astronomical Union

Noting

1. that Resolution B2 of the XXIIIrd General Assembly (1997) speci-
fies that “the fundamental reference frame shall be the International
Celestial Reference Frame (ICRF) constructed by the IAU Working
Group on Reference Frames,”

2. that Resolution B2 of the XXIIIrd General Assembly(1997) specifies
“That the Hipparcos Catalogue shall be the primary realization of
the ICRS at optical wavelengths”, and

3. the need for accurate definition of reference systems brought about
by unprecedented precision, and

Recognizing

1. the importance of continuing operational observations made with
Very Long Baseline Interferometry (VLBI) to maintain the ICRF,

2. the importance of VLBI observations to the operational determi-
nation of the parameters needed to specify the time-variable trans-
formation between the International Celestial and Terrestrial Ref-
erence Frames,

3. the progressive shift between the Hipparcos frame and the ICRF,
and

4. the need to maintain the optical realization as close as possible to
the ICRF

Recommends

1. that IAU Division I maintain the Working Group on Celestial Ref-
erence Systems formed from Division I members to consult with the
International Earth Rotation Service (IERS) regarding the mainte-
nance of the ICRS,

2. that the IAU recognize the International VLBI service (IVS) for
Geodesy and Astrometry as an IAU Service Organization,

3. that an official representative of the IVS be invited to participate
in the IAU Working Group on Celestial Reference Systems,

4. that the IAU continue to provide an official representative to the
IVS Directing Board,

5. that the astrometric and geodetic VLBI observing programs con-
sider the requirements for maintenance of the ICRF and linking
to the Hipparcos optical frame in the selection of sources to be
observed (with emphasis on the Southern Hemisphere), design of
observing networks, and the distribution of data, and

6. that the scientific community continue with high priority ground-
and space-based observations (a) for the maintenance of the optical
Hipparcos frame and frames at other wavelengths and (b) for the
links of the frames to the ICRF.
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A.2 Resolution B1.2: Hipparcos Celestial Reference Frame

The XXIVth International Astronomical Union

Noting

1. that Resolution B2 of the XXIIIrd General Assembly (1997) speci-
fies, “That the Hipparcos Catalogue shall be the primary realization
of the International Celestial Reference System (ICRS) at optical
wavelengths,”

2. the need for this realization to be of the highest precision,

3. that the proper motions of many of the Hipparcos stars known,
or suspected, to be multiple are adversely affected by uncorrected
orbital motion,

4. the extensive use of the Hipparcos Catalogue as reference for the
ICRS in extension to fainter stars,

5. the need to avoid confusion between the International Celestial Ref-
erence Frame (ICRF) and the Hipparcos frame, and

6. the progressive shift between the Hipparcos frame and the ICRF,

Recommends

1. that Resolution B2 of the XXIIIrd IAU General Assembly (1997)
be amended by excluding from the optical realization of the ICRS
all stars flagged C, G, O, V and X in the Hipparcos Catalogue, and

2. that this modified Hipparcos frame be labeled the Hipparcos Celes-
tial Reference Frame (HCRF).

A.3 Resolution B1.3: Definition of Barycentric Celestial Reference System
and Geocentric Celestial Reference System

The XXIVth International Astronomical Union

Considering

1. that the Resolution A4 of the XXIst General Assembly (1991) has
defined a system of space-time coordinates for (a) the solar system
(now called the Barycentric Celestial Reference System, (BCRS))
and (b) the Earth (now called the Geocentric Celestial Reference
System (GCRS)), within the framework of General Relativity,

2. the desire to write the metric tensors both in the BCRS and in the
GCRS in a compact and self-consistent form, and

3. the fact that considerable work in General Relativity has been done
using the harmonic gauge that was found to be a useful and sim-
plifying gauge for many kinds of applications,

Recommends

1. the choice of harmonic coordinates both for the barycentric and for
the geocentric reference systems.

2. writing the time-time component and the space-space component of
the barycentric metric gµν with barycentric coordinates (t, x) (t =
Barycentric Coordinate Time (TCB)) with a single scalar potential
w(t,x) that generalizes the Newtonian potential, and the space-
time component with a vector potential wi(t, x); as a boundary
condition it is assumed that these two potentials vanish far from
the solar system,
explicitly,
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g00 = −1 + 2w
c2 − 2w2

c4 ,
g0i = − 4

c3w
i,

gij = δij
(
1 + 2

c2w
)
,

with
w(t,x) = G

∫
d3x′ σ(t,x′)

|x−x′| + 1
2c2G

∂2

∂t2

∫
d3x′σ(t,x′)|x− x′|

wi(t,x) = G
∫
d3x′ σ

i(t,x′)
|x−x′| .

Here, σ and σi are the gravitational mass and current densities,
respectively.

3. writing the geocentric metric tensor Gαβ with geocentric coordi-
nates (T, X) (T= Geocentric Coordinate Time (TCG)) in the same
form as the barycentric one but with potentials W(T, X) and Wa(T,
X); these geocentric potentials should be split into two parts — po-
tentials W and Wa arising from the gravitational action of the Earth
and external parts Wext and Wa

ext due to tidal and inertial effects;
the external parts of the metric potentials are assumed to vanish at
the geocenter and admit an expansion into positive powers of X,
explicitly,

G00 = −1 + 2W
c2 − 2W 2

c4 ,

G0a = − 4
c3W

a,

Gab = δab

(
1 + 2

c2W
)
.

The potentials W and Wa should be split according to

W (T,X) = WE(T,X) +Wext(T,X),
W a(T,X) = W a

E(T,X) +W a
ext(T,X).

The Earth’s potentials WE and Wa
E are defined in the same way as

w and wi but with quantities calculated in the GCRS with integrals
taken over the whole Earth.

4. using, if accuracy requires, the full post-Newtonian coordinate
transformation between the BCRS and the GCRS as induced by the
form of the corresponding metric tensors, explicitly, for the kine-
matically non-rotating GCRS (T=TCG, t=TCB, ri

E ≡ xi − xi
E(t)

and a summation from 1 to 3 over equal indices is implied),

T = t− 1
c2

[
A(t) + vi

Er
i
E

]
+

1
c4

[
B(t) +Bi(t)ri

E +Bij(t)ri
Er

j
E + C(t,x)

]
+O(c−5),

Xa = δai

[
ri
E + 1

c2

(
1
2v

i
Ev

j
Er

j
E + wext(xE)ri

E + ri
Ea

j
Er

j
E − 1

2a
i
Er

2
E

)]
+O(c−4),

where
d
dtA(t) = 1

2v
2
E + wext(xE),

d
dtB(t) = − 1

8v
4
E − 3

2v
2
Ewext(xE) + 4vi

Ew
i
ext(xE) + 1

2w
2
ext(xE),

Bi(t) = − 1
2v

2
Ev

i
E + 4wi

ext(xE)− 3vi
Ewext(xE),

Bij(t) = −vi
EδajQ

a + 2 ∂
∂xjw

i
ext(xE)− vi

E
∂

∂xjwext(xE)
+ 1

2δ
ijẇext(xE),

C(t,x) = − 1
10r

2
E(ȧi

Er
i
E).

Here xi
E , vi

E , and ai
E are the barycentric position, velocity and ac-

celeration vectors of the Earth, the dot stands for the total deriva-
tive with respect to t, and

Qa = δai

[
∂

∂xi
wext(xE)− ai

E

]
.

The external potentials, wext and wi
ext, are given by

wext =
∑

A 6=E wA, wi
ext =

∑
A 6=E w

i
A,

where E stands for the Earth and wA and wi
A are determined by

the expressions for w and wi with integrals taken over body A only.
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Notes
It is to be understood that these expressions for w and wi give g00 correct
up to O(c−5), g0i up to O(c−5), and gij up to O(c−4). The densities
σ and σi are determined by the components of the energy momentum
tensor of the matter composing the solar system bodies as given in the
references. Accuracies for Gαβ in terms of c−n correspond to those of
gµν .
The external potentials Wext and Wa

ext can be written in the form
Wext = Wtidal +Winer,
W a

ext = W a
tidal +W a

iner.
Wtidal generalizes the Newtonian expression for the tidal potential. Post-
Newtonian expressions for Wtidal and Wa

tidal can be found in the ref-
erences. The potentials Winer, Wa

iner are inertial contributions that
are linear in Xa. The former is determined mainly by the coupling of
the Earth’s nonsphericity to the external potential. In the kinematically
non-rotating Geocentric Celestial Reference System, Wa

iner describes the
Coriolis force induced mainly by geodetic precession.
Finally, the local gravitational potentials WE and Wa

E of the Earth are
related to the barycentric gravitational potentials wE and wi

E by

WE(T,X) = we(t,x)
(
1 + 2

c2 v
2
E

)
− 4

c2 v
i
Ew

i
E(t,x) +O(c−4),

W a
E(T,X) = δai(wi

E(t,x)− vi
EwE(t,x)) +O(c−2).
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A.4 Resolution B1.4: Post-Newtonian Potential Coefficients

The XXIVth International Astronomical Union
Considering

1. that for many applications in the fields of celestial mechanics and
astrometry a suitable parametri-zation of the metric potentials (or
multipole moments) outside the massive solar-system bodies in the
form of expansions in terms of potential coefficients are extremely
useful, and

2. that physically meaningful post-Newtonian potential coefficients
can be derived from the literature,

Recommends

1. expansion of the post-Newtonian potential of the Earth in the Geo-
centric Celestial Reference System (GCRS) outside the Earth in the
form

WE(T,X) = GME

R

[
1 +

∑∞
l=2

∑+l
m=0

(
RE

R

)l
Plm(cos θ)

(
CE

lm(T ) cosmφ+ SE
lm(T ) sinmφ

)]
,

where CE
lm and SE

lm are, to sufficient accuracy, equivalent to the
post-Newtonian multipole moments introduced in (Damour et al.,
Phys. Rev. D, 43, 3273, 1991), θ and φ are the polar angles corre-
sponding to the spatial coordinates Xa of the GCRS and R = |X|,
and
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2. expression of the vector potential outside the Earth, leading to the
well-known Lense-Thirring effect, in terms of the Earth’s total an-
gular momentum vector SE in the form

W a
E(T,X) = −G

2
(X×SE)a

R3 .

A.5 Resolution B1.5: Extended Relativistic Framework for Time Trans-
formations and Realization of Coordinate Times in the Solar System

The XXIVth International Astronomical Union
Considering

1. that the Resolution A4 of the XXIst General Assembly(1991) has
defined systems of space-time coordinates for the solar system (Ba-
rycentric Reference System) and for the Earth (Geocentric Refer-
ence System), within the framework of General Relativity,

2. that Resolution B1.3 entitled “Definition of Barycentric Celestial
Reference System and Geocentric Celestial Reference System” has
renamed these systems the Barycentric Celestial Reference System
(BCRS) and the Geocentric Celestial Reference System (GCRS),
respectively, and has specified a general framework for expressing
their metric tensor and defining coordinate transformations at the
first post-Newtonian level,

3. that, based on the anticipated performance of atomic clocks, future
time and frequency measurements will require practical application
of this framework in the BCRS, and

4. that theoretical work requiring such expansions has already been
performed,

Recommends
that for applications that concern time transformations and realization
of coordinate times within the solar system, Resolution B1.3 be applied
as follows:

1. the metric tensor be expressed as
g00 = −

(
1− 2

c2 (w0(t,x) + wL(t,x)) + 2
c4 (w2

0(t,x) + ∆(t,x))
)
,

g0i = − 4
c3w

i(t,x),

gij =
(
1 + 2w0(t,x)

c2

)
δij ,

where (t ≡ Barycentric Coordinate Time (TCB),x) are the barycen-
tric coordinates, w0 = G

∑
AMA/rA with the summation carried

out over all solar system bodies A, rA = x − xA,xA are the co-
ordinates of the center of mass of body A, rA = |rA|, and where
wL contains the expansion in terms of multipole moments [see their
definition in the Resolution B1.4 entitled “Post-Newtonian Poten-
tial Coefficients”] required for each body. The vector potential
wi(t,x =

∑
A w

i
A(t,x) and the function ∆(t,x) =

∑
A ∆A(t,x)

are given in note 2.
2. the relation between TCB and Geocentric Coordinate Time (TCG)

can be expressed to sufficient accuracy by

TCB − TCG = c−2[
∫ t

t0
(v2

E

2 + w0ext(xE))dt+ vi
Er

i
E ]

−c−4[
∫ t

t0
(− 1

8v
4
E − 3

2v
2
Ew0ext(xE) + 4vi

Ew
i
ext(xE) + 1

2w
2
0ext(xE))dt

−(3w0ext(xE) + v2
E

2 )vi
Er

i
E ],

where vE is the barycentric velocity of the Earth and where the
index ext refers to summation over all bodies except the Earth.
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Notes

1. This formulation will provide an uncertainty not larger than 5 ×
10−18 in rate and, for quasi-periodic terms, not larger than 5×10−18

in rate amplitude and 0.2 ps in phase amplitude, for locations far-
ther than a few solar radii from the Sun. The same uncertainty
also applies to the transformation between TCB and TCG for loca-
tions within 50000 km of the Earth. Uncertainties in the values of
astronomical quantities may induce larger errors in the formulas.

2. Within the above mentioned uncertainties, it is sufficient to express
the vector potential wi

A(t,x) of body A as

wi
A(t,x) = G

[
−(rA×SA)i

2r3
A

+ MAvi
A

rA

]
,

where SA is the total angular momentum of body A and vi
A is

the barycentric coordinate velocity of body A. As for the function
∆A(t,x) it is sufficient to express it as

∆A(t,x) = GMA

rA

[
−2v2

a +
∑

B 6=A
GMB

rBA
+ 1

2

(
(rk

Avk
A)2

r2
A

+ rk
Aa

k
A

)]
+ 2Gvk

A(rA×SA)k

r3
A

,

where rBA = |xB − xA| and ak
A is the barycentric coordinate accel-

eration of body A. In these formulas, the terms in SA are needed
only for Jupiter (S ≈ 6.9 × 1038m2s−1kg) and Saturn (S ≈ 1.4 ×
1038m2s−1kg), in the immediate vicinity of these planets.

3. Because the present recommendation provides an extension of the
IAU 1991 recommendations valid at the full first post-Newtonian
level, the constants LC and LB that were introduced in the IAU 1991
recommendations should be defined as < TCG/TCB > = 1 - LC

and < TT/TCB > = 1 - LB, where TT refers to Terrestrial Time
and <> refers to a sufficiently long average taken at the geocenter.
The most recent estimate of LC is (Irwin, A. and Fukushima, T.,
Astron. Astroph., 348, 642–652, 1999)

LC = 1.48082686741× 10−8 ± 2× 10−17.

From Resolution B1.9 on “Redefinition of Terrestrial Time TT”,
one infers LB = 1.55051976772 × 10−8 ± 2 × 10−17 by using the
relation 1 − LB = (1 − LC)(1 − LG). LG is defined in Resolution
B1.9.
Because no unambiguous definition may be provided for LB and LC ,
these constants should not be used in formulating time transforma-
tions when it would require knowing their value with an uncertainty
of order 1× 10−16 or less.

4. If TCB−TCG is computed using planetary ephemerides which are
expressed in terms of a time argument (noted Teph) which is close to
Barycentric Dynamical Time (TDB), rather than in terms of TCB,
the first integral in Recommendation 2 above may be computed as∫ t

t0

(
v2

E

2 + w0ext(xE)
)
dt =

[∫ Teph

Teph0

(
v2

E

2 + w0ext(xE)
)
dt
]
/(1−LB).
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A.6 Resolution B1.6: IAU 2000 Precession-Nutation Model

The XXIVth International Astronomical Union
Recognizing

1. that the International Astronomical Union and the International
Union of Geodesy and Geophysics Working Group (IAU-IUGG
WG) on ‘Non-rigid Earth Nutation Theory’ has met its goals by
(a) establishing new high precision rigid Earth nutation series, such

as (1) SMART97 of Bretagnon et al., 1998, Astron. Astroph.,
329, 329–338; (2) REN2000 of Souchay et al., 1999, Astron.
Astroph. Supl. Ser., 135, 111–131; (3) RDAN97 of Roosbeek
and Dehant 1999, Celest. Mech., 70, 215–253;

(b) completing the comparison of new non-rigid Earth transfer
functions for an Earth initially in non-hydrostatic equilibrium,
incorporating mantle anelasticity and a Free Core Nutation pe-
riod in agreement with observations,

(c) noting that numerical integration models are not yet ready to
incorporate dissipation in the core, and

(d) noting the effects of other geophysical and astronomical phe-
nomena that must be modelled, such as ocean and atmospheric
tides, that need further development;

2. that, as instructed by IAU Recommendation C1 in 1994, the Inter-
national Earth Rotation Service (IERS) will publish in the IERS
Conventions (2000) a precession-nutation model that matches the
observations with a weighted rms of 0.2 milliarcsecond (mas);

3. that semi-analytical geophysical theories of forced nutation are
available which incorporate some or all of the following — anelas-
ticity and electromagnetic couplings at the core-mantle and inner
core-outer core boundaries, annual atmospheric tide, geodesic nu-
tation, and ocean tide effects;

4. that ocean tide corrections are necessary at all nutation frequencies;
and

5. that empirical models based on a resonance formula without further
corrections do also exist;

Accepts
the conclusions of the IAU-IUGG WG on Non-rigid Earth Nutation The-
ory published by Dehant et al., 1999, Celest. Mech. 72(4), 245–310 and
the recent comparisons between the various possibilities, and

Recommends
that, beginning on 1 January 2003, the IAU 1976 Precession Model and
IAU 1980 Theory of Nutation, be replaced by the precession-nutation
model IAU 2000A (MHB2000, based on the transfer functions of Math-
ews, Herring and Buffett, 2000 - submitted to the Journal of Geophysical
Research) for those who need a model at the 0.2 mas level, or its shorter
version IAU 2000B for those who need a model only at the 1 mas level,
together with their associated precession and obliquity rates, and their
associated celestial pole offsets, as published in the IERS Conventions
2000, and

Encourages

1. the continuation of theoretical developments of non-rigid Earth nu-
tation series,

2. the continuation of VLBI observations to increase the accuracy of
the nutation series and the nutation model, and to monitor the
unpredictable free core nutation, and

3. the development of new expressions for precession consistent with
the IAU 2000A model.
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A.7 Resolution B1.7: Definition of Celestial Intermediate Pole

The XXIVth International Astronomical Union

Noting
the need for accurate definition of reference systems brought about by
unprecedented observational precision, and

Recognizing

1. the need to specify an axis with respect to which the Earth’s angle
of rotation is defined,

2. that the Celestial Ephemeris Pole (CEP) does not take account of
diurnal and higher frequency variations in the Earth’s orientation,

Recommends

1. that the Celestial Intermediate Pole (CIP) be the pole, the motion
of which is specified in the Geocentric Celestial Reference System
(GCRS, see Resolution B1.3) by motion of the Tisserand mean axis
of the Earth with periods greater than two days,

2. that the direction of the CIP at J2000.0 be offset from the direction
of the pole of the GCRS in a manner consistent with the IAU 2000A
(see Resolution B1.6) precession-nutation model,

3. that the motion of the CIP in the GCRS be realized by the IAU
2000A model for precession and forced nutation for periods greater
than two days plus additional time-dependent corrections provided
by the International Earth Rotation Service (IERS) through appro-
priate astro-geodetic observations,

4. that the motion of the CIP in the International Terrestrial Refer-
ence System (ITRS) be provided by the IERS through appropriate
astro-geodetic observations and models including high-frequency
variations,

5. that for highest precision, corrections to the models for the motion
of the CIP in the ITRS may be estimated using procedures specified
by the IERS, and

6. that implementation of the CIP be on 1 January 2003.

Notes

1. The forced nutations with periods less than two days are included
in the model for the motion of the CIP in the ITRS.

2. The Tisserand mean axis of the Earth corresponds to the mean
surface geographic axis, quoted B axis, in Seidelmann, 1982, Celest.
Mech., 27, 79–106.

3. As a consequence of this resolution, the Celestial Ephemeris Pole
is no longer necessary.

A.8 Resolution B1.8: Definition and use of Celestial and Terrestrial
Ephemeris Origin

The XXIVth International Astronomical Union

Recognizing

1. the need for reference system definitions suitable for modern real-
izations of the conventional reference systems and consistent with
observational precision,
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2. the need for a rigorous definition of sidereal rotation of the Earth,

3. the desirability of describing the rotation of the Earth indepen-
dently from its orbital motion, and

Noting

that the use of the “non-rotating origin” (Guinot, 1979) on the moving
equator fulfills the above conditions and allows for a definition of UT1
which is insensitive to changes in models for precession and nutation at
the microarcsecond level,

Recommends

1. the use of the “non-rotating origin” in the Geocentric Celestial Ref-
erence System (GCRS) and that this point be designated as the
Celestial Ephemeris Origin (CEO) on the equator of the Celestial
Intermediate Pole (CIP),

2. the use of the “non-rotating origin” in the International Terrestrial
Reference System (ITRS) and that this point be designated as the
Terrestrial Ephemeris Origin (TEO) on the equator of the CIP,

3. that UT1 be linearly proportional to the Earth Rotation Angle
defined as the angle measured along the equator of the CIP between
the unit vectors directed toward the CEO and the TEO,

4. that the transformation between the ITRS and GCRS be specified
by the position of the CIP in the GCRS, the position of the CIP in
the ITRS, and the Earth Rotation Angle,

5. that the International Earth Rotation Service (IERS) take steps to
implement this by 1 January 2003, and

6. that the IERS will continue to provide users with data and algo-
rithms for the conventional transformations.

Note

1. The position of the CEO can be computed from the IAU 2000A
model for precession and nutation of the CIP and from the current
values of the offset of the CIP from the pole of the ICRF at J2000.0
using the development provided by Capitaine et al. (2000).

2. The position of the TEO is only slightly dependent on polar motion
and can be extrapolated as done by Capitaine et al. (2000) using
the IERS data.

3. The linear relationship between the Earth’s rotation angle θ and
UT1 should ensure the continuity in phase and rate of UT1 with the
value obtained by the conventional relationship between Greenwich
Mean Sidereal Time (GMST) and UT1. This is accomplished by
the following relationship:

θ(UT1) = 2π(0.7790572732640+1.00273781191135448×(Julian UT1 date−2451545.0))

References
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A.9 Resolution B1.9: Re-definition of Terrestrial Time TT

The XXIVth International Astronomical Union

Considering

1. that IAU Resolution A4 (1991) has defined Terrestrial Time (TT)
in its Recommendation 4, and

2. that the intricacy and temporal changes inherent to the definition
and realization of the geoid are a source of uncertainty in the defini-
tion and realization of TT, which may become, in the near future,
the dominant source of uncertainty in realizing TT from atomic
clocks,

Recommends
that TT be a time scale differing from TCG by a constant rate:
dTT/dTCG = 1-LG, where LG = 6.969290134×10−10 is a defining
constant,

Note
LG was defined by the IAU Resolution A4 (1991) in its Recommendation
4 as equal to UG/c2 where UG is the geopotential at the geoid. LG is
now used as a defining constant.

A.10 Resolution B2: Coordinated Universal Time

The XXIVth International Astronomical Union

Recognizing

1. that the definition of Coordinated Universal Time (UTC) relies
on the astronomical observation of the UT1 time scale in order to
introduce leap seconds,

2. that the unpredictable leap seconds affects modern communication
and navigation systems,

3. that astronomical observations provide an accurate estimate of the
secular deceleration of the Earth’s rate of rotation

Recommends

1. that the IAU establish a working group reporting to Division I at
the General Assembly in 2003 to consider the redefinition of UTC,

2. that this study discuss whether there is a requirement for leap sec-
onds, the possibility of inserting leap seconds at pre-determined
intervals, and the tolerance limits for UT1−UTC, and

3. that this study be undertaken in cooperation with the appropriate
groups of the International Union of Radio Science (URSI), the In-
ternational Telecommunications Union (ITU-R), the International
Bureau for Weights and Measures (BIPM), the International Earth
Rotation Service (IERS) and relevant navigational agencies.
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B Glossary

AGN Active Galactic Nuclei
BCRS Barycentric Celestial Reference System
BIH Bureau International de l’Heure
BIPM Bureau International des Poids et Mesures
BTS BIH Terrestrial System
CEO Celestial Ephemeris Origin
CEP Celestial Ephemeris Pole
CIP Celestial Intermediate Pole
CRS Celestial Reference System
CSR Center for Space Research, University of Texas
CSTG Commission on International Coordination of

Space Techniques for Geodesy and Geodynamics
CTRF Conventional Terrestrial Reference Frame
CTRS Conventional Terrestrial Reference System
CW Chandler Wobble
DOMES Directory Of MERIT Sites
DORIS Doppler Orbit determination and Radiopositioning

Integrated on Satellite
EE Equation of the Equinoxes
EOP Earth Orientation Parameters
FCN Free Core Nutation
FICN Free Inner Core Nutation
GCRS Geocentric Celestial Reference System
GLOSS Global Sea Level Observing System
GMST Greenwich Mean Sidereal Time
GPS Global Positioning System
GST Greenwich Sidereal Time
IAG International Association of Geodesy
IAU International Astronomical Union
IERS International Earth Rotation and Reference Systems Service
ICRF International Celestial Reference Frame
ICRS International Celestial Reference System
IGS International GPS Service
ILRS International Laser Ranging Service
ITRF International Terrestrial Reference Frame
IUGG International Union for Geodesy and Geophysics
IVS International VLBI Service for Geodesy and Astrometry
JPL Jet Propulsion Laboratory
LLR Lunar Laser Ranging
MERIT Monitoring Earth Rotation and Intercomparison of

Techniques
NNSS Navy Navigation Satellite System
NOAA National Oceanic and Atmospheric Administration
NRO Non Rotating Origin
SI Système International (International System of units)
SLR Satellite Laser Ranging
TAI Temps Atomique International (International Atomic Time)
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamical Time
TEO Terrestrial Ephemeris Origin
TGP Tide Generating Potential
TRS Terrestrial Reference System
TT Terrestrial Time
USNO United States Naval Observatory
UTC Coordinated Universal Time
UT1 Universal Time 1
VLBI Very Long Baseline Interferometry
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