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PREFACE

This document is the first revision to the National Aeronautics and Space Administration
(NASA)/Goddard Space Flight Center (GSFC) document X-582-76-77, published in April
1976, which was written by Computer Sciences Corporation (CSC) and GSFC personnel
and edited by J. O. Cappellari, Jr. (CSC), C. E. Velez (GSFC), and A. J. Fuchs (GSFC).

This revision reflects the operational version of GTDS associated with Release 3 of the

Trajectory Computation and Orbital Products System (TCOPS). This release became
operational in 1988.



ABSTRACT

This document presents a description of the mathematical theory underlying the Goddard
Trajectory Determination System (GTDS) and includes an overview of the system
capabilities. The basic mathematical formulations presented include mathematical
descriptions of the coordinate and time systems, perturbation models, orbit propagation
techniques, numerical integration techniques, measurement models, statistical estimation
methods, and launch and early orbit determination techniques.
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CHAPTER 1—INTRODUCTION

This publication presents a description of the mathematical theory for the Earth/lunar/
interplanetary Goddard Trajectory Determination System (GTDS). GTDS is a multipur-
pose computer system designed

“to provide operational support for individual Earth, lunar, and planetary space
missions and for the research and development requirements of the various proj-
ects of the NASA/Goddard Space Flight Center scientific community” (Refer-
ence 1)

This orbit determination system includes many of the capabilities of previous orbit deter-

mination programs developed by the Goddard Space Flight Center (GSFC) (References 2
and 3).

GTDS is, by its very nature, an evolutionary system. The first document describing the
mathematical theory of GTDS (Reference 4) corresponded to a developmental version of
the system. The mathematical theory for the version of GTDS implemented at GSFC in
the spring of 1976 was documented in Reference 5. Since then, GTDS has evolved
through several operational versions, and a Research and Development (R&D) version has
been developed to permit evaluation of promising methods for operational, nonroutine,
and highly precise orbit determination. This document, which is a revision of Refer-
ence 5, corresponds approximately to GTDS Release 3.0, which was implemented at
GSFC in the spring of 1988 (References 6 and 7). As additional capabilities are added to
the system, this document will be updated or revised.

This document is not intended to represent a set of mathematical specifications for devel-
oping the GTDS software, but rather it is a description of the basic mathematical formula-
tions used in GTDS. The format varies somewhat from section to section, ranging from a
straightforward presentation of the basic equations used in the program to a tutorial ap-
proach that deives into some of the underlying theory, depending on the topic under
discussion.

In addition to describing the basic mathematical formulations of this particular system,
this document provides the reader with a comprehensive overview of the key physical and
mathematical models required by orbit determination systems and describes the results of
~ various evaluations and improvements developed at GSFC as a result of years of opera-
tional orbit determination experience.

An overview of GTDS is presented in Chapter 2. This overview includes a discussion of
the programs available in GTDS, system capabilities, and schematic diagrams of the dif-
ferential correction, ephemeris generation, data simulation, and error analysis processes,
along with an indication of which chapters in this document contain the algorithms associ-
ated with each function.
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Chapter 3 defines the coordinate and time systems necessary to accurately model the
spacecraft’s dynamic motion and tracking measurements. Chapter 4 describes the accel-
eration models that constitute the Cowell equations of motion and the variational equa-
tions. Chapter 5 gives the formulation of the orbital equations of motion, including
general perturbation and special perturbation methods. Chapter 6 describes the numerical
integration of the equations of motion and variational equations, while Chapter 7 de-
scribes the measurement models and systematic error corrections applied 1o the measure-
ments. Chapter 8 contains a description of the estimators and statistical models, and
Chapter 9 presents early orbit techniques that can be used to obtain an estimate of the
vehicle state from early tracking measurements.

Several appendixes are included in this document. Appendix A gives functional descrip-
tions of various tracking systems and preprocessing techniques. A detailed description of
the time elements used in the regularized equations of motion can be found in Appen-
dix B, and Appendix C contains a rigorous discussion of the conversion of Doppler meas-
urements to range rate. Appendix D presents information on typical a priori standard
deviations and dynamic weighting factors for several observation types, and Appendix E
presents a derivation of the matrix identities associated with the sequential estimation
process.

At the end of each section or appendix, references specific to that section/appendix are
listed. Following the last appendix, glossaries and an index are provided for the conven-
ience of the reader.

This mathematical theory document is specifically directed to the analyst. The GTDS
User’s Guide (Reference 6) is directed to a general user audience, which includes analysts,
programmers, and data technicians. Although a brief description of the system is pro-
vided in the user’s guide, the principal contents are specific requirements for using the
system,

NOTATION CONVENTIONS

Major notation conventions used in the text and equations throughout this document (un-
less otherwise noted) are as given below.

Vector

Unit vector

First derivative or velocity
Second derivative or acceleration

Position and velocity with respect to the inertial coordinate system
(this coordinate system is defined in Section 3.2)

~
w .
]
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r, r = Position and velocity with respect to the true of date coordinate
system (this coordinate system is defined in Section 3.2)
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CHAPTER 2—GTDS OVERVIEW

Orbit determination in GTDS involves a complex mathematical process that combines the
disciplines of orbital dynamics, measurement modeling, and estimation theory. This proc-

ess is implemented through the use of several separate programs, which are briefly de-
scribed in Section 2.1.

The capabilities of the system are discussed in Section 2.2. These capabilities include
trajectory generation, measurement modeling, and estimation techniques. Also included is
a discussion of the early orbit determination process, which allows a crude initial estimate
of the orbit to be obtained from early tracking data. In addition, the orbit determination
system combines capabilities that are frequently useful in mission analysis studies when
executed independently; GTDS has been provided with several modes of operation to
permit utilization of these separate capabilities.

The acceleration sources that are accounted for in the GTDS dynamic model are de-
scribed in Section 2.3, while Section 2.4 discusses near-realtime operation.

2.1 GTDS PROGRAMS

To meet the varying demands imposed upon the system by operational support of the
research and development requirements of various projects, GTDS includes the following
programs:

Differential Correction Program

Ephemeris Generation Program

Ephemeris Comparison Program

Filter Program (not currently available)
Early Orbit Determination Program

Data Simulation Program

Error Analysis Program

Data Management Program

Permanent File Report Generation Program
Thrust Parameter Modeling Program

This document presents the mathematical models and procedures for all of these pro-
grams except the Permanent File Report Generation Program. A brief description of each
of the programs is given in-the remainder of this section.

2.1.1 DIFFERENTIAL CORRECTION PROGRAM

The primary purpose of the Differential Correction Program is to estimate the satellite
orbit and associated parameters. The estimation algorithm used in the Differential
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Correction Program is called the weighted least-squares with a pricri covariance algo-
rithm or the Bayesian weighted least-squares algorithm. It minimizes the sum of the
squares of the weighted residuals between the actual and computed measurements, while
simultaneously constraining the model parameters to satisfy the a priori conditions to
within a specified uncertainty. Both first- and second-order statistics (i.e., the mean and
covariance matrices) are determined for the estimated variables.

2.1.2 EPHEMERIS GENERATION PROGRAM

The function of the Ephemeris Generation Program is to compute, from prescribed initial
conditions, the value at a specified time of the vehicle state and, optionally, the state
partial derivatives. In order to meet varying precision and efficiency requirements, several
orbital theories have been provided, ranging from a first-order analytic theory to a high-
precision Cowell-type numerical integration. The state partial derivatives can be computed
by precision numerical integration of the variational equations. The state partial deriva-
tives with respect to the initial state (i.e., the state transition matrix) can optionally be
generated using a two-body analytic approximation.

2.1.3 EPHEMERIS COMPARISON PROGRAM

The Ephemeris Comparison Program compares two input ephemerides. The comparison
can be specified over a particular arc or over the arc of overlap between the ephemerides.
The radial, along-track, and cross-track differences are computed and output.

2.1.4 FILTER PROGRAM

The Filter Program, which is not currently available in the operational version of GTDS,
provides an alternative to the Differential Correction Program for estimating the satellite
orbit and associated parameters. The Filter Program contains sequential estimation algo-
rithms. Sequential filters differentially correct (update) the satellite state recursively at
each measurement point processed. As a result, these methods are referred to as sequen-
tial processing methods, in contrast to the batch processing method used in the Differen-
tial Correction Program. Other elements of the Filter Program, such as model parameters
and measurement handling, are the same as in the Differential Correction Program.

2.1.5 EARLY ORBIT DETERMINATION PROGRAM

The Early Orbit Determination Program is designed to determine approximately an initial
estimate of a satellite orbit when there is no a priori estimate available to start a differen-
tial correction process. The program provides three methods for achieving this: (1) the
Gauss Method, (2) the Double R-lteration Method, and (3) the Range and Angles
Method.

2.1.6 DATA SIMULATION PROGRAM

The Data Simulation Program computes simulated tracking measurements of a spacecraft
from specified ground sites. The simulated data are generated for specified measurement
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intervals and sampling frequencies. The program also has the capability to simulate atti-
tude sensor measurements. Optionally, random and bias errors can be added to the meas-
urements. Measurements c¢an also be modified to account for the effects of atmospheric
refraction, antenna mount errors, transponder delays, and signal propagation time delays.

2.1.7 ERROR ANALYSIS PROGRAM

The GTDS Error Analysis Program provides the capability of analyzing the effect of track-
ing error uncertainties, solve-for vector uncertainties, and consider parameter uncertain-
ties associated with a specified orbit and station-dependent tracking schedule. Since the
Error Analysis Program functions are similar to those performed in the Differential Cor-
rection and Data Simulation programs, these programs share common mathematical proc-
~ essing subroutines, input processors, and data management options. The Error Analysis
Program features that are common to the Differential Correction and Data Simulation
programs include the use of a tracking schedule, selection of tracking stations, selection
of measurement types, specification of measurement standard deviations and weights,
and specification of the a priori state covariance matrix. Construction of the normal ma-
trix and the use of the consider mode to account for the effect of consider parameter
statistics on the covariance matrix of the solve-for vector are performed in the same
manner as in the Differential Correction Program.

2.1.8 DATA MANAGEMENT PROGRAM

The primary function of the Data Management Program is to create working files of data
to be used by other programs in GTDS.

2.2 SYSTEM CAPABILITIES

The key elements of the GTDS differential correction (DC) process are shown schemati-
cally in Figure 2-1. The chapters in this document that contain the algorithms associated
with each function are indicated in this and succeeding figures in Chapter 2. Both the
batch and sequential modes for estimating the orbital state are shown. The use of com-
mon modules to perform key functions is basic to the GTDS structure. For this reason,
algorithms derived in this document are applicable to many areas of GTDS. As shown in
Figure 2-1, an estimate of the orbital state at an initial epoch must first be specitied
a priori from an independent source. Measurements to be processed are retrieved from a
file, and an orbit generator determines the satellite trajectory (position and velocity) at
times corresponding to the measurement sampling times. In addition, at each sampling
time, estimates of the measurements are computed as a function of the satellite trajectory.

In a batch mode, this process is performed sequentially from data time to data time and
constitutes the inner loop of the process (see Figure 2-1). In addition to the computed
measurements, partial derivatives of the measurements with respect to the epoch state
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must be computed in the inner loop for use in the statistical regression process. Upon
completion of the inner loop processing at the measurement times, the epoch state is
differentially corrected by means of a Bayesian weighted least-squares method. The up-
dated epoch state is then used to perform another inner loop iteration. Repeated iteration
of the inner loop, culminating each time with a differential correction to the epoch state,
constitutes the outer loop. As the iterations proceed, the epoch state converges to the
Bayesian weighted least-squares solution to the nonlinear orbit determination problem.

In the sequential filter mode, a single loop is used to perform these measurement calcula-
tions and partial derivative calculations, and the state and covariance matrices are up-
dated after each measurement to obtain the final state. It should be noted that Figure 2-1
depicts functional relationships and not the actual GTDS structure. Within the GTDS
structure, the filter mode logic is separate from the batch mode logic.

GTDS system capabilities in the areas of trajectory generation, measurement modeling,
estimation techniques, early orbit determination, statistical output report modeling, and
optional modes of operation are described in the following subsections.

2.2.1 TRAJECTORY GENERATION

Trajectory generation is performed through integration of the orbital equations of motion
in the Ephemeris Generation Program. Ephemeris generation can be performed as a
standalone function as shown in Figure 2-2. In addition, trajectory generation is a key
element of the differential correction process shown in Figure 2-1. The analytic and nu-
merical trajectory generation theories available in GTDS are discussed in this section.

The orbital equations of motion can be expressed most simply in terms of the rectangular
components of the acceleration vector acting on the satellite. Considerable research has
focused on the problem of transforming the orbital equations of motion into a more
desirable form. The general approach is to reformulate the equations in terms of a new
set of orbital elements, to solve the transformed set of equations for the value of the
orbital elements at the desired time, and then to transform these elements to the desired
element set (e.g., Cartesian or Keplerian).

In the general perturbation approach, this reformulation of the equations of motion yields
a set of equations that can be integrated analytically. The chief advantage of such trajec-
tory generation methods is their high efficiency. However, reformulation of the orbital
equations such that an analytic solution is possible usually requires some approximations.
For example, in the Brouwer theory, which is a General Perturbation Method in GTDS,
the perturbation model includes only the effects of a point-mass Earth and the low-order
zonal harmonics in the gravitational potential. For the generation of satellite trajectories
for which these are the dominant perturbations, Brouwer theory is sufficiently accurate.
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Solution of the equations of motion via numerical integration is classified as a Special
Perturbation Method. The numerical integration techniques available in GTDS are dis-
cussed in detail in Chapter 6. In the high-precision Special Perturbation approach, the
perturbing acceleration that acts on the satellite is modeled as accurately as possible. The
various perturbation models and numerical integration techniques available in GTDS are
discussed in Chapters 4 and 6, respectively. The chief advantage of the special perturba-
tions approach is high accuracy; however, these methods are considerably more expen-
sive, in terms of computer time, than the general perturbation methods.

Numerical integration of the orbital equations expressed in terms of the Cartesian compo-
nents of the acceleration vector acting on the satellite is called the Cowell Method. In both
the Variation of Parameters (VOP) and Intermediate Orbit approaches, the Cowell equa-
tions of motion are reformulated to obtain equations that are better conditioned for nu-
merical integration. In the VOP approach, a transformation is made to a set of orbital
elements that provides an exact solution to the two-body problem. The orbital equations
expressed in terms of these elements include variations in orbital elements arising only
from the perturbing acceleration vector, i.e., the point-mass effects of the Earth are inte-
grated exactly. The VOP methods are superior for studies requiring very long propaga-
tion, such as lifetime studies.

In the Intermediate Orbit approach, an approximate solution obtained by an analytic
theory is used as a reference solution, and the time rate-of-change of the difference be-
tween the the true solution and this reference solution is numerically integrated to obtain
an improved solution. Intermediate Orbit methods can be developed for any analytic the-
ory; however, only two Intermediate Orbit methods have been considered for implementa-
tion in GTDS. The first is the Brouwer Intermediate Orbit with only first-order
short-period terms due to the J, nonspherical geopotential term or with the first-order
short- and long-period terms and second-order secular terms due to the J, term. The
second method is a similar orbit developed using Poincaré variables so that orbits of low
eccentricity and low inclination can be considered. The Intermediate Orbit approach
should be optimal for an orbit for which numerical inaccuracies in the integration of the
element rates arising from two-body or J, effects are a major error source. The major
drawback of both the VOP and Intermediate Orbit approaches is the computational cost
associated with the required transformation of the orbital elements to and from the
Cartesian state vector.

Fixed-step numerical integration is inefficient for the computation of highly eccentric
orbits (i.e., eccentricity greater than 0.1) if time is used as the independent variable. For
such applications, an automatic mechanism is required to force a small stepsize in the
region of large perturbations and a large stepsize in the region of small perturbations.
Several variable stepsize options are available in GTDS; however, stepsize changes are
costly and frequently introduce errors. Therefore, an alternative analytic stepsize control
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mechanism is also available. In this procedure, the equations of motion are reformulated
in terms of a new independent variable s instead of time t, such that

ds « %dt (2-1)

where r is the magnitude of the satellite position vector. The effect of this transformation
1s 10 "regularize” the independent variable so that fixed steps in s correspond to variable
steps in t that are smaller when r is small (i.e., where the perturbations are usually larger)
and larger when r is large.

Several regularized trajectory generation methods are currently implemented in GTDS.
The Time-Regularized Cowell Method was developed by reformulating the Cowell orbital
equations in terms of the independent variable s (with n = 3/2 as the default value) in
Equation (2-1). The Kustaanheimo-Stiefel (KS) Method is a regularized VOP formulation
that uses the eccentric anomaly as the independent variable (n = 1 in Equation (2-1)).
The Delaunay-Similar (DS) Method is a regularized VOP formulation in which the true
anomaly is used as the independent variable (n = 2 in Equation (2-1)). This form of
analytic stepsize control works well when the forces vary inversely with distance from the
central body. The DS approach has the strongest regularization, followed by the Time-
Regularized Cowell Method, and then the KS Method. The chief disadvantage of the
regularized methods is that they require numerical integration of an additional equation,
the time equation. For orbits with low eccentricity (i.e., less than 0.1), analytic stepsize
control is not needed and the error introduced by numerical integration of the time equa-
tion may even degrade the solution.

Special perturbation methods are also included in GTDS for generation of a mean trajec-
tory, representing only the long-term evolution of the orbit. Numerical averaging is one
such long-term orbit prediction method in GTDS. The numerical averaging method is a
VOP approach in which the short-period perturbing effects are numerically averaged out
of the equations of motion, leaving only the long-term motion to be integrated. The cost of
each integration step is high but is usually far outweighed by the large stepsizes that are
possible in the integration of the averaged dynamics. The averaged prediction model is
most efficient for applications where knowledge of the short-period perturbations is not
required (e.g., mission analysis or prediction of tracking station acquisition times) or
where the cost of numerically integrating the precision equations of motion is prohibi-
tively high (e.g., determination of gravitational models from large amounts of tracking
data).

2.2.2 MEASUREMENT MODELING

Measurement modeling provides the means by which the estimate of the orbit of a space-
craft is compared with its true flight. The orbit estimate is expressed in terms of the
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conceptual abstractions of position, velocity, and time, whereas the measurements can
involve measurements of some physical property of electromagnetic wave propagations
between the tracking station and the spacecraft. The propagation measurements are se-
lected such that they can be easily related (via theoretical postulates) to the spacecraft
state. This process of analytically relating the measurement quantities to the spacecraft
state is referred to as measurement modeling and is vitally important to the accuracy of
the orbit estimate.

The measurement models in GTDS are employed in the differential correction and data
simulation processes, and, as shown in Figure 2-1, the algorithms are presented in Chap-
ter 7. The relationship of these models to the GTDS Data Simulation Program is shown in
Figure 2-3.

2.2.2.1 Measurement Types

GTDS provides for the processing of the following types of measurements:

e Goddard Range and Range-Rate (GRARR) very high frequency (VHF) and
S-band radar data, including range, range-rate, and range-difference data and
X and Y gimbal angle data

e (-band radar range data and azimuth and elevation angle data
e Minitrack interferometer direction cosine data

e Spaceflight Tracking and Data Network (STDN) Ranging Equipment (SRE)
Unified S-band (USB) radar propagation time delay, Doppler shift, and X and
Y gimbal angle data

e Applications Technology Satellites (ATS) Ranging (ATSR) propagation time
delay, Doppler shift, and X and Y gimbal angle data

e Tracking and Data Relay Satellite System (TDRSS) range, Doppler shift, azi-
muth and elevation angle data, and TDRSS beam angles

e Laser tracking, including the range data, the azimuth and elevation angle data,
and the X and Y gimbal angle data

e SRE VHF range and range-rate data

e Space Ground Link Subsystem (SGLS) range, range-difference, and azimuth
and elevation angle data

2.2.2.2 Data Preprocessing

Before introduction into GTDS, the raw tracking measurements can undergo considerable
preprocessing to convert from the measured quantities to estimates of the spacecraft state
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components relative to the tracking station. The preprocessing of measurement data is
normally done by means of a computer program completely independent of GTDS. Raw
data are converted from the form received from the tracking stations to forms suitable for
storage in the data base and for use in GTDS. Wild points are edited out, calibration
corrections are applied to eliminate known instrumentation errors, ambiguities in the data
measurement and/or recording are resolved, conversions are made from the measurement
units to units that are more physically meaningful or convenient, and the data are option-
ally smoothed and possibly compacted if large amounts of raw data are measured. These
preprocessing algorithms are discussed in Appendix A.

More specifically, this preprocessing can include the following:
e Two-way propagation time delay conversion to two-way relative ranges
e Doppler-plus-bias cycle count conversion to relative range rate

e (C-band radar gimbal angle conversion to line-of-sight azimuth and elevation
angles

e Minitrack interferometer fractional phase count augmentation with whole cycle
counts to resolve ambiguities and conversion into line-of-sight direction cosines
relative to the station east-west and north-south baselines

e Conversion of reference frequency cycle counts to time intervals

The modeling within GTDS is thus greatly simplified. It is only necessary to compute the
appropriate quantity from the relative position vector between the tracking station and the
spacecraft in local tangent coordinates.

2.2.2.3 Measurement Models

The GTDS measurement modeling requires rigorous iterative solutions for the two-way
USB propagation paths and for the round-trip propagation path from the ground radar to
the synchronous Tracking and Data Relay Satellite (TDRS) to the target satellite and back
for TDRSS. These finite speed propagation paths are computed as straight lines in inertial
coordinates. A round-trip circuit represents the modeling of the “range” time delay meas-
urement, and two round-trip circuits are necessary to model the Doppler measurements in
terms of the round-trip light-time difference. The USB and TDRSS Doppler measurements
are implemented as a nondestruct count.

All of these measurement models assume vacuum propagation of the electromagnetic
wave. Corrections to the observed measurements are computed for the refraction effects
due to the presence of the atmosphere (the nondispersive troposphere and the dispersive
ionosphere). In addition, other corrections to the measurements are estimated for tracking
antenna location errors and spacecraft transponder delay characteristics.
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The modeling of the measurements also includes the calculation of the partial derivatives
with respect to the soive-for and consider variables. Variations of any of the variables
except two, the tracking station locations and the tracking data biases, result in changes to
the estimate of the spacecraft orbit. For the remaining variables, the partial derivatives of
the measurements are computed in terms of variations of the spacecraft state at the time
of the tracking signal turnaround. This variation with respect to the local state is then
related back to the epoch time via the appropriate elements of the state transition matrix.
This matrix maps changes in the initial state vector components into changes in space-
craft state components at any subsequent time of interest. The elements of the state
transition matrix are calculated by numerical integration of the variational equations asso-
ciated with the trajectory.

2.2.3 ESTIMATION TECHNIQUES

As stated in Section 2.1.1, the primary estimation algorithm available in GTDS is called
the weighted least-squares with a priori or Bayesian weighted least-squares algorithm (see
Chapter 8). This algorithm minimizes the sum of the squares of the weighted residuals
between the actual and computed observations, while simultaneously constraining the
state to satisfy an a priori state to within a specified uncertainty. The iterative estimation
process differentially corrects the estimated variables and ultimately determines the
weighted least-squares solution. Both first- and second-order statistics (i.e., the mean and
covariance matrices) are determined for the estimated variables.

A second method, which is not currently available in the operational version of GTDS, is
the Extended Kalman Filter (EKF) sequential estimator (see Chapter 8). Several features
have been incorporated to prevent divergence due to model errors in the dynamics or
measurements. These vary from artificially constraining the covariance gain to using
adaptive techniques.

Two classes of variables can be accommodated in the statistical computations. The first
class, called solve-for variables, includes model parameters whose values are known with
limited certainty and are being estimated. The second class, called consider variables,
includes model parameters that are not being estimated, but whose uncertainty will affect
the statistics of the solve-for variables. Model parameters that can be included in either
the solve-for or consider classes include the following:

e  Spacecraft state vector compenents in Cartesian, Keplerian, or spherical coordi-
nates (solve-for only)

e  Atmospheric drag parameters
e Solar radiation pressure parameter

e Gravitational potential coefficients
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® Thrust parameters
o  Attitude model parameters
e Tracking station locations and timing biases

e TDRS state vector components in Cartesian, Keplerian, or spherical coordinates
(solve-for only)

¢ Measurement biases

Specified subsets of the spacecraft position and velocity components can optionally be
estimated in mean of 1950.0, mean of 2000.0, or true of date inertial Cartesian coordi-
nates, classical orbital elements, or spherical coordinates.

GTDS can also operate in an error analysis mode, wherein only the covariance matrix of
the solve-for variables is differentially corrected and propagated through the process. The
error analysis process, shown in Figure 2-4, relies heavily on functions in the differential
correction process, such as the computation of measurements and the update of the nor-
mal matrix. The solve-for variables are unchanged from their a priori specified values. In
this mode, only the uncertainties of the tracking data, not the actual data, are required.
This mode permits simulation and analysis of the uncertainties resulting from the estima-
tion process prior t0 mission operations.

2.2.4 EARLY ORBIT DETERMINATION

Occasicnally, a priori state value estimates of sufficient accuracy to yield convergence of
the iterative process are unavailable, as when mission anomalies occur and preflight esti-
mates of the state are no longer valid. For such cases, GTDS has the capability of rapidly
determining approximations of the spacecraft’s position and velocity from a limited
amount of early tracking data. These approximations provide starter values for the differ-
ential correction process.

Three early orbit approximation methods, described in Chapter 9, are available in GTDS.
These methods are (1) the Gauss Method, (2) the Double R-Iteration Method, and (3) the
Range and Angles Method. The Gauss and Double R-Iteration Methods use three sets of
radar gimbal angle measurements to estimate the state vector. The Range and Angles
Method uses multiple sets of radar range and gimbal angle data to estimate the state
vector.

2.2.5 STATISTICAL OUTPUT REPORT MODELING

GTDS provides the capability for validating the tracking data and calibrating the trackers
through generation of the Statistical OQutput Report (SOR). This feature is described fur-
ther in Section 8.7 of Chapter 8.
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Figure 2-4. Schematic Diagram of the Error Analysis Process
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2.2.6 OPTIONAL MODES OF OPERATION

Each of the programs that make up GTDS can be utilized in a number of different modes,
depending on the needs of the user.

The Ephemeris Generation Program can be used to propagate a vehicle state from a given
epoch to some specified time. This program is useful for several purposes:

e To generate a spacecraft ephemeris report on the online printer

e To generate a spacecraft ephemeris on disk or tape in either the ORBIT,
EPHEM, or ORB1 (for Cowell integration only) File format

o To perform vehicle lifetime studies
e To generate state partial derivatives over a given timespan

The Differential Correction Program employs a Bayesian weighted least-squares algorithm
to estimate the vehicle state, various force model parameters, and nondynamic parame-
ters such as station locations and observation biases. The Differential Correction Program
uses the Ephemeris Generation Program with any of the available orbit theories to satisfy

integration requirements. The Differential Correction Program can also be used to do the
following:

e Determine a definitive orbit during near-realtime operational mission support
or during postflight support

e Determine better estimates of the gravitational harmonic coefficients, the coef-
ficient of drag, the solar radiation constant, etc.

® Save the results of a differential correction in the form of updated elements on
an elements file or an orbit history on an EPHEM or ORBIT File

The Data Simulation Program is designed to compute simulated measurements at a speci-
fied frequency for given sets of tracking stations and measurement intervals. Simulated
data are useful for controlled tests that require the data to conform to certain criteria
(e.g., particular force model, biases, or corrections for particular portions of the orbit).
The Data Simulation Program allows the measurement tracking schedule to be specified
in one of the four following forms:

Periodic detailed schedule

Spacecraft pass

Function of special events

Function of times on an actual measurement tape

The Data Simulation Program also provides for random and bias errors in the computed
measurements as well as the effects of atmospheric refraction, antenna mount errors,
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transponder delays, and the light-time correction. It uses the same modeling algorithms

that are employed by the Differential Correction Program and data from the GTDS
ORBIT File to compute measurements.

The Error Analysis Program provides the capability to perform analysis of tracking errors
for an arbitrary orbit, given the station-dependent tracking schedule and other scheduling

information. The program provides a variety of statistical output reports, including the
following: )

® The epoch covariance matrix and correlation coefficients associated with an
entire tracking span are provided, along with the standard deviations associated
with the elements and solve-for parameters in various coordinate systems. Sen.
sitivity information about the consider parameters and the noise effect on the
epoch state is also available.

®  The user can optionally request that the epoch covariance matrix and sensitivity
matrix be mapped to requested times. Trajectory standard deviations and the
root sum square (RSS) of the position and velocity sigmas are provided at each
mapping time. At the last mapping time, the covariance matrix and associated
correlation coefficients are also printed.

The Error Analysis Program uses the Data Simulation Program tracking schedule, the
differential correction matrix accumulation, and data from the GTDS ORBIT File to con-
struct the required statistical matrices.

2.3 SPACECRAFT DYNAMICS

To accommodate the varying requirements at GSFC in near-Earth, lunar, and interplane-
tary mission analysis, the GTDS dynamic model includes the following acceleration
sources:

® N-Body Point-Mass Gravitational Accelerations—These include all planets in
the solar system, the Sun, and the Earth’s Moon.

® Nonspherical Gravitational Accelerations—The nonspherical gravitational ac-
celeration model allows the inclusion of up to a 21 x 21 potential field for the
Earth and Moon.

®  Aerodynamic Force Accelerations—The aerodynamic force acceleration model
for the Earth includes a dynamic atmosphere model that accounts for the ef-
fects of variations in the solar flux on the Earth’s upper atmosphere. A modi-
fied Harris-Priester model and Robert's analytical formulation of the Jacchia
(1971) mode! are available.

e  Solar Radiation Accelerations—The solar radiation model includes shadowing
and variations with the distance from the Sun.
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e Attitude Control System Accelerations—A generalized model is included to
account for the small accelerations resulting from the use of attitude control
systems (not currently available).

¢ Thrusting Maneuver Accelerations—A generalized model is included to ac-
count for the accelerations resulting from propulsive maneuvers. This includes
the capability to use pregenerated mass and thrust tables.

The reference coordinate system for the equations of motion is optionally either the mean
eguator and equinox of B1950.0, mean equator and equinox of J2000.0, or a true of date
system at a specified epoch. Coordinate transformations account for precession, nutation,
and polar motion of the Earth’s spin axis. Planetary positions are determined from a
peripheral ephemeris file containing Chebyshev polynomial coefficients derived from Jet
Propulsion Laboratory (JPL) ephemeris data.

GTDS is provided with a flight-sectioning capability, wherein the complete trajectory arc
can be partitioned into multiple subarcs. The dynamic model options, numerical integra-
tion characteristics, and output quantities and frequency can be suitably tailored for each
subarc. The criteria for crossover from one subarc to the next are based on either time or
spatial conditions, which can be specified for each subarc.

The state transition matrix, required by the estimator algorithm, is obtained by numeri-
cally integrating the variational equations. A Cowell predictor-corrector numerical
integration algorithm is used to integrate the second-order equations of motion and associ-
ated variational equations. Automatic or semiautomatic error control is provided by ad-
justing the integration stepsize by using a time-regularization process.

Various options are available in the dynamic models and numerical integration algorithms
to provide the versatility to accommodate both high-speed near-realtime applications and
precision postflight applications.

2.4 NEAR-REALTIME OPERATION

To provide operational support, GTDS includes a near-realtime capability with interactive
graphics reporting and control facilities. The interactive capabilities allow the user to
select and modify input parameters, to view the results of GTDS processing, and to auto-
matically compute and monitor observation residuals. '

Near-realtime operation usually necessitates a compromise in computational precision
compared with that generally achieved during postflight processing. Several options are
included for this purpose. These options, which permit more rapid computation without
seriously jeopardizing precision, affect the orbit generator type selection, model approxi-
mation, and control over the number of variables being estimated or considered.
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CHAPTER 3—COORDINATE AND TIME SYSTEMS

The orbit determination process involves measurements that are taken and forces that are
modeled in several different space and time coordinate systems. This chapter defines
these systems and gives the necessary transformations between them.

3.1 GENERAL COMMENTS AND DEFINITIONS

The GTDS coordinate systems consist of the fundamental astronomical reference systems
and other systems that were originally borrowed from aeronautics or originated from
special requirements of space exploration. Requirements for different coordinate systems
occur from the following three sources:

e [nput data
& Internal computations
e QOutput requirements

For example, the input ephemerides of the planets are heliocentric and refer to the mean

equator and equinox of B1950.0* or J2000.0.T The input measurement data are in a
topocentric coordinate system. The integration is done in either geocentric, selenocentric,
planetocentric, or heliocentric rectangular coordinates referred to the mean equator and
equinox of B1950.0 or J2000.0 or referred to the true equator and equinox of a specified
epoch. The force model includes terms referred to a coordinate system that is fixed in the
rotating Earth and terms that are referred to the Moon and the planets. The output re-
quirements can be osculating elements with respect to the Earth, Moon, or planets. These
specific coordinate systems are defined and discussed later in this chapter.

Since several different coordinate systems are used in GTDS, these systems must be
defined and provision must be made for transforming from one coordinate system to
another. A coordinate system is defined by specifying the origin of the coordinates, a
reference plane, and a principal direction in the reference plane. This specification of the
reference plane includes an identification of the positive, or north, or outward sense along
the normal to the plane. The reference piane is an equivalence class of mutually parailel
planes. For example, the equator is defined to be the plane normal to the Earth’s axis of
rotation. Usually, this plane contains the Earth’s center of mass; however, in selenocentric

* The beginning of the Besselian solar year is denoted by the notation .0 after the year. The notation
B1950.0 corresponds to January 09923, 1950 ephemeris time. For a detailed explanation, see Refer-
ence 1, pages 22, 30, and 69.

T1f coordinate system axis directions are frozen with respect to the epoch 2000.0, the system is referred
to as the Julian 2000.0 inertial (J2000.0) system.
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equatorial coordinates, the parallel plane contains the Moon’s center of mass. To avoid
any such difficulty, the celestial sphere of infinite radius is introduced, and the celestial
equator is defined as the intersection of the equatorial plane with the celestial sphere.
This is another way of identifying the equivalence classes of parallel planes and parallel
lines. The reference plane often refers to that member of the equivalence class that con-
tains the origin of the coordinate system. The corresponding statement holds for the
equivalence of paralle] lines in defining a principal direction.

The designations of coordinate systems, according to the location of the origin, are given
in the following table:

Origin of Coordinates Designation of System
Observer Topocentric
Center of the Earth Geocentric
Center of the Moon Selenocentric
Center of the Sun Heliocentric
Center of mass Barycentric

The following reference planes are used:

® Horizon. Without further designation, the horizon is the plane tangent to the
oblate ellipsoid Earth mode! at a specified point on the surface. The outward
normal is directed away from the Earth model. For topocentric coordinates, the
reference plane is the geographic horizon corresponding to the point on the
Earth model whose normal passes through the observer.

¢ Equator. The equator is the Earth’s equator, unless otherwise specified. This is
the plane normal to the Earth’s axis of rotation, and north is in the direction of
the angular velocity vector of the rotation, also called the celestial pole. The
Moon’s equator is defined in a corresponding way.

® Plane of an Orbit. The plane of an orbit is defined by two-body motion, and
north is the direction of the angular momentum. In the problem of more than
two bodies, the osculating plane corresponds to the state at a given epoch or the
mean plane that has the periodic perturbations removed.

® Ecliptic. The ecliptic is the Earth-Sun orbital plane and is a special case of the
plane of an orbit. North is the direction of the system’s angular momentum,
also called the ecliptic pole.

The principal direction is usually specified by giving the sense along the intersection of
the reference plane with some other plane. The other plane can be a meridian plane, an
equatorial plane, or another orbital plane. A meridian plane is defined as any plane that
contains the axis of rotation of one of the principal gravitating bodies. Commeonly used
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meridians
following:

of the Earth and Moon that are used to determine principal directions are the

Greenwich or Prime Meridian. The Greenwich meridian is the Earth’s meridi-
an plane that passes through the former Royal Observatory at Greenwich,
England.

Lunar Prime Meridian. The lunar prime meridian is the Moon’s meridian
plane that passes through the mean center of the apparent lunar disk (that point
on the lunar surface that would be intersected by the Earth-Moon line, were the
Moon to be at the mean ascending node when this node coincided with either
the mean perigee or the mean apogee).

Local Meridian. The local meridian is the Earth's or Moon’s meridian plane
that passes through the observer's position. This concept is not meaningful
when the observer is situated on the axis of rotation.

Other principal directions frequently used in astronomy are as follows:

Vernal Equinox or Equinox. The equinox is the fundamental principal direc-
tion used in astronomy. It is defined as the intersection of the ecliptic and the
Earth’s equator with the positive sense being from the Earth to the Sun as the
Sun crosses the equator from south to north.

Ascending Node. The ascending node is the intersection of an orbital plane and
the reference plane with the positive sense being from the origin toward the
orbiting body as it crosses the reference plane from the south to the north.
Thus, the vernal equinox is an ascending node.

3.2 COORDINATE SYSTEM DESCRIPTIONS

The coordinate systems used in GTDS are described in the following subsections. For
each system, the origin, reference plane, and principal direction are given, and the related
coordinates are defined.

3.2.1 BODY-CENTERED EQUATORIAL INERTIAL (GEOCENTRIC,
SELENOCENTRIC, OR PLANETOCENTRIC)

Origin: Center of the reference body
Reference Plane: Equatorial plane of the Earth at epoch
Principal Direction: Vernal equinox of epoch



Rectangular Cartesian Coordinates (see Figure 3-1):

5\4 axis = principal direction
'{\[ axis = normal to the 5\( and ﬁ axes to form a right-handed system
% axis = normal to the equatorial plane of epoch in the direction of the

angular momentum vector

SPIN AXIS
A
Z

EQUATORIAL
PLANE

A

VERNAL EQUINOX

Figure 3-1. Body-Centered Inertial Coordinate System

When the reference body is the Earth, this coordinate system is referred to as the geocen-

tric equatorial inertial (GCI) coordinate system. The origin of the GCI coordinate axes,
AOAA , A ) . . . .
X, Y, Z, is the Earth’s center. The +Z axis points north along the Earth’s spin axis, the

+)Q£ axis points to the vernal equinox direction il:\l thtf:\ Earth;s equatorial plane, and the
+‘Ix\’ axis completes the orthogonal triad so that Y =27 X X.Because the Earth’s spin
axis precesses about the ecliptic pole with a period of approximately 26,000 years, the
GCI axes slowly move in inertial space at a rate of approximately 50 arcseconds per year.
Therefore, a reference time has to be attached to the definition of the GCI coordinate
system to make it truly inertial.
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When the axis directions are frozen at their mean directions at the beginning of the
year 1950 (epoch 1950.0), the system is referred to as the Besselian 1950.0 inertial
(B1950.0) system. Similarly, if the axis directions are frozen at their mean directions with
respect to the epoch 2000.0, the system is referred to as the Julian 2000.0 inertial
(J2000.0) system. The Besselian and Julian designators refer to the associated definitions
of the length of a year used in these systems.

Within the following formulation, R, X, Y, and Z designate the position vector and
Cartesian coordinates referred to the mean equator and equinox of B1950.0 or J2000.0
inertial coordinate frames. Similarly, Fg, xg, ye, and zg designate the position vector
and Cartesian coordinates referred to the mean equator and equinox of epoch, and T, X,
y, and z designate the position vector and Cartesian coordinates referred to the true equa-
tor and equinox of epoch.

Spherical Polar Coordinates:

-
fl

radial distance from the origin to the point being measured

b
]

right ascension measured east from the vernal equinox, tan™! (Y/X)

declination measured north from the equator, sin™! (Z/r)

3.2.2 BODY-CENTERED ROTATING

Origin: Center of the reference body
Reference Plane: Equatorial plane of the reference body at epoch
Principal Direction: Intersection of the prime meridian with the equator

Rectangular Cartesian Coordinates (see Figure 3-2):

X, axis = principal direction

I

ﬁb axis = normal to theX, and %, axes to form a right-handed system

%b axis normal to the equatorial plane of epoch in the direction of the

north celestial pole

Spherical Polar Coordinates:

radial distance from the origin to the point being located
longitude angle measured east from the prime meridian, tan™ (yu/Xu)

D o
noon

geocentric latitude angle measured north from the equator, sin™ (z,/ry)
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Geodetic Coordinates:

h = height measured normal to the local body surface to the point being
located

4 = longitude angle described above

¢ = geodetic latitude angle measured north from the equatorial plane to the
vector normal to the ellipsoidal body surface passing through the point
being located (see Figure 3-2)

PRIME
MERIDIAN

EQUATORIAL
PLANE

A
Xy A

Figure 3-2. Body-Centered Rotating Coordinate System

3.2.3 LOCAL PLANE SYSTEM

Origin: Center of the reference body (see Figure 3-3)

Reference Plane: Plane containing ©, the geocentric position vector to
point P, and the z axis

Principal Direction: Geocentric position vector to point P

Rectangular Cartesian Coordinates (see Figure 3-3):

axis directed along the geocentric position vector to point P

Ip

> M

axis displaced from the inertial y axis by the origin’s right ascen-
sion and lying in the equatorial plane

axis
Ip

%lp axis = north-pointed axis lying in the reference plane normal to the prin-
cipal direction
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Spherical Velocity Coordinates:

V = velocity vector’s magnitude (| 7 |)

>
n

azimuth angle measured clockwise frorn the z,p axis to the projection of
the velocity vector onto the y,, - zlp plane

p = flight path angle measured from the xlp axis to the velocity vector

REFERENCE -
PLANE A

EQUATORIAL
PLANE

A
X

Figure 3-3. Local Plane System

3.2.4 TOPOCENTRIC LOCAL TANGENT (EAST/NORTH/UP)

Origin: Observer (topocentric)
Reference Plane: Plane tangent to the ellipsoidal Earth model at the ob-
server

Principal Direction: Vector in the reference plane, pointed north

Rectangular Cartesian Coordinates (see Figure 3-4):

ﬁ,, axis = axis lying in the reference plane that points east
?n axis = principal direction
2, axis = upward direction along the geodetic vertical



Spherical Position Coordinates:

(The origin coincides with the tracking station, and 2 is directed at the satellite.)

= station-to-spacecraft range

= azimuth angle measured clockwise from the principal direction to the

projection of the position vector in the reference plane

= elevation angle measured from the reference plane to the station-to-

spacecraft position vector

OBSERVER

EQUATCRIAL
PLANE

Figure 3-4. Topocentric Coordinates

3.2.5 ORBIT PLANE

Origin: Center of the reference body
Reference Plane: Plane of the orbit
Principal Direction: Radius vector from the origin to the satellite

Rectangular Cartesian Coordinates:

axis

principal direction

axis = in the orbital plane, 90 degrees ahead of the satellite in the sense
of the motion
axis = direction along the vector T X f
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The following two alternative orbit plane systems are defined; both have the same origin
and reference plane as the basic system described above:

¢ The Keplerian system, which is denoted by x;, yp, and z,, has its ﬁp axis
(principal direction) directed towards the perifocus of the satellite orbit (see
Figures 3-5 and 3-6).

® The equinoctial system, which is denoted by Xep, Vep, and zep, has its J’Eep axis

(principal direction) directed towards the “origin of longitudes.” The “origin of
longitudes” lies in the plane of the orbit and is displaced by the angle Q from
the ascending node N, where Q is the right ascension of the ascending node.

Unit vectors along the coordinate directions Xep, Vep, andze, are denoted by
A f
f, g, #, respectively.

ORBIT PLANE

EQUATORIAL
PLANE

VERNAL EQUINOX 3

cp

ORIGIN OF LONGITUDES

Figure 3-5. Orbit Plane Coordinates

3.2.6 ORBITAL ELEMENTS

Three types of orbital coordinates, which can be used to describe closed orbits, are pre-
sented below. Two sets of equinoctial and Herrick elements are defined such that the
elements and the corresponding equations of motion are nonsingular for inclinations of
both 0 degrees (direct set) and 180 degrees (retrograde set).
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47
/ OARBITAL
4 PLANE

Figure 3-6. Orbital Parameters

Keplerian Elements (see Figures 3-5 and 3-6):

a = semimajor axis
e = eccentricity, specifying the elongation of the orbital conic section
1 = inclination, specifying the orientation of the satellite’s orbital plane with

respect to the equator of the central body

Q = right ascension of the ascending node, i.e., the angle measured eastward
along the equator from the vernal equinox te the point where the satel-
lite crosses the equator traveling in a northerly direction

w = argument of perigee, i.e., the angle between the ascending node and the
perifocal potnt measured positive with increasing mean anomaly

M = mean anomaly, i.e., the sum of the mean anomaly at epoch and the
product of the mean motion and the elapsed time from epoch

Equinoctial Elements (see Figure 3-5):

semimajor axis

. . A .
projection of the vector & on the Y, 8IS

. . _ A .
projection of the vector & on the X, axis

o B =
Il

projection of the vector N on the ?epaxis
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projection of the vector N on the &, axis

q = ep
A = mean longitude
where
€ = eccentricity vector pointing in the direction of the ﬁp axis (perifocus)
and having a magnitude equal to the eccentricity, e
N = nodal vector pointing in the direction of the ascending node and having

a magnitude equal to

=G

where i denotes the orbital inclination, and j = +1 for direct orbits and -1 for retrograde
orbits.

BHerrick Elements:

& = eccentricity vector (defined above) expressed in inertial Cartesian

coordinates
7 = angular momentum vector divided by ./E , where u is the gravitational
constant, i.e.,
. T X T
{ =
Ju

and the vectorZ is expressed in inertial Cartesian coordinates
n = Kepler mean motion
= mean longitude

(Note: Only six of the eight scalar components above are independent. Single components
of the vectors € and 7 are dependent upon the remaining six elements.)

3.2.7 VEHICLE-FIXED

Qrigin: Center-of-gravity of the spacecraft

Reference Plane: Plane containing the longitudinal and vertical axes defined
by the spacecraft destgner

Principal Direction: Longitudinal axis directed toward front of the spacecraft
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Rectangular Cartesian Coordinates (see Figure 3-7):

.

%.axis = longitudinal (roll) axis along the principal direction
§,axis = lateral (pitch) axis
7, axis = vertical (yaw) axis

Figure 3-7. Vehicle-Fixed Coordinates

3.3 SPECIFIC TRANSFORMATIONS

The spacecraft’s state vector at a given time is obtained by integrating the equations of
motion. The equations of motion equate the acceleration of the vehicle to the sum of the
various accelerations acting on the vehicle and are valid only in an inertial reference
frame. However, the principal acceleration sources that act on the vehicle, i.e., gravity
and aerodynamic drag, are most easily expressed in terms of a body-fixed system. The
inertial position and velocity must therefore be transformed to body-fixed coordinates for
use in computing the gravity and drag accelerations. These accelerations, expressed in
terms of body-fixed axes, must then be transformed to the inertial coordinate system for
use in the numerical integration process. The tracking measurement computations, used
in the estimation process, also require body-fixed position and velocity coordinates of the
spacecraft. Thus, one of the most basic transformations in GTDS is that between the
inertial coordinate system and the body-fixed system. The following coordinate systems
are also used in GTDS to express the spacecraft position, velocity, and/or acceleration for
various purposes:

e Body-Centered Equatorial Inertial. This system, when “frozen” at a specified
date, provides the basic coordinates for expressing the equations of motion
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derived from Newton's laws. In GTDS, an inertial coordinate system based on
the B1950.0 or J2000.0 reference date is used to locate the planets, Moon, and
spacecraft.

e Body-Centered Rotating. This system is used to characterize the gravitational
field and the atmospheric properties of the body.

® Local Plane. This system is used to orient the spacecraft velocity vector.

e Topocentric Local Tangent. This system is used to characterize ground-based
radar tracking observations of the spacecraft.

e  Orbit Plane. This system is used to characterize the spacecraft orbital position
and motion.

e Vehicle-Fixed. This system is used to characterize propulsive and aerodynamic
forces acting on the spacecraft.

In the following subsections, the transformations from the mean equator and equinox of
B1950.0 and J2000.0 inertial coordinate systems to the body-fixed system are presented.
This is followed by descriptions of transformations relating the inertial coordinates to the
various other coordinate systems used in GTDS.

3.3.1 INERTIAL TO TRUE OF DATE

The equinox is defined as the intersection of the planes of the Earth’s equator and the
ecliptic. The equator is defined as being normal to the Earth’s polar axis. The motion of
the equinox is due to the combined motions of the two planes, the equator and the eclip-
tic, that define it. The motion of the celestial pole or of the equator is due to the gravita-
tional attraction of the Sun and Moon on the Earth’s equatorial bulge. It consists of two
components: lunisolar precession and nutation (References 1, 2, 3). Lunisolar precession
is the smooth long-period westward motion of the equator’s mean pele around the ecliptic
pole, and it has an amplitude of approximately 23.5 degrees and a period of approxi-
mately 26,000 years. Nutation is a relatively short-period motion that carries the actual
(or true) pole around the mean pole in a somewhat irregular curve, with an amplitude of
approximately 9 seconds of arc and a period of approximately 18.6 years. The motion of
the ecliptic (i.c., the mean plane of the Earth’s orbit) is due to the planets’ gravitational
attraction on the Earth and consists of a slow rotation of the ecliptic. This motion is
known as planetary precession and consists of an eastward movement of the equinox of
approximately 12 seconds of arc a century and a decrease of the obliquity of the ecliptic,
the angle between the ecliptic and the Earth’s equator, of approximately 47 seconds of
arc a century. In astronomical work, the precessional motion of the equator and ecliptic,
called general precession, is considered separately from the nutational motion. Thus the
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“mean” equator and equinox are determined by neglecting nutation. The “true” equator
and equinox can then be obtained by correcting the mean equator and equinox for nuta-
tion.

3.3.1.1 J2000.0 Inertial to Mean of Date

Transformations from the mean of J2000.0 svstem into other mean of date coordinate
systemns are given in this section (Reference 4).

The conventional expression for the Julian epoch, JE, is
JED - 2451345.0

JE = 2000.0 + - (3-1)
365.25

where JED is the Julian ephemeris date. The Julian date 2451545.0 corresponds to
January 1.5, 2000.

A transformation between two mean of date systems is accomplished by performing three
rotations in succession. If a rotation matrix about a Cartesian z axis is denoted as R,(a)
and a rotation matrix about a Cartesian x axis as Ry(a), then, as functions of the rotation
angle a, the elements of these rotation matrices are the following:

[ cos a sin a OT
R (a) = | -sin a cos a 0 (3-2)
0 0 1
1 0 0
Rya) = | O cos a sin a (3-3)
0 -sin a cos a

The three rotations that must be performed in sequence to transform one mean of date
coordinate system with reference epoch E; into another with a different epoch E; are as

follows:
R,(90° - &) = rotation about the initial % axis that rotates the X axis to the
ascending node of the mean equator at the final epoch
Ry(6p) = rotation of the initial equatorial plane into the final equato-

rial plane about an axis that coincides with the ascending

node of the final mean equator of date on the initial equato-

rial plane

3.
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R,(90° + &;) = rotation about the % axis that rotates the X axis to the de-
scending node of the initial mean equator

The precession parameters, &g, 6, and &, are a set of rotation angles that depend on
the time. These angles are given by

o = (2306.2181 + 1739656 T — 0-000139 T2 t + (030188 ~ 0.000344 T) ¢2 )
(3-4
+ 07017998 t3
B, = (20043109 - 0785330 T - 07000217 T?) t + (- 0.42665 ~ 0000217 T) ¥?
(3-5)
- 0°041833 ¢
E, = (23062181 + 1739656 T — 07000139 T2 t + (1709468 + 0.000066 T) t* 56
3-6
+ 0.018203 ¢
where
t .= time in Julian centuries between the reference epoch, E,;, and the data
epoch, E»
T = time in Julian centuries (of 36525 days) between the reference epoch,

E;, and epoch J2000.0; if Ey = J2000.0, T = 0, such that

E, - 2451545.0
36525

T = (3-7

Therefore, the total rotation matrix for precessing from the mean equator and equinox of
epoch E; to the mean equator and equinox of epoch E, can be expressed as

A = Ry(-90 - &) Ru(6p) R(90 - &o) = [ay] | (3-8)

Denoting the initial coordinates by R; and the final coordinates by I, the relationship can
be expressed by

f'.z = A El (3'9)
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where the elements of A are

ajy = -sin g sin &, + cos & cos &, cos & (3-10a)
a3 = -cos & sin &, - sin o cos & cos 6, (3-10b)
a;3 = —-cos &, sin G, (3-10c)
ay; = sin §o cos &, + cos o sin &, cos 6, (3-10d)
ag = cos Lo cos & - sin & sin & cos 6, (3-10¢)
az; = -sin &, sin &, (3-10f)
as;; = cos o sin 6, (3-10g)
a3, = -sin §o sin &, (3-10h)
a3 = cos 6 (3-10i)

The matrix A enables a precession from the mean equator and equinox of any initial
epoch E; within approximately one or two Julian centuries of the reference epoch
J2000.0 to any final epoch E, within the same timespan with acceptable accuracy. Thus,
a mean of date equator and equinox coordinate system can be defined for any year. Since
the time derivative of A can be assumed to be negligible, the velocity coordinates are
transformed as

h=AR (3-11)
Similarly, due to the orthonormality of the transformation from mean of J2000.0 to any
other mean of date coordinate system, a precession is possible from any mean of date

coordinate system back to the mean of J2000.0 by simply using the transpose of the A
matrix calculated above. Thus, the following relations hold for position and velocity:

F = AR (3-12)
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R, = ATR, (3-13)
where the superscript T denotes the transpose of the matrix.
3.3.1.2 B1950.0 Inertial to Mean of Date
The B1950.0 inertial coordinates are transformed into the mean equator and equinox of

date by correcting only for precession. This is done by the following three rotations (see
Figure 3-8):

rotation about the 2 axis that rotates the x axis to the as-
cending node of the mean equator of date

Rz(nfz - CO)

]

Ry(6y)

rotation of the B1950.0 equatorial plane into the mean equa-
torial plane of date about an axis that coincides with the as-
cending node of the mean equator of date on the B1950.0
equatorial plane

rotation about the %Eaxis that rotates the ﬁB axis to the de-
scending node of the mean equator of B1950.0

Ry(-7/2 - &)

The orthogonal transformations are defined as follows:

cos a sin a 0
R, (a) = | -sin a cos a 0 (3-14)
0 0 1
1 0 0
Rfa) =| © cos a sin a (3-15)
0 -sin a cos a

The angles &y, 9,,', and ,are given by (Reference 5)

Eo = 230479969 Ty + 0.302000 T + 0.01808 T, (3-16)
6, = 2004.2980 Ty - 0.425936 T} - 0.04160 T} (3-17)
g, = 230479969 Ty + 1.092999 T§ + 07019200 T (3-18)

3-17



MEAN EQUATOR
A OF DATE

Z
MEAN EQUATCOR 2
OF 1850.0

Figure 3-8. Precession Angles

where

Ty = time in Julian centuries of 36525 days elapsed from 1950.0
The total rotation matrix can be expressed as
T 14
A = Rz ('E = 51:) Rx(ep) Rz (‘2“ - CO) = {aij} (3"19)

Denoting the B1950.0 coordinates by R and the mean equator and equinox of date by g
yields

AR (3-20)

|
m
il

where the elements of A are

a;; = —sin o sin §, + cos §; cos §; cos &, (3-21a)
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aj;; = -cos & sin & - sin & cos &, cos 6, (3-21b)
a;3 = —cos &, sin 6, (3-21¢)
ax; = sin &o cos &, + cos §p sin &, cos G, (3-214)
az; = cos &y cos &, - sin §p sin &, cos 6, (3-21e)
a3 = -sin & sin 6, (3-21f)
as; = cos {p sin 6, (3-21g)
as; = -sin o sin 6, (3-21h)
asy = cos 6 (3-211)

The time derivative of A is assumed to be negligible; therefore, the velocity coordinates
are transformed as follows:

%B = A I_{ (3‘22)

3.3.1.3 Mean of Date to True of Date

The transformation from the mean equator and equinox of date to the true of date system
involves correcting for the nutation effect. Nutation is measured as cyclic changes in the
obliquity, the angle between the equatorial plane and the ecliptic, and the longitude of the
equinox. These changes in obliquity, de, and longitude, Oy, are assumed known. They
are input to GTDS by fitting polynomials through the JPL ephemeris data (Reference 6)
as described in Section 3.6.

Defining
o€ = difference between the true obliquity (€;) and the mean

obliquity (€m)
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1t

€ = € + O€

oy

true obliquity measured from the true equator to the ecliptic

nutation in longitude, which is the true longitude of date of
the mean equinox of date

the rotation from the mean equator and equinox of date to the true equator and equinox
is given by the following three rotations (see Figure 3-9):

Ri(em) = rotation about the :“(E axis through the mean obliquity to the
ecliptic of date

R, (- &y) = rotation about the ecliptic pole, through the nutation in longitude

R(-€) = rotation about the X axis through the true obliquity to the

true equator of date

where Ry and R, are given by Equation (3-1).

ECLIPTIC POLE %

A
Zp ‘
ECLIPTIC OF DATE
A
Ye
p MEAN EQUATCR OF DATE
m
» §
oy
TRUE EQUATOR QF DATE
A
X
A
Xg

Figure 3-9. Nutation Angles

The total rotation matrix can be expressed as

N = Ru(-€) Ro(-09) Ry(em) = {ny} (3-23)
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Denoting the true of date coordinates by T yields

f=Nfg : (3-24)
where the elements of N are

n;; = cos Oy (3-25a)
nyz = -sin &Y cos €n (3-25b)
ny;; = -—sin dyY sin €, (3-25¢)
nz; = sin 0y cos € (3-25d)
Ny = ¢OS Oy COS € COS € + Sin & sin €y (3-25¢)
Nz = COS Oy cOS € Sin €, — Sin € €OS €y (3-25%)
ny = sin &y cos € (3-25g)
niy; = cos Jy sin € cos €n — COS € SiN €y (3-25h)
N3 = cos Oy sin € Sin €, + COS € COS €y (3-251)

The time derivative N is assumed to be negligible. Therefore, the velocity coordinates are
transformed as follows:

f =Nfg (3-26)
In the J2000.0 system, the mean obliquity is given by (Reference 7)
€ = 2343929111 - 050130047 T - 0:1639(107%) T? + 0°5036(107%) T* (3-27)

where T = time in Julian centuries of 36525 days elapsed from J2000.0
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The definition of the mean obliquity of date in the B1950.0 systemn (Reference 1) is given
by

€n = 237445788 - 0:0130139 T - 0700000091 T? + 07506(10°6) T®>  (3-28)

where

T = time in tropical centuries (of 36524.2198 mean solar days) elapsed
from the B1950.0 epoch to the date specified

3.3.1.4 Summary

The transformation matrix from inertial mean of J2000.0 or B1950.0 to true of date coor-
dinates 1s given by

—
I

]
>

(3-29)

where
C = N(dy, é¢) Allo, 05 &) (3-30)

The elements of the precession matrix, A, are given in Sections 3.3.1.1 and 3.3.1.2 for
the J2000.0 and B1950.0 coordinate systems, respectively; and the elements of the nuta-
tion matrix, N, are given in Equations (3-25). In GTDS, the C-matrix is synthesized dur-
ing preprocessing computations using precession angles obtained by means of
Equations (3-16) and (3-17) and nutation angles obtained from an ephemeris tape pro-
vided by the Jet Propulsion Laboratory. The elements of C are stored on the Solar/Lunar/
Planetary (SLP) Ephemeris File, as described in Section 3.6, for retrieval and use during
program execution.

GTDS has also been provided with the optional capability to solve the equations of motion
in a true of “reference date” coordinate system, designated by ©", where the reference
date is specified. The orthogonal transformation in Equation (3-29) involves two times:
the date of the true coordinates, denoted by t, and the epoch of the mean inertial system,
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denoted by Ty (either B1950.0 or J2000.0). Therefore, using the notation defined in
Section 3.2.1, Equation (3-29) can be written as

Ct T R (3-31)

=
n

or

R

CTt, Tw) T (3-32)
where the superscript T denotes transpose.
Specifying the reference date for the true of reference date system by t*, then

F* = Ct*, Tw K (3-33)

or
R = CT(t*, Tm)T* (3-34)

The transformation from true of reference date to true of date coordinates is obtained
from Equations (3-31) through (3-34) to be

= C@t, Tv) CT(t*, Tm) T* (3-35)

This equation permits problems to be solved using a true of reference date coordinate
system as the inertial frame but requires only the precession/nutation matrix, C(t, Ty ),
which is available on the SLP Ephemeris File.

Note that the transformation matrix in Equation (3-35) is the identity matrix when t = t*,
GTDS utilizes this property and neglects precession and nutation when a true of reference
date option is specified. This requires that the problem time, spanned by t, must be
relatively short and in the proximity of the reference date, t*.

3.3.2 TRUE OF DATE TO BODY-FIXED

The transformation that relates the true of date coordinates to the body-fixed coordinates
accounts for two separate effects. The first relates the true vernal equinox to the prime
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meridian of the rotating Earth by means of the angle ag, the true of date right ascension
of Greenwich (see Figure 3-10). The second effect, called polar motion, accounts for the
fact that the pole of the body-fixed axis, %b, does not coincide with the body’s spin axis,

2, the pole of the true of date geocentric axes. The first of these effects transforms the
true of date coordinates to pseudo body-fixed coordinates, Xy, Vs, Zs . These pseudo coor-
dinates would be precisely the body-fixed coordinates, X, Yo, Zb, if zy = z,, that is, if
polar motion were omitted.

3.3.2.1 True of Date to Pseudo Body-Fixed

The transformation from the true of date to the pseudo body-fixed coordinates consists of
a rotation about the true of date Z axis through the true right ascension of Greenwich, a,
(see Figure 3-10), yielding

CoS Qg sin a, 0
B, = Ri(ay = | -sin g, cos ay 0 (3-36)
0 0 1

The true of date right ascension of Greenwich, a4, is measured easterly from the true
vernal equinox to Greenwich. A related quantity is the Greenwich hour angle, also called
the true Greenwich sidereal time, which is measured westerly in the plane of the equator
from Greenwich to the true vernal equinox. Thus, although their definitions differ, the
right ascension of Greenwich, @, and the Greenwich sidereal time and hour angle are

A
z
GREENWICH
C MERICIAN
A
Y
EQUATOR
A a Ay
X Xy
VERNAL
EQUINOX

Figure 3-10. True of Date Right Ascension of Greenwich
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equal in magnitude. In the B1950.0 reference frame, the true Greenwich sidereal time is
obtained from the mean Greenwich sidereal time, agym, (Reference 2) as

agv = UT1 + 6" 387 452836 + 86401843542T, + 020929T2 (3-37a)
by applying the correction
ag = agm + AH (3-37b)
where
AH = 8y cos (&) (3-38)

The nutation in longitude, 4y, and true obliquity, ¢,, are discussed in Section 3.3.1.3.
The times UT1 and T, in Equation (3-37a) are

UT1 = Greenwich universal time measured from midnight (epoch) to time
t; UT1 is positive for t after midnight and negative for t before mid-
night

T, = number of Julian centuries elapsed from 12 hours UT1 January 0,

1900 (JD = 2415020.0) to the UT1 time of epoch

Using the J2000.0 reference frame, the mean Greenwich sidereal time, agy, is defined as

the right ascension of the fictitious mean Sun minus 12 hours plus the time of day in UT1
(universal time corrected for polar motion). The mean Geenwich sidereal time is ex-
pressed in units of radians as

agm = tw + [6"41™50%54841 + 8640184812866 T,

2o . (3-39a)
86400)

+ 05093104 T2 — 632 (107°5) Tg](

g
1

Earth’s rotation rate in radians per second

universal time (UT) measured in seconds from ®UT1 of the date of
the computations

-
L]
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Ty = number of UT Julian centuries elapsed from epoch J2000.0 to ot UT1
of the date

and the superscripts h, m, s indicate hour, minutes, and seconds, respectively.

The equation consists of two parts, one a polynomial series in T, that computes the agy,

at 0® UT1 of the epoch, and a second part that computes the rotation of the Earth from
the beginning of the UT1 day to the time of the computation.

The true Greenwich hour angle, Gg, is then computed by applying the correction, AH,
from the nutation in longitude and obliquity to acms as

a; = agm + AH (3-39b)
where

AH = (8y) cos (e) (3-3%¢)

The true of date coordinates transform into the pseudo body-fixed coordinates as follows:

]

b = ByT (3-40)

Differentiation yields the velocity transformation

b =By f + B T (3-41)
where
- sin a, cos ag 0
B; =| ~cosa, -sing, 0] & (3-42)
0 0 0

and where c'zs is the rotation rate of the Earth and is considered constant.

3.3.2.2 Pseudo Body-Fixed to Body-Fixed (Reference 3)

The Earth’s axis of figure (i.e., the principal moment of inertia) is not coincident with the
spin axis, and it moves with respect to the latter causing the polar motion effect. The path
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of the spin axis on the Earth’s surface is “semiregular” but unpredictable due to random
shifts in the Earth’s crust, etc. Therefore, motion of the spin axis pole is given with
respect to the pole at some established epoch. The pole at the established epoch is re-
ferred to as the adopted pole (P,) and corresponds to the pole of the body-fixed axes,
xb, yb, zb , while the present position of the spin axis pole is referred to as the true
pole (Pr).

The adopted pole used in GTDS corresponds to the mean pole of 1903.0, which is consis-
tent with that used by the International Polar Motion Service. Due to the small size of the
polar motion correction (it takes place in squares of less than 30 meters), the polar region
of the Earth can be con51dercd a plane. A geocentnc rectangular coordmate system is
established with the zb axis passing through P,, thc x axis parallel to the xb axxs and
directed along the Greenwich meridian, and the ¢ » ams parallel to the negative yb axis
and directed along the meridian of 90 degrees west (see Figure 3-11). The coordinates of
the instantaneous pole, Pr, are measured in terms of the x; and ¥Yp components using
units of seconds of arc. (The coordinates x, and y, are periodically measured by the

International Polar Motion Service and supplied to interested users by the United States
Naval Observatory (USNO).)

P, (ADOPTED
POLE)

Pr (INSTANTANEOUS Xp
POLE}
GREENWICH
MERIDIAN
EQUATOR

Figure 3-11. Polar Motion Schematic

To derive the expressions for the effects of x; and y, on a point’s latitude and longitude,
these two quantities are shown in relation to a regular right-handed orthogonal-rectangular
coordinate system whose zb axis passes through P, and whose x,, - zb plane passes
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through Greenwich. In this system, the adopted longitude of a point A, is measured
positive in an eastward direction from X, . The following notation is used:

Aa = adopted longitude

¢a = adopted latitude

Ar = instantaneous longitude with respect to (}s, v, 2u)

¢r = instantaneous latitude with respect to (X3, 9;, %{,)

Ap = ¢r - ¢ = difference between the adopted and true latitude
Al = A - A4 = difference between the adopted and true longitude

Let ¢t and At be measured in the pseudo body-fixed coordinate system (ﬁ;, 9;, %;)
whose %{, axis passes through Py and whose 5\(;, axis lies in the %b - ?{b meridian,
displaced from &, by the angle x,. The vector in the (X, 91;, 2, ) and (X,, ?;, 20)
systems can then be written as

Xb COS Pa COS Ay
¥u =TIy Cos ¢A sin ;{'A (3‘43)
Zy Sin ¢a

and
Xp cos ¢y cos At
Yo | = Ip | cos ¢r sin At (3-44)
Z sin ¢

The two systems are related by

Xp Xp
Yo | = RY(xp) * REGp) | wo (3-45)
Zp z;,
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where R, is given in Equation (3-14) and Ry is

cos a 0 -sin a
Ry(a) = 0 1 0 (3-46)
sin a 0 cos a
The resulting transformation is
COS Xp sin xp sin yp sin X, COS ¥p
fp = 0 cos ¥p -sin y, b (3-47)
—sin X, cOs$ X, sin ¥, COS Xp COS Yp

The error made by neglecting the polar motion transformation defined by Equation (3-47)
increases linearly with |f|. A worst-case, order-of-magnitude indication of this error is
given in Figure 3-12. The figure also shows the band of uncertainty in |f, - fy| as a
result of a +2-meter uncertainty in the measurement of the polar motion coordinates, Xp
and ¥p.

Since Xp and Yp are small, all cosine terms are equated to unity, all sine terms equated to
their angles, and all products neglected. Thus, the transformation defined by Equa-
tion (3-28) simplifies to

1 0 Xp
fp=| 0 1 -y |[fh=BH (3-48)
—-Xp ¥p 1

The worst-case error made by using the simplified transformation matrix is insignificant.
For example, at lunar distances the error amounts to less than a centimeter.

In order to obtain the relationships between A, 4, ¢a, and ¢, the following formulas
can be used:

¢T - ¢A = A¢ = Xp COS AA - ¥ sin l?.A (3-49)

Ar — Aa = Al = tan ¢A(xp sin As + Yp CO8 Aa) (3-50)
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Figure 3-12. Polar Motion Errors

GTDS uses the simplified transformation matrix defined in Equation (3-48). The instanta-
neous coordinates of the pole, Xp and ¥p, are obtained by evaluating predefined cubic
polynomials at the given date, as follows:

Xp ap + apl + ai3T2 + 314T3 (3'51)

Yp = ais + aiT + apT? + agl’ (3-52)
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where

Xp, = X polar coordinate, seconds of arc
y, = Yy polar coordinate, seconds of arc

and T is the number of days from the beginning of the timespan covered by the polyno-
mial, e.g., T = 1, 2, ... . For a given modified Julian date, MID, T is given by

T = MID - MID; + 1 (3-53)
where MJD; is the tabular modified Julian date that bounds the interval from below, i.e.,

MID; < MID < MID;y, (3-54)

The coefficients a; and associated timespans are determined by least-squares fitting of
cubic polynomials to published daily polar motion data. The timespans are determined by
constraining the maximum deviation (between the data and polynomial) to be less than
0.01 second of arc. These data are updated periodically as current data from the USNO
become available. The last set of coefficients can be used to obtain extrapolated values of
the polar motion coordinates for a short time in the future.

3.3.2.3 Summary

The complete transformation between the true of date coordinate system and the body-
fixed system is given by

fo = Ba(Xp, ¥p) Bilag ¥ = BT (3-55)
where B = B, B,, with B, given in Equation (3-36) and B, in Equation (3-48).
The time derivative of B, is negligible; therefore, the velocity is transformed as follows:
f, = B;Byf + B, B, T (3-56)
where Bj is given by Equation (3-42).

3.3.3 SELENOCENTRIC TRUE OF DATE TO SELENOGRAPHIC
(REFERENCES 1, 3, 5, AND 8)

The lunar landmarks and gravitational potential are referenced to a lunar-centered, body-
fixed (selenographic) coordinate system. Similar to the Earth’s geographic system, the
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. . . . A

selenographic system reference plane is the lunar equator which contains the X, and
A P . . .

?b axes. The z, axis is directed towards the lunar axis of rotation.

The Moon’s mean rotation is described by the following three empirical laws of Cassini:

1. The mean axis of rotation is fixed in the Moon, perpendicular to the mean
lunar equator; the mean period of rotation is equal to the mean sidereal period
of revolution of the Moon around the Earth.

2. The mean lunar equator intersects the ecliptic of date at a constant inclination,
Iy, for which the currently accepted value is 1 degree, 32.1 minutes.

3. The mean lunar equator, the ecliptic, and the lunar orbit plane meet in the line
of modes of the lunar orbit, with the descending node of the equator at the
ascending node of the orbit. The angle i, between the lunar orbit plane and the
ecliptic, is a constant (the currently accepted value is 5 degrees, 8 minutes) as
15 the angle i + Iy between the mean lunar equator and the lunar orbit plane.
The ecliptic is seen to always lie between the mean lunar equator and the lunar
orbit plane.

The oscillation of the actual rotational motion about the mean rotation is called the physi-
cal libration. The physical libration consists of small pendulous oscillations, never exceed-

ing approximately 0.04 degree (in selenographic latitude and longitude), and are caused
by deformations in the Moon'’s figure.

As a result of the first law of Cassini, the principal direction of the selenographic system
(ﬁb axis direction) defines the lunar prime meridian and has been chosen so that it is, on
the average, directed towards the center of the Earth disc. The ?{b axis passes through the
Sinus Medii (Central Bay) on the lunar surface. Specifically, the ﬁb axis is defined to be
coincident with the vector pointing from the center of the Moon to the center of the Earth,

if the Moon were at the mean ascending node when the node coincided with either mean
perigee or mean apogee.

To transform from the inertial system to the selenographic system, a lunar-centered
(selenocentric) coordinate system is defined, which is parallel to the Earth-centered Car-
tesian true of date system. The selenographic system (?{b, ?fb, %b) is oriented relative to
the selenocentric system (X , v, D by the Euler angles Q’, is, and A shown in Fig-
ures 3-13a and 3-14.
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Figure 3-13. Selenocentric/Selenographic Geometry
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Figure 3-14. Selenographic Transformation Angles

The transformation between the selenccentric and selenographic systems is

f, = MT (3-57)

where

M = Rz(A) Rx(is) RZ(Q’) (3'58)

with R, and R, given by Equation (3-14). The elements of M are

my; = cos A cos & - sin A sin Q' cos i (3-59a)
my;; = cos A sin Q' + sin A cos Q' cos i (3-59b)
m;s = sin A sin i (3-59c¢)
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my = -sin A cos Q' - cos A cos ' cos i (3-59d)

my, = —-sin A sin Q' + cos A cos ' cos i (3-59¢)
mg3 = cos A sin i (3-591)
ms = sin Q' sin i, (3-59¢)
ms; = —cos Q' sin i (3-5%h)
Mis = COS Ig (3-S9i)

Because of the relationship between the Moon's mean position and the orientation of the
lunar selenographic coordinates, the determination of the Euler angles Q', i;, and A
necessarily involves the Moon’s mean orbit.

Figure 3-13b can be used to, relate orbital motion to the lunar-centered-axes system. It
shows the “ecliptic” plane (X.E,;m,ﬁc ~ Yeatiptc)» Which passes through the center of the
Moon and is parallel to the ecliptic. The lunar equator and orbit planes are shown inter-
secting in a line on the “ecliptic” plane. The xb axis is shown in the lunar equator. In this
Moon-relative coordinate frame, the Earth can be considered as orbiting the Moon (the
origin) in exactly the same orbit as the Moon orbits the Earth, except that longitude
angles measured in the orbit plane must be reduced by 180 degrees. For example, when
the Earth is at the descending node and the xb axis points toward N in Figure 3-13b, the
Moon is, in reality, at its ascending node, 180 degrees advanced from N. Therefore, the
longitude of the ascending node, @, and the mean longitude, A, must be reduced by
180 degrees when used in the Moon-relative frame. The selenographic axes can be ori-
ented to the selenocentric axes by means of the following four angles:

€ = true obliquity

O-x = longitude of the descending node

I = inclination of the lunar equator to the ecliptic planes

0 = angle measured in the lunar equator between the descending node

and the Moon's prime meridian
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These angles are shown in Figure 3-13b, and the transformation is

fy = M' T (3-60)
where

M = R,(6) Ry Ry(@ - 7) Ryle) (3-61)

The elements of M’ are
mj; = -cos B cos Q + sin 6 cos I sin Q (3-62a)
mj; = -cos @ sin § cos € - sin 0 (cosI cos Q cos € + sin I sin g) (3-62b)
mj; = -cos @ sin Q sin g - sin 6 (cos I cos Q sin € - sin I cos &) (3-62¢)
my, = sin 6 cos @ + cos 6 cos I sin Q (3-62d)

my, = sin 6 sin Q cos & - cos & (cosI cos Q cos & + sin I sin €) (3-62¢)

mys = sin 6 sin Q sin € - cos @ (cosI cos Q sin ¢ - sin I cos &)  (3-62f)

ms; = -sinl sin Q (3-62¢)
m3; = sin I cos § cos g - cos I sin € (3-62h)
mss = sin I cos Q sin € + cos I cos € (3-621)

The Euler angles €', is, and A are determined as functions of the orbital parameters
6, Q, 1, and 0 by equating elements of the M and M’ matrices. Equating m3; and mas
yields

cos is = sin I cos € sin € + cos I cos € (3-63)
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sin i; = 1 - cos? ig

Equating ms; and mj; to my; and my,, respectively, yields

sin Q' = -sin I sin &
sin ig
cos ©' = cos I sin ¢ -~ sin I cos £ cos &

sin i
Equating m,3 and my; to my3 and my3, respectively, yields

A=A+8

where the parameter A, shown in Figure 3-14, is obtained from

. -sin Q sin €
sin A = ==
sin ig
sin I cos ¢ — cos I cos Q sin ¢
cos A =

sin i,

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)

(3-69)

The angle @, measured along the lunar equator from the descending node to the lunar
prime meridian, must be determined from the orbital motion of the Moon. As a result of
Cassini’s first law, the mean rate of rotation is equated to the mean orbital rate, resulting

n

O = Am - QM

(3-70)

where ) is the mean longitude of the Moon, Q is the longitude of the ascending node,
and the subscript M denotes mean values. Correcting Equation (3-70) for lunar physical

librations gives the true value of 6

0 = (AM + 'L'M) - (QM + O'M)
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Correcting Q and I in Equations (3-63) through (3-69) for nutation and libration yields
their true values

Q= Qy+ oy + oY (3-72)
I=1Iu+om (3-73)
The longitude of the mean ascending node of the lunar orbit is (Reference 5)

Oy = 1271127902 - 070529539222 d. + 0:20795(107%) T,

(3-74)
+ 0°2081(107%) T2 + 0°2(107%) T3
the inclination of the mean lunar equator to the ecliptic is
Iv = 1°32'1 (3-75)
and the geocentric mean longitude of the Moon is
Ay = 64737545167 + 1371763965268 de - 0:1131575(107%) T, 576

- 07113015(107%) TZ + 0719(107%) T2

The T, and d, variables in the above equations correspond to the number of Julian
centuries of 36525 Julian ephemeris days past (® January 1, 1950 ET, and the number of
ephemeris days past the same date, respectively.

The nutation in longitude, 0y, and the true obliquity, ¢, are given in Section 3.3.1.3.
The physical librations, determined by Hayn, in longitude of the ascending node, om,
inclination, €M, and mean longitude, TMm, are as follows:

oM = [-0°0302777 sin g + 00102777 sin (g + 2wm) (3:77)
- 07305555(102) sin (2g + 2wm)]/sin Iy
om = -070297222 cos g + 0:0102777 cos (g + 2wy) 578)
3-78
— 07305555(107%) cos (2g + 2awm)
Tv = -0°3333(1072) sin g + 070163888 sin g’ + 0°5(107%) sin Cwy) (3-79)
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where the parameter g is the Moon’s mean anomaly

g = 21554013 + 137064992 d. (3-80)
the parameter g’ is the Sun’s mean anomaly

g = 3582009067 + 0°9856005 d. (3-81)

and @y, is the Moon’s argument of perigee

wy = 196°745632 + 0°1643586 d. (3-82)

The variables above are substituted into Equations (3-63) through (3-67) to yield the
Euler angles Q’, i, and A required in the selenocentric-to-selenographic transformation
given by Equations (3-57) through (3-59).

The velocity transformation from selenocentric to selenographic coordinates is obtained
by differentiating Equation (3-57), yielding

fb = MT + MT (3-83)

The time derivative of M is obtained by differentiating its elements in Equation (3-39)
with Q and i; assumed zero, i.e.,

' ' moy msz Mas
M=A |-mpy -my —-my;3 (3-84)
0 0 0

The time derivative of A is obtained by differentiating Equation (3-67) after substituting
Equation (3-71) for 6. The resulting time derivative is

A=A+dy+ v+ Q- Ou (3-85)
where
iy = 0.266170762(107%) - 0.12499171(107%) Te (3-87)
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Q= -0.1069698435(1077) + 0.23015329(1077) T. (3-88)

and

Ty = —0.1535272946(107) cos g + 0.569494067(10°'%) cos g’ (3.89)
+ 0.579473484{107Y) cos 2wy
O = -0.520642191(10°7) cos g + 0.1811774451(1077) cos (g + 20m) (350)

- 0.1064057858(1077) cos Qum + 2g)

3.3.4 SPHERICAL-CARTESIAN TRANSFORMATIONS (REFERENCE 9)

The coordinate transformations between the spherical and Cartesian systems are de-
scribed in the following subsections.

3.3.4.1 Spherical Position and Velocity to Cartesian Coordinates

Using the spherical position coordinates, r, a, and &, that are defined in Section 3.2.1,
the transformation to Cartesian coordinates is seen from Figure 3-1 to be

X cos & cos a
y |=r1]| cosdsina (3-91)
z sin &

To transform the spherical velocity coordinates, V, B8, and A, described in Section 3.2.3,
it is convenient to transform to the local plane coordinate system (see Figure 3-3) and
then to the body-centered inertial Cartesian coordinate system. If the local plane coordi-
nates, Xip, Yip, and zjp, are fixed inertially (nonrotating), fi,, can be expressed as

Xip cos f

fie = | ¥, | = V| sinAsin B (3-92)
. cos A sin §
le
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The transformation between the local plane and the body-centered inertial Cartesian coor-
dinate systems is

fip = DT (3-93)
where
cos 0 ¢cos ¢ cos 6 sin a sin &
D = -sin a cos a 0 (3-94)
—sin & cos a -sin § sin a cos 0

Since the local plane system is fixed inertially, the velocity vector in Equation (3-92) can
be transformed to the body-centered inertial Cartesian axes by means of the transforma-
tion D, as follows:

r =D (3-95)

The partial derivatives of T and  with respect tor, a, §, V, A, and § are

or _ T (3-96)
or r
-y
3""’; = x (397)
a L0
~ -z Ccos a
2_; = | -zsina (3-98)
Rk
£=£=_a_r:=£=o (3-99)
av A 98 or
- -y
aF |7 (3-100)
= X
Ja
]
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55 ~Z C0s a

§

3 - -z sin a (3-101)
V(cos B cos & - cos A sin 8 sin 9)

°r _ I (3-102)
oV v

53 sin f(sin A sin é cos @ - cos A sin a

— =V | sin B(sin A sin § sin a + cos A cos a (3-103)
A ) .

-sin A cos ¢ sin f
5% cos a(cos d sin B + sin 0 cos § cos A) + sin a cos f sin A
a—; = -V |sin a(cos é sin B + sin 8 cos B cos A) - cos g cos 8 sin A| (3-104)
sin §sin § - cos B cos & cos A

3.3.4.2 Cartesian Position and Velocity to Spherical Coordinates
The inverse of the preceding transformations is described in the following text. The

spherical radius, r, is given by

r= yx2+y + 22 (3-105)
From Figure 3-1, the right ascension, a, and declination, &, of ¥ are

sin a = 1 (0 £ a < 2x) (3-1062)
sz + y?

cos a = u 3-106b
FT? 0 = a = 27 (3-106b)

and
siné = = LA E) (3-107a)
r 2 2
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cos & =

Ix ¥ (-% < 0 =< E) (3-107b)

T

The right ascension is measured posmve east from the inertial § axis. The declination is
measured positive north from the & - ¢ plane.

The velocity vector’s magnitude is

V= yX* + y? + 22 (3-108)

and the azimuth, A, and flight path angle, 8, are obtained from the local plane compo-
nents of velocity as follows:

. y
sin A p

- S 0 = A = 2m) (3-109a)
ylzp + le

A = __2_“’_.
s A== (0 < A < 2n) (3-109b)
ylp + zlp

and

Br®  0sp
v

(3-110a)

1A
a
S

sin 8 =
cos f§ = "_\1;_ ©<p=m (3-110b)

The azimuth and flight path angles can be obtained alternatively from the vector products
of T and T as follows:

sin A = {jzm - Oy (3-111a)
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0 -(ﬁ X )
cos A = Zip N (3'1111’3)
r
and

g o X Tl (3-112a)
sin § = =y

_f-f (3-112b)
cos B .y

A, . . A . qs . .
where U, is the unit vector in the Zy, axis direction and has components expressed in
the body-centered Cartesian system

. ~sin 8 cos a
U, = |-sindsina (3-113)

cos 0

AL . — L
and Uy is the unit vector normal to T and T given by

A FxV
=2 X 3114
UN |l_' % V'l ( )
Substituting Equations (3-87) and (3-88) into Equation (3-85) yields
: xy - y%)
A= 3-115
s rv sin  cos 6 ( )
y(yz - zYy) + x(xZ - Xxz)
A= 3-116
cos r2V sin B cos & ( )
The partial derivatives of r, @, &, V, A, and § with respect to T and f are
T
o _ T (3-117)
of r
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da 1 :|
== | X (3-118)
oF xZ +yH |:0
T
EY) 1 T
T PELR -2y (3-119)
TP Y @y
% [0 (3-120)
[~ . N . - T
vz - zi) - M(xi -k 4 ﬁ[)
T r
dA 1 _ . L ' . )
or (Ve - fZ)(xz + 7)) —}'((ri - zI) + u (Yz - zY¥ + Xi_r) (3-121)
xy - yRGE + ¥) ¥
B = _
=T =
¥ ‘[: - (5 -7) (3122)
r Ve -
- (3-123)
of  dr  of
=T
v _ B (3-124)
ar Vv
: .1 T
Zz - VvZ
9A 1 ( ¥y ,)
: — | (xz - zX) (3-125)
ofF r(VZ-r1?) ' .
(yx - xY)
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and

%, T
% ! (f- Cr_ F) (3-126)
iF 2l P

3.3.5 BODY-CENTERED TRUE OF DATE TO ORBIT PLANE

The unit vectors in the Xop, Yop, and zp directions (see Figure 3.5), measured in the
body-centered true of date coordinate system, are

U = -2 (3-127)
|Fol
V=W x0 (3-128)
\%{ = M_. (3-129)
|fo X fol

where T, and f,are the Earth-centered position and velocity vectors used to determine
the orbit plane coordinate system. If Equations (3-127) through (3-129) are expanded,
they yield the following transformation relations between the orbit plane coordinates and

the body-centered inertial Cartesian coordinates:

fop = EF (3-130)
where
Uy Uy U,
E = Vx Vy V, ' (3-131)
Wy Wy W,

Regarding the orbit plane system as fixed inertially, the velocity transforms as follows:

fp =BT (3-132)
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and the position and velocity partial derivatives are

=E (3-133)

3.3.6 BODY-FIXED TO GEOGRAPHIC TRANSFORMATIONS

The transformations between the body-centered rotating coordinate system and the geo-
graphic coordinates are described in Section 3.2.2. The transformation involves modeling
the body’s mean figure. The following subsections present the equations for an ellipsoidal
Earth model as well as the transformations and partial derivatives relating the geodetic

coordinates (h, 1, ¢) to the body-centered rotating coordinates (Xy, Yo, Zv)-

3.3.6.1 Earth Figure (Reference 9)

The shape of the Earth’s surface is very nearly an ellipsoid of revolution. A satisfactory
means for modeling the Earth is to characterize it as such and, where necessary, correct
local deflections of the vertical (e.g., correct local astronomic zenith to ellipsoidal verti-
cal). The polar axis of symmetry of the ellipsoid, Zy, is nearly colinear with the Earth’s
spin axis. The ellipsoid’s radius is greatest in the ?cb - 9‘, equatorial plane. If R. de-
notes the equatorial radius, R, the polar radius, and X, s, and z, the coordinates of a
point s on the ellipsoidal surface expressed in the body-centered rotating axis, then the
coordinates of s must satisfy the following equation:

I S
= =1 (3-134)
R'R 'R

Two convenient parameters that describe the elliptical cross-section are the flattening
coefficient, f, defined by

f = R-R .o (3-135)
R,

and the eccentricity, e, defined by

2
2o 1. (&) -2 -9 (3-136)
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Since the ellipsoid is symmetrical about the %b axis, there is no loss of generality in
restricting the analysis to the ﬁb - %,, plane. The two-dimensional analysis utilizes the

symbol xy’ or X to denote that the y» component is omitted.

The equation of the cross-section of the ellipsoid is

2

2, ;, 55 _ R 3.137
The equation for the normal to the eilipsoid is
dx.
ta = - — 3-138
ng=- 3 (3-138)

where ¢ is the geodetic latitude shown in Figure 3.15. Differentiating Equation (3-137)
and substituting the results into Equation (3-138) yields

2 o (1-¢)tan g (3-139)

sl

Solving Equations (3-137) and (3-139) simultaneously for Xe yields

SR - (140

From Figure 3-15, it can be shown that
Xy = N cos ¢ (3-141)
z, = 1y sin ¢’ = N(1 - ¢%) sin ¢ (3-142)

where N is the distance from the point S to the %b axis measured along the normal vector
to the ellipsoid at point S. Substituting Equation (3-140) into Equation (3-141) yields

. R, N R, _
N = J1-etsinfg V1 - (2f - ) sin® ¢ (3-143)
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-l--—:‘-u——-
Ny
h-

R, —™

Figure 3-15. Ellipsoid Geometry

The ellipsoidal radius is

r, = VX2 + z2 (3-144)

Substituting Equations (3-137) and (3-142) into Equation (3-144) yields

Re (1 - f)

VT (3-145)

5 =

where @’ is the geocentric latitude.
3.3.6.2 Geodetic to Earth-Fixed Transformation

Assuming that point P in Figure 3-15 has the coordinates Xp, Yo, and Zzy in the body-axis
system and is located at a distance h from the reference ellipsoid, then, from Equa-

tion (3-139) and Figure 3-15, the X» and 2y coordinates are

Xy = Xy + hcos ¢ = (N + h) cos ¢ (3-146)

and

2, = 2z + hsin ¢ = [N(1 - €% + h] sin ¢ (3-147)
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Transforming Equations (3-146) and (3-147) to three dimensions yields

Xp (N + h) cos ¢ cos A
Yo | = (N + h) cos ¢ sin 4 (3-148a)
Zp [N(1 - &%) + h] sin ¢

where A, the longitude, is defined as

A = tan! (&) (3-148b)

Xb

The partial derivatives of Xp, ¥b, and z with respect to h, A,and ¢ are

d%y/8h cos ¢ cos 4
dy,/oh | = | cos ¢ sin 4 (3-149)
0zy/dh sin ¢
Ixp/0A —(N + h) cos ¢ sin A
dypfod | = (N + h) cos ¢ cos 4 (3-150)
aZb/aj. 0
I%y/ 0 N ¢? cos? ¢ )[-— sin ¢ cos l]
= - 3-151
[ayb/8¢] (N +h 1 - ¢* sin’ ¢ J| -sin ¢ sin 4 ( )

and

[020/99)] = [h + N(1 - €?) (1 + fz sin” ¢ )] [cos ¢] (3-152)

e? sin? ¢

3.3.6.3 Earth-Fixed to Geodetic

In transforming geodetic coordinates (h, ¢, 1) to Earth-fixed coordinates (Xbs ¥b» Zb),
the point of intefsection of the height normal vector and the ellipsoid (i.e., point S) is
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given. In transforming from Earth-fixed to geodetic coordinates, this point is not known
a priori, complicating the transformation.

Two solutions are presented. The first solution is iterative and can yield any required
degree of accuracy. The second solution is a truncated binomial expansion that can be
used when accuracy requirements are not so stringent.

The iterative technique is used primarily to determine the geodetic tracking station posi-
tions where high accuracy is required. For this use (and for near-Earth satellites), the
approximation h << N is satisfied, and since the Earth’s figure is nearly spherical,

2 << 1. Therefore, from Equation (3-148), the following approximation can be made:
N sin ¢ = 2z (3-153)

Introducing z;, the z, intercept of the normal vector, it is apparent from Figure 3-15 that
7y = -Ne° sin ¢ (3-154)

Combining Equations (3-153) and (3-154), the following approximation for 2 is ob-
tained:

7 = -€etz, (3-155)

Using Equation (3-155) as an initial estimate for z;, the following sequence of equations
can be solved iteratively to yield a solution for h and ¢:

Zib = Zp — T (3—156)

N+h= x4+ +d (3-157)
sin ¢ = szh | (3-158) -
R.
N = 3-159
J1 - e? sin® ¢ ( )
z; = -Ne? sin ¢ (3-160)

3.51



Upon convergence of 2z, the altitude, h, and latitude, ¢, are obtained from Equa-
tions (3-157) and (3-158). The longitude 4 is

A = tan’! (%) 0 = A = 2n) (3-161)
b

A second, computationally simpler procedure for computing the values of ¢ and hto a
specified point, P, is useful when accuracy requirements are less stringent. The latitude,

¢, is solved for from Equation (3-139) as follows:

Z _ z
(1 -e)xy (1-¢) V& +y?

tan ¢ = (3-162).

where X, ¥, and z, of point P are used to approximate the subvehicle point on the
ellipsoid (Xs, ¥s, Zs), required in Equation (3-162). This approximation yields the geo-
detic latitude to the normal vector of an expanded ellipse through point P. For h << N
and e® << 1, it is a good approximation for the geodetic latitude.

Applying the Binomial Theorem to Equation (3-145) yields
3 .2 ' 3 2 [ | ’
rs = Re 1——f+5f2 51n¢+5fsm¢o (3-163)
where terms of f higher than second order are neglected. The geodetic height is nearly

h = Th — Iy (3—164)

Substituting Equation (3-163) into Equation (3-164) yields
2 2 2 3 2 3 + 3 Tl ar
h= yxt+y2+zt -R+|Rf+ E—Ref sin ¢’ - —2—Ref2 sin® ¢’ (3-165)
The geocentric latitude required in Equation (3-165) is approximated by

¢' = sin”! (ﬁ) (3-166)

'y
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The partial derivatives of h, 4, and ¢ with respect to Xy, Yn, and 2y are obtained by
differentiating Equations (3-157), (3-161), and (3-158) to yield

and

[ oh/o g/ o
3h§aXb i _(ez a(l - ¢ sin ¢ cos ¢ 2y COS ¢) a‘:;; aXb 167
T (1 - €? sin? ¢)*? sin® ¢ o
L_ah/azb a¢/azb
_aA/aXb 1 -Vp
03/35s | = ——— | %o (3-168)
_al/azb (xb + Yb) 0
ag/o _
aﬁﬁa;: . (- s (3-169)
ag/ozy Jxk + yE LA - €7 () + ¥E) + zf] x2 + y)

3.3.7 EARTH-FIXED TO TOPOCENTRIC LOCAL TANGENT (EAST, NORTH, UP)

The topocentric local tangent system, described in Section 3.2.4, is used in processing
ground-based measurement data. The transformation from geocentric Earth-fixed coordi-
nates (xy, v, Zp) to local tangent coordinates (Xn, Yu» zy) Tequires a transiation along
the geocentric radius vector to the station and a rotation of the axis through the station’s

longitude

I

s

and latitude angles. The station parameters are defined as follows:

body-fixed coordinates of the station

= geodetic latitude of the station (positive north)
= geocentric latitude of the station

= longitude of the station (positive east)

= height of the station above the reference ellipsoid

The magnitude of the normal vector to the reference spheroid’s surface at the station is
given by Equation (3-143) to be

_ R.
J1 - (2f - 1) sin® ¢,

(3-170)
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The components of the geocentric radius vector to the station along the ?cb, §b, and
%b axes are given by Equation (3-148) to be

Xg (Ng + hg) cos ¢ cos A
¥s [ = | (Ns + hy) cos ¢ sin A (3-171)
zs [Ni(1 - €*) + hy] sin ¢

To bring the xb, yb, and zb axes parallel to the xh, y", and %,t axes, a rotation is
made about the %b axis by the angle (/2 + ;) and about the new X, axis by the angle
(m/2 - ¢,). The resulting transformation matrix My, can be written as

- sin Ag cos As 0
My = |-sin ¢ cos A, —sin @5 sin A, cos s (3-172)
cos ¢s cos Ay cos ¢ sin A sin ¢

The local tangent coordinates of a point in space, Xv, ¥», and zp, can be written as
fir = Mu(®o - T5) (3-173)

This translates the system from the Earth’s center to the station and rotates it to the local
tangent system.

The Earth-fixed velocity in the local tangent system is given by
fu = My Ty (3-174)

since M, = 0 and r, = 0.

The partial derivatives of the local tangent components with respect to the Earth-fixed
components are the respective elements of the M, matrix given by

O _ 90 _ (3-175)

ofp ar,

3.3.8 KEPLERIAN-CARTESIAN TRANSFORMATIONS (REFERENCES 9 AND 10)

The coordinate transformations between the Keplerian and Cartesian systems are de-
scribed in the following subsections.
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3.3.8.1 Keplerian Elements to Body-Centered True of Date Coordinates

Based on the orbit geometry illustrated in Figure 3-5, the following definitions are made.
The origin is the center of the reference body, the % axis points to the vernal equinox,
and the 2 axis lies along the reference body’s rotation axis. The satellite orbital plane
intersects the equator at the nodes. The angle Q is the right ascension of the ascending
node. The axis %op is normal to the orbital plane defining the orbit’s inclination. The
angle o is the argument of perifocus. In Figure 3-6, the eccentricity, e, and the semi-
major axis, a, specify the orbit’s shape and size. The final element necessary t0 predict a
body’s position and velocity is the mean anomaly, M. However, the eccentric anomaly, E,
or true anomaly, f, can be used instead of M to define the satellite’s position in its orbit.

The transformation from the orbital elements (a, e, i, &, @, M) to the orbital rectangular
coordinates (Xp, ¥p Zps Xy, ¥,, Z,) 18 considered first. The Xp axis is directed toward
perifocus, the ¥p axis is in the plane of motion advanced #/2 from the x, axis in the
direction of motion, and the z, axis is normal to the orbit plane and completes a right-

handed system. The transformations for elliptic, hyperbolic, and parabolic orbits are
given below.

llipse: <

Xp cos E — e

yp | =a|sin E {1 - €2 (3-176)
Zp | 0

Xp | ; ~-sinE

X u/a ]

Y, A - ecosE) | E J1 - ¢? (3-177)
Z, 0

where

t
n

eccentric anomaly

4 = gravitational parameter of the reference body
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The eccentric anomaly, E, is computed by Kepler's equation

M=E-esinE (3-178)

where M is the mean anomaly defined in Section 3.2.6. This equation is solved by the
following iteration scheme:

F@B)) =B, -esinE, - M - (3-179)
Dy = 1 - ¢ cos [Ey - 0.5 f(Epn)] (3-180)
EIH-I = En = f(§ﬂ) (n = Ov la 2, 3, '") (3‘181)
where
Eo =M+ esinM - (3-182)
Hyperbola: e > 1
_xp cosh F - e
Yo | =2 |-Je2 -1 sinh F (3-183)
".‘p sinh F
o J-ufa
% |® Gosh -1 |7 " . cosh T (3189
| 7%

where F is the hyperbolic anomaly computed using Kepler’s equation for a hyperbola

M==¢esinF-F (3-185)
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The hyperbolic Kepler equation can be solved by a Newton-Raphson iteration of the fol-
lowing form:

esinh F, - F, - M
e cosh F, - 1

F, = F, - (n=0123..) (3-186)

where F, = M/2. (Note: The preceding equation is singular for orbits with ¢ = 1.)

%, q - D2/2T
Y»{ =1 J/2qD (3-187)
_xp 1 __D
! 5 — 3-188
yP (q + D2/2) m ( )
5 0
— p —

where q is the pericentric distance and D is computed from Barker’s equation, that is
D? + 6gD = 6M (3-189)

The orbital rectangular coordinates are transformed to inertial Cartesian position and
velocity coordinates as follows:

X Xp

yi=FP| ¥ (3-190)

z Zp

% Xp

vi=P|y, (3-191)
z
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The elements, Py, of the rotation matrix, P, are

P2

P22

P23

P31

Piz

P

Il

cos 2 cos w — sin Q cos i sin w

-cos &2 sin w ~ sin ©Q cos 1 cos @

sin Q sin i

sin § cos w + cos Q cos i sin @

-sinQ sin @w + cos Q cos i cos @

~cos £ sin i

sin i sin w

sin 1 cos

cos i

3.3.8.2 Keplerian to Cartesian Partial Derivatives

The functional relationships expressed in Equations (3-190) and (3-191) are

and

F=PQ, o i)ia e M

f = P(Q, o, i) (@, e, M)
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(3-192b)
(3-192¢)
(3-192d)
(3-192¢)
(3-192f)
(3-192¢)
(3-192h)

(3-192i)

(3-193)
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The partial derivatives of T with respect to the orbital elements can be written for { = a,

e, and M as
or dT;
— =P 3-195
and
aF f,
— =P -2 3-196
o : (3-196)
and can be written for = Q, w, and i as
of ) o
— = —f 3-197
and
of aP
—_ = — T 3‘198
T (3-198)
The partial derivatives of f, and %‘p for elliptical orbits are
s foats) (9
a r(l - €% ryl - e
ot
e |1 A}’_) afl - ¢ (% + ae)) (3-199)
a r(1 - %) r
| 0 0 0 _
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and

13

o,

e | )

2 27 2} (3-200)

|
B
-y
f =
o
(=]
R
a BB
"l-—-/
[ =)
—
_‘lx
W
~~
[—y
1
4]
[¥]
e

where the mean motion, n, is

nel \/E (3-201)
a d

The partial derivatives of P with respect to Q, w, and i are

- Py - Py 0
% - | p, P, 0 (3-202)
0 0 0
P2 - Py 0
-g—g = Pzz —Pgl 0 (3'203)
Pa -P3 0
5P sin © sin i sin w sin Q sin i cos @ 0
i ~cos §2 sin 1 sin @ -cos § sin i cos @ 0 (3-204)
! cos i sin w cos 1 COS @ 0
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3.3.8.3 Body-Centered True of Date Coordinates to Keplerian Elements

Given the position, T, and velocity, f, at time t, the standard Keplerian elements (a, e, i,
Q, w, M) are calculated as follows. Let the magnitude of the position, velocity, and

angular momentum vectors be denoted by

r=|F| (3-205)

V = |F| (3-206)

h = |h| (3-207)
where’

R=Fx f (3-208)

The equations for the orbital elements and related parameters are then the following:

Semimaior Axi
__ ur
.= BTV (3-209)

p = ie[(rwz - - 9 (3-210)

(3-211)
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= h + h?
sin i = K”; ) X Uil _ "h d (3-212)
rx r
M A
- h
cos i = a :’ - b R = (3-213)
r r

A A A . . :
where U,, U,, and U, are unit vectors in the body-centered true of date Cartesian

coordinate system, and h,, h,, and h, are components of the angular momentum vector,
h.

The following parameters are defined for the two cases of elliptic motion and hyperbolic
motion:

lipti i

Eccentric Anomaly: Hyperbolic Anomaly:

. 1{f - F . 1(17- f“)
sin E = — sinh F = — (3-214)
e(?ﬂa) e\/-ua

cos E = l(1 - 1) cosh F 1(1 - L) (3-215)
e a e a

Mean Anomaly:

Mean Anomaly:

T ="_ 3.216
Y M= -F G20

3-62



Period:

P = 27 a’ Period not applicable
P for hyperbolic motion
Energy (per unit mass): Energy (per unit mass):
H #
E = -— Energy = —
nergy 28 &Y = o,

The following parameters have the same definitions for both elliptic and hyperbolic mo

tion:

Longitude of the Ascending Node:

sin Q = h,x .
h sin i

-h
Q = L
cos h sin i

True Anomaly:
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(3-218)

(3-219)

(3-220)
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Argument of Perifocus:

sin (w + ) = — (3-223)
r sin i
y hx - X hy
c = e 3-224
s @+ D = e (3-229)
Perifocal and Apofocal Radius:
p=a(l-e (3-225)
r. = a(l +e) (3-226)
Perifocal and Apofocal Height:
hy = 1p - 15 (3-227)
hy, = tp ~ 15 (3-228)

where r, is the equatorial radius of the Earth.

The partial derivatives of the Keplerian coordinates with respect to the Cartesian coordi-
nates are given by the inverse of the Keplerian-to-Cartesian partial derivatives in Equa-
tions (3-195) through (3-198), i.e.,

oafox  daldy - .- 0RO |\ asan axfae  oxfoi - - axfoM| 7]
defox deldy - - - deldz i
] R dy/da dy/oe ay/ai Lo dy/dM
difox  oifay .. difoz ) ) . ) .
. . Ll . = (3'229)
aM/ax MJdy - - - dM/az |92 /82 8z/3e dzjoi - - - 3z faM
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3.3.9 EQUINOCTIAL-CARTESIAN TRANSFORMATIONS
(REFERENCES 11 AND 12)

The following subsections present the transformations between the equinoctial elements,
described in Section 3.2.6, and the inertial Cartesian system. The equinoctial elements
are used only to describe closed orbits.

3.3.9.1 Equinoctial Elements to Cartesian Coordinates

Conversion from equinoctial elements, a, h, k, p, ¢, 2, to inertial Cartesian coordinates,

¥ and 7, is performed in the following manner. First, the generalized Kepler equation for
equinoctial elements,

A=F+hcos F-ksnF (3-230)

is iteratively solved for the eccentric longitude F, which is the sum of the eccentric anom-
aly, the argument of perigee, and the right ascension of the ascending node.

Next, the position and velocity coordinates in the equinoctial coordinate system
(Xeps Yeps z.p) are obtained as follows for both the direct and retrograde cases:

X, = a[(1 - h*B) cos F + hk B sin F - k] (3-231)
Y, = a[(1 - K®B) sin F + hkf cos F - h] (3-232)
: n a2 2 o s
X, = _r_[(h kB cos F - (1 - h?pB) sin F] (3-233)
' na’ 2 i 234
Y, =-r—[(1-kﬁ)cosF—hkﬁsmF] (3-234)
where
1

= 3.235
b 1+ {1 - h—k (3-235)
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The transformation from the equinoctial system to the inertial Cartesian system is given
by

X, f+Y; 8 (3-236)

=
n

A

X f+Y B (3-237)

F

A A . . .
where f and g are unit vectors directed along the ﬁep and ? ep 3XES, respectively (see
Figure 3-5). These vectors are computed in inertial Cartesian coordinates as follows:

A A A 1 1 - pz + qz P q1 2p
(£, &8, W] = T 2p q 1+p*-a)j -2q (3-238)
-2pj 2q (1t -p*=-a9)]

where

1 for direct orbits (0 < i < 180°)
-1 for retrograde orbits (0 < i < 180°)

L L S
ll ]

In GTDS, the operational choice of direct elements was made for 0 < i =< 90 degrees
and of retrograde elements for 90 degrees < i < 180 degrees.

3.3.9.2 Cartesian Coordinates to Equinoctial Elements

The equinoctial orbit elements, a, h, k, p, q, 4, are calculated from the Cartesian posi-
tion, 7, and velocity, ¥. The semimajor axis is computed as follows:

4= (3 3 ﬂ)” (3-239)

r

The eccentricity vector is given by

_Ex D xT (3-240)
U

Ly
[
1
-t |-y
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The unit vector W is defined as follows (see Section 3.2.5):

=
4 -

b oo X T (3-241)
r <X rF
The unit vectors t and ¢ can then be computed as follows:
2
W
fr =1- = 3-242
1+ le ( )
f, = ———— 3-243
y 1+ WJz ( )
f, = -wk (3-244)
where j is as defined following Equation (3-238), and
8 = % x f§ (3-245)
The equinoctial elements h, k, p, and g are given by
h=¢&- ﬁ (3-246)
kK =& - ?: (3-247)
Wy
= ; -24
P 1+ \V‘z (3 8)
Wy
= - -249
q 1+ W (3-249)
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The mean longitude is computed using the generalized Kepler equation

A=F+hcosF-ksinF (3-250)
where
F = tan™! (s‘“ F) (3-251)
cos F
with

1-12f)X, - hkBY;
ay1l - h? - K2

cos F = k + (3-252)

(1 - hzﬁ)Yl - hkﬁXl

a./l

The parameter § in Equations (3-252) and (3-253) is given by Equation (3-235).

sin F=h + (3-253)

Finally, the position coordinates X, and Yep, relative to the equinoctial coordinate system,
are given by

X] = 17 . ?‘ (3*254)
Y, =F- 8 (3-255)

3.3.10 HERRICK-CARTESIAN TRANSFORMATIONS (REFERENCES 13 AND 14)

The coordinate transformations between the Herrick and Cartesian systems are described
in the following subsections.

3.3.10.1 Herrick Elements to Cartesian Coordinates

The following method is used for conversion from Herrlck elemcnts g, #,nand 1, to
inertial Cartesian coordinates. The unit vectors f , g , and ¥ along the equinoctial
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orbit plane coordinate directions (see Section 3.2.5) must first be determined. The unit
vector W is given by

~

W = ] (3-256)

o

The unit vectors !t} and g are determined from Equations (3-242) through (3-245) as
functions of W.

The Kepler equation for Herrick elements is solved by iteration for the eccentric longi-
tude F,

A=F+hcosF-ksinF (3-257)

where h and k arg calculatfd from Equations (3-246) and (3-247) as functions of the
known vectors €, f, and g.

The coordinates of position and velocity in the direct equinoctial system,
X1, Y1, Xy, Yy, are given by Equations (3-231) through (3-234), with

a = (ﬁz)" ’ (3-258)

Finally, the position and velocity in the inertial Cartesian system are computed via the
following transformations:

Fe=X,f +Y B (3-259)
F=X o+ Y 8 (3-260)

3.3.10.2 Cartesian Coordinates to Herrick Elements

Given the Cartesian position and velocity vectors, © and f, the Herrick variables €, 7, n,
and A are computed as described below.

The eccentricity, e, is given by

_Expxr (3-261)
7’

o}
I
[
= |y
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The angular momentum vector is

7o X T (3-262)

and the Kepler mean motion is

n= 2 (3-263)

where the semimajor axis, a, is given by

a = [:"‘- - |i7_|2:r (3-264)
r #

The mean longitude, 2, is computed from the generalized Kepler equation given in Equa-
tion (3-250) to be

A=F+hcosF-ksinF (3-265)

where the variables h and k are determined from Equations (3-246) and (3-247), with
vectors W, ?, and g calculated from Equations (3-256) and Equations (3-242) through
(3-245). The eccentric longitude, F, is determined from Equations (3-251) through
(3-253), B is determined from Equation (3-235), and X; and Y; are determined from
Equations (3-254) and (3-255).

3.3.11 KEPLERIAN TO EQUINOCTIAL AND HERRICK TRANSFORMATIONS

The coordinate transformations between the Keplerian and the equinoctial or Herrick
systems are described in the following subsections.
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3.3.11.1 Keplerian to Equinoctial Elements

The conversion from Keplerian clements (a, e, i, Q, w, M) to equinoctial elements is
performed via the following equations:

S < ° Retrograde Set (0° < i < 180°)
a=a a=a (3-266)
h = e sin (0 + Q) h; = e sin (w - ) (3-267)
k = e cos (w + Q) k; = e cos (w - Q) (3-268)
p = tan (i/2) sin Q pr = cot (i/2) sin Q (3-269)
q = tan {i/2) cos & gr = cot (i/2) cos Q (3-270)
A=M+ow+Q A=M+o-Q (3-271)

3.3.11.2 Keplerian to Herrick Elements

Conversion from Keplerian to Herrick elements is performed using the following equa-
tions:

e, = € cos Q cos @ - e sin Q sin o sin i (3-272)
e, = e sin © cos w + e cos  sin @ cos i (3-273)
e, = e sin @ sin i (3-274)
4] = JaQ1 - &) (3-275)
& = |£] sin Q sin i (3-276)
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f, = -|£]| cos Q sin i (3-277)
& = |4 cosi (3-278)
n = Ju/a® (3-279)
A=M+o0+Q (3-280)

where j is as defined following Equation (3-238). The Herrick elements are not currently
used in GTDS.

3.3.12 VEHICLE-FIXED TO BODY-CENTERED TRUE OF DATE
TRANSFORMATIONS

The propulsive and aerodynamic accelerations are modeled in the vehicle-fixed coordinate
system described in Section 3.2.7. These vehicle-oriented accelerations must be trans-
formed to the inertial Cartesian system to be consistent with other terms in the dynamical
equations of motion.

The following three angular transformations are required to orient the vehicle-fixed coor-

dinates with respect to the inertial Cartesian axes:

rotation about the inertial 2 axis, through the right ascension,
ay, of the vehicle’s (longltudlnal) R, axis.

R:(av)

Ry(- 6,) = negative rotation about the new ¥ axis, through the declination,
d., of the vehicle’s (longltudmal) %, axis.

Relgpy) = rotatlon about the new X axis (which is aligned with the
x axis), through the roll angle, ¢v, to the vehicle-fixed axes

where R, and R, are given by Equation (3-14), and R, is

cos a 0 -singa
Ria) = | 0 1 0 (3-281)
sin a 0 cos a
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If an arbitrary vector is denoted by §, when expressed in vehicle-fixed coordinates and by
F when expressed in inertial Cartesian coordinates, then the transformation between co-
ordinates can be written as

T = [Ry(@) Ry(-6)) Ro(an]" &,
(3-282)
= Q&
where the elements of Q are
gy = cos &y cos ay (3-283a)
qiz = -Sin ¢, sin &y cos @y — €O ¢y Sin ay (3-283b)
Qi3 = —COS @y sin Oy cos ay + Sin @y sin ay (3-283c)
Q21 = <os 4, sin ay (3-283d)
(Quz = ~sin ¢, sin d, sin a, + cos ¢, COS Ay (3-283¢)
G2z = -cos ¢, sin 4, sin @y - sin @y cos ay (3-283f)
gs; = sin Oy (3-283g)
gs; = sin ¢, cos 0, (3-283h)
sz = €OS ¢ cos by (3-283i)
3.3.13 GEOGRAPHIC COORDINATES TO SPHERICAL COORDINATES
The right ascension, a, in spherical coordinates is obtained as follows:
a=a; + Ae (3-284)
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"

geographic east longitude, measured positive west (-27 < 1 <

Greenwich hour angle

The declination, &, in spherical coordinates is computed as follows:

where

and

=ty

e O

‘1;;‘?

0 = ¢' + arcsin [% sin (¢ - ¢"):|

¢' = arctan [(1 - f?) tan ¢]

e? = 2f - f?

R, y(1 - €9

I'. =
/1 - € cos? ¢’

H, = yr* - 1} sin® (¢ - ¢') - 15 cos (¢ - ¢

inverse flattening coefficient of the central body [defined in Equa-
tion (3-135)]

eccentricity of the central body
geodetic latitude

geocentric latitude

equatorial radius of the central body

distance of the subsatellite point from the center of the Earth
height above the mean spheroid, normal to the ellipsoidal surface
magnitude of the position vector
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The bank angle, » , in spherical coordinates, is then determined from

y= -T+ = (3-290)

where T, the flight path angle, is the angle between R and R, the spacecraft inertial
position and velocity vectors, where -z/2 < T < x/2.

3.3.14 INERTIAL TO ROTATING LIBRATION COORDINATES

The L, (libration) point lies on the vector between the Sun and the Earth-Moon barycen-
ter. If Rg and Vj are the inertial position and velocity vectors of the barycenter with
respect to the Sun, then the %', §', 2’ axes of the rotating libration point coordinate
system are aligned along the vectors Ry, (Rg X Vp)} X R, and Rg X Vg, respec-

tively.

The transformation from either ecliptic or equatorial inertial coordinates, R, V, to this
rotating Libration Coordinate System is computed as follows:

Eﬂ ) [g S]E (3-291)

Q = ?f ﬁ ?r ? ?r % (3—292)
A, A A A A, A
z X z' y z Z
R S TR I TR

Q={9y -2 -8 42 (3-293)
_r'z\, 4 A b 5. 4
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The libration coordinate axes are defined as

A ﬁB

§r - B (3-294)
|Rz|

p . R XV (3-295)
[Rg x Vgl

beo_ b ox & (3-296)

The quantities X, §, and % are the inertial axes. The inertial position and velocity of
the Earth/Moon barycenter with respect to the Sun are given by

2E Re + Ry
Rg = —2 (3-297a)
Me +1
My
"'—Iild = VE + VM
Vg = —% (3-297b)
Me + 1
My
where
Rg = inertial position vector of the Earth with respect to the Sun
Vy = inertial velocity vector of the Earth with respect to the Sun
Ry = inertial position vector of the Moon with respect to the Sun
¥y = inertial velocity vector of the Moon with respect to the Sun

Mg = mass of the Earth

My = mass of the Moon
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The rate of change of the libration coordinate axes is given by

H Vs Rp - Vs = |
ho % BV (3-298)
|RB| ]RBI3 ®
A Rg X Agp [(Re x Vo) - Re X An)l o \Y
- A B T x 3299
Rg x Vgl IRa|* ’ i ( )
3 _ IR x Ap) x Rp + Ry x Asl
(Re X Vs) X Ry
(3-300)
“®s x Vo) x Ko [Ro % A) X Ro + Ko X Aol (g, x 7 x Ry
|Rg]
where
- Ry
Ky = - GMsn 2 (3-301)
|Rag|

3.4 TIME SYSTEMS

The GTDS orbit determination program uses the atomic time system, A.1, in the integra-
tion of the equations of motion. However, the system must interface with external input/
output data sets that are referenced to other time systems, such as ephemeris time (ET)
for the solar/lunar/planetary (SLP) ephemerides, UT1 for computing the Greenwich
sidereal time, and coordinated universal time (UTC) for input/output epochs and tracking
data. A brief description of the relevant time systems and their interrelationships follows
(References 1, 15, and 16).

3.4.1 EPHEMERIS TIME, ET

Ephemeris time (ET) is the uniform measure of time, which is the independent variable
of the equations of motion, and the argument for the ephemerides of the planets, the
Moon, and the spacecraft. The units of ET is the ephemeris second, which is defined as
the fraction 1/31,556,925.9747 of the tropical year for 12" ET of January (¢ 1900.
Ephemeris time is determined from the instant near the beginning of the calendar
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year 1900 when the geometric mean longitude of the Sun referred to the mean equinox of
date was 2794 41’4804, at which instant the measure of ephemeris time was 1900

January 09 12h
3.4.2 ATOMIC TIME, A.1

Atomic time (A.1) is one of several types of atomic time. It is obtained from oscillations
of the United States Cesium Frequency Standard located at Boulder, Colorado. In 1958,
the United States Naval Observatory established the A.1 system based on an assumed
frequency of 9,192,631,770 oscillations of the isotope 133 of the cesium atom per A.1
second. The reference epoch of A.1 was established such that on January 1, 1958, oR0™0*
UT?2 the value of A.1 was 020™0®, January 1, 1958.

3.4.3 UNIVERSAL TIME, UT

Universal time (UT) is the measure of time that is the theoretical basis for all civil
timekeeping. UT is related to the rotation of the Earth on its axis. Compared with
ephemeris time, which is uniform time, UT does not take into account the irregularities of
the Earth’s rate of rotation.

The quantity UT is defined as 12 hours plus the Greenwich hour angle (GHA) of a point
(representing the fictitious mean Sun) on the mean equator of date whose right ascension
measured from the mean equinox of date is

R, = 18%38™45%836 + 8,640, 1843542 T, + 020929 T2 (3-302)

where T, is defined following Equation (3-38).

The Greenwich hour angle of this point, denoted by S, in Figure 3-16, is

GHA of S, = acm - Ry (3-303)

where agyis the Greenwich mean sidereal time; hence,
UT = 12P + acM — Ry (3-304)

Adding 12 hours to both sides of the above equation yields

UT + 128 = adcM — Ry (3-305)
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Figure 3-16. Greenwich Hour Angle

and solving for agm
acm = 12" + UT + R, (3-306)

In practice, the point whose right ascension is R, cannot be observed. Consequently, the
practical determinations of UT are obtained, through the intermediary of sidereal time,
from observations of the diurnal motion of the stars. Sidereal time is a measure of the
rotation of the Earth relative to the stars and is defined as the hour angle of the vernal
equinox. Therefore, the meridian transit of a star occurs at a sidereal time equal to its
right ascension.

Universal time varies from uniform time due to variations of the meridian, arising princi-
pally from polar motion, and variations in the rotational rate of the Earth, consisting of
secular, irregular, periodic seasonal, and periodic tidal terms. The tidal variations are
very small; the secular variation is significant only over large time intervals; and the
irregular variations, while they may be relatively large, are highly erratic. The periodic
seasonal variation appears stable enough to be predictable.

There are three measures of UT in common usage: (1) UTO, which is determined from
observations of the local mean sidereal time; (2) UT1, obtained by correcting UTO0 for
polar motion; and (3) UT2, which results from the removal of the seasonal inequality
from UT1.
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3.4.4 UNCORRECTED UNIVERSAL TIME, UT0

Uncorrected universal time (UT0) is obtained by assuming an adopted conventional value
A, of the longitude of each observing station (see Section 3.3.2.2). The local mean
sidereal time at transit is generally determined through observation of meridian transits of
stars, omitting from the apparent right ascension the nutation terms that are independent
of the coordinates of the star (the equation of the equinoxes). Subtracting the east longi-
tude of the observing station gives acm, the Greenwich mean sidereal time or Greenwich
hour angle of the mean equinox of date. UTO0 is then obtained from Equation (3-304) by
adding 12 hours and subtracting R, from this value. Since the motion of the pole causes
variations in the meridian, UT0 is dependent on the location of the observing station.

3.4.5 UNIVERSAL TIME, UT1

UT1 universal time is obtained from UT0 by applying an appropriate correction in longi-
tude due to the motion of the pole. UT1 is the form of universal time used in GTDS. This
measure of time reflects the actual orientation of the Earth with respect to the vernal
equinox at that instant. UT1 will be the same for all observatories. In contrast, UT0 time,
as determined by different observatories using their adopted longitude in calculations,
results in a different value of UT0 for each observatory.

Then

UT1 = UTO0 - AL (3-307)

where Al is given in Equation (3-50).

UT1 time is used by GTDS to compute the agy as given in Equation (3-38).

3.4.6 UNIVERSAL TIME, UT2

If the extrapolated value of UT1 time is corrected for periodic seasonal variations, SV, in
the Earth’s speed of rotation, the resulting time is UT2. UT2 does not represent the actual
orientation of the Earth with respect to the vernal equinox. UT1 should always be used
when the actual orientation of the Earth is required. UT2 is often referred to as
Greenwich Mean Time (GMT) or ZULU time. The equation for UT2 is

UT2 = UT1 + 8§V (3-308)
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where

SV

05022 sin 2at — 02017 cos 2at - 03007 sin 4t + 02006 4@t (3-309)
or

SV = 05022 sin 2@t ~ 05012 cos 2at — 03006 sin 4zt + 05007 4nt  (3-310)

Equation (3-309) was used prior to 1962 and Equation (3-310) has been in use since
1962. The quantity t equals the fraction of the tropical year ¢lapsed from the beginning of
the Besselian year for which the calculation is made. (One tropical year equals
365.2422 days.) Since seasonal variations can be known precisely only after their occur-
rence, UTZ itself is rarely used. The Bureau International de I'Heure also issues correc-
tions for A4 and SV.

3.4.7 COORDINATED UNIVERSAL TIME, UTC

Coordinated universal time (UTC) is the standard time scale to which tracking stations
are synchronized. UTC time is derived from atomic time, A.1, in a manner that makes it
almost synchronous with UT2. Up to January 1, 1972, the UTC time scale operated at a
frequency offset from the atomic time scale. The value of the offset was periodically
changed by international agreement so that the UTC scale would correspond more closely
to UT2. On January 1, 1972, a new improved UTC system, adopted by the International
Radio Consultative Committee (CCIR), was internationally implemented by the timekeep-
ing laboratories and time-broadcast stations.

The new UTC system eliminates the frequency offset from atomic time, thus making the
UTC second constant and equal in duration to the A.1 second (References 17 and 18).
The new UTC time scale is now kept in synchronism with the rotation of the Earth to
within + 0.7 second by step-time adjustments of exactly 1 second, when needed.

3.4.8 STATION TIME, ST

This measure of time is obtained at each station by counting cycles of a rubidium atomic
frequency standard. The difference between ST and UTC is tabulated by each station.
The observables are recorded in ST and then transformed to UTC.

3.5 TRANSFORMATIONS BETWEEN TIME SYSTEMS

Desired transformations between the time systems ET, A.1, UTC, and UT1 are carried
out in GTDS by evaluating either a standard formula or an appropriate time polynomial.
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3.5.1 TRANSFORMATIONS BY STANDARD FORMULA

For most purposes, the difference between A.1 and ET can be considered a constant. The
suspected discrepancy is roughly two parts in 10°. The actual transformation between A.1
and ET time is given by

(D - 2, 436,204.5)(86, 400)
9,192, 631, 770

2e(u a)!/? sin B
+
3

(ET - A1) = ATygs ~

X Aft:esimn
(3-311)

where
ATy9ss = ET - UT2 on 1 January 1958, 0"0™0° UT2, minus the periodic
term in Equation (3-311) evaluated at this same epoch
D = Julian date
2,436,204.5 = Julian date on 1 January 1958, QP0™0*

Afesium = correction t0 feesum = 9,192,631,770 cycles of cesium per
ephemeris second

7] = gravitational constant of the Sun =
1.32715445 x 10" kilometers®/second?

a = semimajor axis of the heliocentric orbit of the Earth-Moon
barycenter = 149,599,000 kilometers

e = eccentricity of the heliocentric orbit of the Earth-Moon bary-
center = 0.01672

c = speed of light at an infinite distance from the Sun =
299,792.5 kilometers/second

E = eccentric anomaly at the heliocentric orbit of the Earth-Moon
barycenter

The first term of Equation (3-311) arises because A.1 was set equal to UT2 at the begin-
ning of 1958. The second term accounts for the difference between the lengths of ET and
A.1 seconds (if Afcesinm i nonzero). The periodic term arises from general relativity. It
accounts for the fact that A.1, UTC, and ST times are measures of the proper time
observed on Earth and that ET is a measure of the coordinate time in the heliocentric
(strictly barycentric) space-time frame of reference. The contribution of the last two terms
in Equation (3-311) is negligible for the range of applications currently contemplated for
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GTDS. Hence, the transformation between ET and A.1 is accomplished using the approxi-
mate formula

ET - A1 = 32815 (3-312)

3.5.2 TRANSFORMATIONS BY TIME POLYNOMIALS

The remaining transformations between the time systems A.1, UTC, and UT1 are accom-
plished using the time difference data, A.1-UTC and UT1-UTC, supplied in Earth
Orientation Bulletins by the United States Naval Observatory. These data have been con-
veniently reduced by quadratic polynomial fits to improve the efficiency of the transfor-
mation procedure. The time difference polynomials derived for use by GTDS have the
form

(A.l - UTC); a;1 + aigT + a3 T2 (3‘313)

]

(A]. - UT].), ap + aisT + Aig T? (3-314)

where

difference between A.1 and UTC time (in seconds)
difference between A.1 and UT1 time (in seconds)

A.1-UTC
A1-UT1

The quantity T is the number of days from the beginning of the timespan covered by the
polynomial, T = 1, 2, ... . For the given modified Julian date, MJID,

T = MID - MID; + 1 (3-315)

In this expression, MJD, is the tabular modified Julian date that bounds the interval from
below, i.e.,

MJDi < MID < MJDH] (3—316)
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The coefficients aj; and the associated timespans are determined by least-squares fitting
second-order polynomials to published time difference data. The timespans are deter-
mined by constraining the maximum deviation (between the data and polynomial) to be
less than 0.0005 second for A.1-UTC and less than 0.005 second for A.1-UT1. Provision
is made for inserting future A.1.UTC offsets (leap seconds) as predicted by the USNO.
Extrapolation of A.1-UT1 time is achieved by performing a linear least-squares fit on the
data for the last 6 months to obtain a;s, the A.1-UT1 rate. The second-order coefficient,
a6, is set equal to zero. This extrapolation is used for 1 year from the date of the last

available observation; after this, both ajs and a;s are set equal to zero.

3.6 POLYNOMIAL REPRESENTATION OF EPHEMERIS DATA

In GTDS, planetary and lunar positions and velocities, as well as the Earth’s nutation and
precession data, are determined by evaluating multiple-day-arc Chebyshev polynomials
whose coefficients are derived from ephemeris data contained on tapes supplied by the
Jet Propulsion Laboratory (JPL) (References 6 and 19). The data contained on the JPL
tapes are Chebyshev coefficients for polynomial fits to the positions and velocities of the
planets Mercury, Venus, Earth-Moon barycenter, Mars, Jupiter, Saturn, Uranus, Neptune,
Pluto, and the Earth’s Moon, as well as the nutation rates in longitude and obliquity.
These data are generated by weighted least-squares estimation of the appropriate orbital
models using source positions obtained on the basis of current planetary theories. Posi-
tions and velocities on the tapes are referenced to the rectangular equatorial system of the
mean equator and equinox of B1950.0 or mean equator and equinox of J2000.0, with
planetary data being heliocentric and lunar data being geocentric.

The software used to retrieve data from a JPL ephemeris tape provides interpolated val-
ues of position and velocity vectors of any requested set of bodies relative to the Earth.
The data obtained are ephemerides of the Sun, Moon, and planets (SLP) in a mean
reference frame on a dynamical (ephemeris) time base. The time base is related to the
A.1 time base, as discussed in Section 3.5. Optionally, they can be coverted to data in a
true of date reference frame, as discussed in Section 3.3.1. In addition, the precession
and nutation data, for the same timespans as the SLP data, are generated, as discussed in
Section 3.3.1.

The Chebyshev polynomial coefficients are obtained from the JPL. ephemeris data in the
following manner. If the function values provided by the JPL software at requested
times ¢ (i = 1, 2, ..., m + 1) for a single component of position, velocity, or nutation is

3-84



designated y;, then an mth-order interpolating function in the interval [t;, tme1] can be
obtained as a linear combination of basic functions F(t} as follows:

m+1

Yu() = Z ¢; Fi(t) (3-317)
j=

by requiring that the differences between the data and the function be a minimum, where
the following is the function t0o minimize:

m+1 m+1l 2

Q= Z Vi - z ¢ F(t) (3-318)

The choice of the functions F(t) (j = 1, 2, ..., m + 1) in Equation (3-317) has important
ramifications both on the obtainable accuracy of Yn,(t) for t = t and the ease of deter-
mining the values of ¢;.

The interval [ti, tms1] is transformed to [1, ~1] by the linear transformation of variables

Imin = U

X =

The functions F are then chosen as the orthogonal Chebyshev polynomials of degree
j-1,1e.,

Tyx) = cos [G - 1) cos™ x] (3-320)

where
Tax) = 1 (3-321a)
T(x) = X (3-321b)
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2x? - 1 (3-321c)

Ts(x)

Tj+1(x) 2X Tj(X) - Tj_l(X) (3-321d)

Under these conditions, Equations (3-317) and (3-318) can be reformulated as

m+1
Yu(x) = Z ¢ Ty(x) (3-322)
j=1
and
m+1 m+1l 2

Q = z ¥Yi — Z Cj Tj(Xi) =0 (3-323)

i=1 j=1

All data are fit over the same interval. Data reduction can be achieved by selecting the
least number of coefficients for which

m+1

y - z ¢ Tj(x)

j=1

Max

X < € (3-324)

for x in [1, -1]. This is satisfied if the coefficient of the truncated term, Cm,2, is less than
€, because of the minimum-maximum property of Chebyshev polynomials. For a given
interval [t;, tme1], the discrepancy between y and Ym(x) is minimized and the amount of
work required to determine the c; substantially reduced by selecting the base points x; as

the roots of the Chebyshev polynomial of degree m + 1, i.e,,

X = CO§ —— i=1,2 ..,m+1) (3-325)
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At these points, the polynomials have the following orthogonality property with respect to
summation as well as integration:

m+1

Ty(x) Tilxa) = 0 (=K (3326
a=1
m+1
> e = Bt ek k<Dl (2)
a=1

This property is derived from the corresponding orthogonality property of the cosine func-
tions and makes it possible to determine the ¢; from

m+1

1
€1 = — lz vi Ta(xp) (3-328)
i=1
m+1
2
= i = oo 3-329
G m + 1 z Yi Tj(xi) (.‘ 2s 3v m + 1) ( )

i=1
Once the coefficients ¢; of the linear combination of T; have been determined, Yn(X) can
be conveniently transformed into the equivalent Chebyshev interpolating polynomial in

[l’ “1]

m+1

Yo (%) = Z by %11 (3-330)

i=1

as shown below.
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Let

(— 1)j+1 C2j-1 [_] =1, 2, .., (2] - 1) = m] (3-331)

ll

ayj
ap = 21-2 Cj (1 =2, 3 ..,m+ 1) (3-332)
and

{i=23 ..,[+2(0-1)] = m+1}
ay = Clir2¢-1)] [231-1.j = ai.j—l] (3-333)
=23 .,[i+2G-D} = m+1}

Then, the coefficients b; of the interpolating polynomial can be determined from
i=12 ..,m=+1)

(i
b = z ay (3-334)

1, 2, ..., [i+2(G-1)] = m+1}

c
"

Finally, the polynomial so determined can be used to interpolate in the interval [t;, tm.1]
by means of the transformation of variables defined by Equation (3-319).

The present version of GTDS can handle any of 10 bodies, one of which is the central
body. A solar/lunar/planetary file by Chebyshev approximating the polynomials is gener-
ated covering the entire time interval of interest. The file contains polynomials for each
component of position and velocity and for each element of the matrices that transform
from the selenocentric true of date to the selenographic coordinate system and from the
mean equator and equinox of date to the true of date coordinate system, as required by
the application. The file also contains coefficients for the equation of the equinoxes, AH,
used to correct the mean Greenwich sidereal time as given in Equation (3-38). Three SLP
Ephemeris Files are created: one for mean of B1950.0 data, one for mean of J2000.0

data, and one for true of date data.
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CHAPTER 4—PERTURBATION MODELS AND
VARIATIONAL EQUATIONS

For orbital prediction using the method of special perturbations, the equations of motion
of the satellite are integrated numerically. The perturbing acceleration vector is required
to construct these equations, which are presented in Chapter 5. The sources of these
perturbations are identified and the appropriate perturbation models presented in this
chapter. The total perturbation model and the variational equations are described in Sec-
tion 4.1. The specific perturbations, discussed in Sections 4.2 through 4.8, include the
following:

e Gravitational acceleration due to n point masses, Rpy (Section 4.2)

e  Gravitational acceleration due to the nonsphericity of the gravitational poten-
tial, Rns (Section 4.3)

® Acceleration due to the mutual nonspherical gravitational attraction of the
Farth and Moon, Ry (not currently available in GTDS) (Section 4.4)

e Acceleration due to aerodynamic forces, Rp (Section 4.5)
& Acceleration due to solar radiation pressure, ﬁSR (Section 4.6)

e Acceleration due to attitude control system corrections, Rrac (not currently
available in GTDS) (Section 4.7)

e Acceleration due to the thrusting of the spacecraft engines, Rr (Section 4.8)

All or any subset of these effects can be included in the perturbing acceleration vector,
which is used in the construction of the equations of motion using either the Cowell or
Variation of Parameters formulations.

The partial derivatives of the current state vector with respect to the initial state vector are
required in the differential correction process. These partial derivatives, which constitute
the state transition matrix, can be obtained by numerically integrating a system of varia-
tional equations in conjunction with the Cowell orbit generator. The construction of these
variational equations is discussed in detail for each of the perturbing accelerations. Accel-
erations that are included in the equations of motion, but for which the estimation process
is insensitive, can be omitted in the construction of the variational equations.

A method of computing the partial derivatives analytically is discussed in Section 4.9.
This analytical approach is always used in the differential correction process in GTDS
when the Variation of Parameters or Brouwer orbit generators are used and is optional in
the Cowell differential correction process.
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4.1 TOTAL PERTURBATION MODEL AND VARIATIONAL
EQUATIONS

The total acceleration vector is the sum of the accelerations induced by each of the
sources listed above (expressed in an inertial Cartesian coordinate system; i.c., mean
equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true of refer-
ence date)

ﬁ = ﬁpM + ﬁNS + ﬁio + ﬁp + ﬁsn + ﬁTAC + ﬁ'r (4‘1)

The total perturbing acceleration vector is usually defined as the total acceleration exclud-
ing the point-mass gravitational acceleration caused by the central body.

The Cowell equations of motion of the satellite can be written in the form

R-fR R, t P (4-2)
where
R = column vector of the vehicle position coordinates
p = vector of the dynamic parameters of dimension {
and
p = [Riw), R, p*]° 3
where

p* = constant mode! parameters pertaining to drag, gravitational harmonic
coefficients, etc.

The model parameters P, which may be included in the variational equations, -are as
follows:

e Position and velocity of the spacecraft at epoch in mean of B1950.0 coordi-
nates, mean of J2000.0 coordinates, true of date coordinates, classical orbital
elements, spherical coordinates, or Definitive Orbit Determination System
(DODS) variables



e Cravitational parameter of the central body

e Harmonics of the centrﬁl body

e Gravitational parameters of the perturbing bodies

e Aerodynamic drag parameter

e Solar radiation pressure parameter

e Powered flight parameters

e Atiitude control parameters (not currently available in GTDS)

These parameters are determined in such a way as to reduce the differences between a
computed and an observed orbit. This orbit determination process requires the computa-

tion of variations in the state variables, R(t) and R (1), as functions of variables in this
parameter set.

If Equation (4-2) is differentiated with respect to p, the matrix equation

R _oR R R 3R _ (aﬁ) (4-4)
p R 8p 4g 9P

ap explicit

is obtained. If the time, t, and the parameter set, §, are independent, the differentiation
with respect to t and § can be interchanged to give

a2 (oK R R  oR d (oR aR
— V== 55 == — =] l5= (4-5)
dt? op aR ap oR dt ap ap explicit

Defining the matrices

+

A = [aig)-3 3 (4-6a)
B(t) = [aﬁ@ (4-6b)
AR _] a3



C(t) ) [( op )expliCil].'ixf (4 60)

oR(t)
Y©=fﬁﬂw (+6d)

Equation (4-5) takes the form of a system of linear differential equations, called the
variational equations, as follows:

Y =AY +B@® Y + Cl (4-7)

Just as the basic Equation (4-1) is numerically integrated to obtain the position, R(t), and
velocity, R (t), of the satellite, the variational equations are integrated to obtain the matri-
ces Y(t) and Y (t), which yield the required partial derivatives. These partial derivatives
are used to form the observation partial derivatives required for differential correction of
the orbit. This application is discussed in Chapter 7.

The matrices A, B, and C are formulated for the case where R is of the form given in
Equation (4-1)

aﬁpM aﬁNs aﬁn aﬁ‘sg aﬁTAC Bﬁ-r
A = — s r—a — — — (4-83)
3R~ R T R ' R BR T R
p - Ko (4-8b)
aR

C = (ﬁ) - | &, a.ﬁ, B_E,. = [03, 0s, _a_g_] (4-8c)
0P Jexplicit 9Ro dRo 9p explicit ®
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0 = 3 x 3 null matrix
aTR‘. = columns of explicit partial derivatives of the acceleration with-re-
op spect to the model parameters:

Ry ORpm  9Rws
du ~ ouy | aCY’

* et

4.2 POINT-MASS EFFECTS

To first order, the gravitational attraction of a perturbing body of mass m can be approxi-
mated as that arising from a dimensionless particle of mass m located at the center of
mass of the body. An expression for the perturbing acceleration arising from n point
masses is developed in this section.

4.2.1 N POINT-MASS PERTURBATION MODEL

In the development of the perturbation model for the gravitational effect of n massive
bodies, the starting point is Newton’s second law of motion and law of gravitation (Refer-
ences 1, 2, and 3).

The second law of motion for a body of mass m, acted upon by a force F, is given by

dt dt
which, when m is constant, reduces to
d’R (4-10)

Here R is a vector from the center of an inertial coordinate system to the satellite.

The gravitational force acting on a satellite of mass m due to the attraction of a body of
mass m,, which is assumed to act as a point mass, given by

Fk = - 3 Rkp (4-11)



where G is the universal gravitational constant and Ry, is the vector from the body k to
the satellite (see Figure 4-1).

m (SATELUITE)

0 My (REFERENCE
BODY)

INERTIAL COORDINATE
SYSTEM ORIGIN

Figure 4-1. Schematic of Point-Mass Gravitational Bodies

To obtain the total contribution from all perturbing bodies, a summation over k is per-
formed as follows:

F - Z Gmm g (412)
Rip

k=1

When this expression is substituted into Equation (4-10), the acceleration experienced by
a satellite attracted by n point masses is obtained in an inertial coordinate system as

d’R Gmy —
-z - ~Z RS Rip (4-13)
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For convenience and ease in the interpretation of results, it is advantageous to refer the
motion of the satellite to one of the perturbing bodies. The force on body j, the reference
or central body, is given by

ij my —
F- ) SRR (4-14)

where R, is a vector from the reference jth body to the kth body. The acceleration of the
reference body with respect to the inertial coordinate system is given by

d?R; Gm, —

aiiiel R k

g " 2 RE (415)
k=1
kwj

#*R _ d'R; _ Gmy o _ Gmy o
dr? a2 R, T RP ¢ (4-16)

Substituting R - ﬁj = R = R, and R, = R - Ry into Equation (4-16) yields the ac-
celeration due to n point masses

n

. @R u - R-F R
R = ——— = am —— R py — g
™ e R Z ““[le R T RSP (4-17)

k=1
k»j

where Rpy, R, and Ry are expressed in mean of B1950.0 coordinates, mean of J2000.0
coordinates, or true of reference date coordinates, whichever is the basic coordinate
frame. The gravitational parameter, 4 , is the product of the mass of a given body and



the universal gravitational constant. In particular, gy = G my for the kth body, and
# = G mj for the central body.

When only the effects of the central body are included in Equation (4-17), an analytic
solution can be obtained. This solution is the basis for construction of the Variation of
Parameters methods, which are discussed in Chapter 5. Special perturbation methods are
required for orbit propagation only when additional perturbation effects are considered.
Consequently, the perturbing acceleration vector does not include the first term on the
right-hand side of Equation (4-17).

When the satellite is in a close orbit around the reference body, significant round-off
errors can occur in the computation of Equation (4-17) due to the differencing of nearly
equal numbers. When the Earth is the central body, this error has not been found to be
significant. However, it may be important in the computation of third-body effects due to
the Earth when the Moon is the central body. This difficulty can be removed by rewriting
the equations of motion in a different, but equivalent, form.

Designate |Ryp| by ryp, |Ry] by ry, [R} by r, and the included angle between R and Ry by
6 ; then

ri, = 1% + 14 - 2rrg cos @ (4-18)

The ratio 1/ry, can be expanded in terms of Legendre functions as

1

! [Po{cos ) + Py(cos ) h + Py(cos @) h? + ...] = 1+8 (4-19)

Tep Iy Ik

where

h=— (4-20)

B = z Pj(cos 6) W (4-21)



Substituting the expansion of the numerator

1 1 (1 + B)?
R-® "% % 429
) 4 kp x

and the relationship R, = R - Ry, into Equation (4-17) yields

e d’R u -R;p,(3B + 3B? + B) -R

o - S - R Ee D | RP (423
k=1
ko j

This procedure eliminates the numerical difficulty. The series in h is truncated by termi-
nating the series when h® < e, , where €, is a predetermined tolerance.

4.2.2 ASSOCIATED PARTIAL DERIVATIVES

The associated partial derivatives are given by

Remw _ (0 N )
oR R? IR, - R?

RE N[ & - DE - R
SRS [ B

(4-24)

R (4-25)
where 1 is the identity matrix of dimension three.
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The associated C-matrix columns for the model parameters x and gy are given by

Rew _ _K (4-26)
ou R?
dRem _ & -R R (4-27)

. IR -RP R

4.3 NONSPHERICAL GRAVITATIONAL EFFECTS

Most solar system bodies are known to have figures that depart from the point-mass, or
spherical, model. The nonsphericity of the gravitational potential may give rise to a sig-
nificant perturbation of the satellite trajectories. Therefore, accurate orbit determination
may require the inclusion of nonspherical terms. The gravitational potentials of the Earth
and Moon are the best known of all the solar system bodies because of extensive tracking
and analysis of close Earth and lunar satellites. The figures of planets with natural satel-
lites are known, although less accurately, through study of the motion of their natural
satellites.

4.3.1 NONSPHERICAL GRAVITATIONAL PERTURBATION MODEL

The method of representing the gravitational potential due to the nonsphericity of a mas-
sive body can be found in numerous publications (References 3, 4, and 5). The gravita-
tional field of the body is derived from a scalar potential y that satisfies Poisson’s
equation

Vzw(r, ¢, ;') = —4mux © (l’, @, ;') (4'2 8)
where

r = magnitude of the vector from the body’s center of mass to the satellite
¢ = geocentric, selenocentric, or planetocentric latitude

1 = geocentric, selenocentric, or planetocentric longitude (measured east
from the prime meridian)
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Above the surface of the perturbing body, the mass density, g, is zero; consequently,
Equation (4-28) reduces to the Laplacian, V3 = 0. Use of a standard separation of
variables technique yields the solution

@x

Y(r, 9,4) = i:* + % 2 Ca (B—E)n PI(sin ¢)

r
n=1

(4-29)

+ -“E— 2 Z (%)n PP(sin ¢)[S® sin mi + C}' cos mi]
n=1 m=1

where the first term is the point-mass potential for Keplerian motion; the second and third
terms are the nonspherical potential due to the sum of the zonal and tesseral harmonics,
respectively; and

U
R.
PR

m m
o Cn

gravitational parameter of the central body

radius of the body (usually taken as the equatorial radius)
associated Legendre function

harmonic coefficients, i.e.,

® zonal harmonics for m = 0
e sectorial harmonics for m =n
® tesseral harmonics for n > m # 0

(Note: J, = -C2)

The term n = 1 is usually not present when the origin of the coordinate system is placed at

the center of mass.

The total gravitational force is the gradient of . Therefore, the noncentral force acting
on the spacecraft due to the attracting body is the gradient of the nonspherical terms in
the potential function .

Expressing the gradient in body-fixed coordinates (Figure 4-2), the following form for the
inertial acceleration vector is obtained (see the discussion following Equation (4-38)):

dy,,
i} _oyfor)T  oayfog)t B_W(_‘E)T 4-30
% =] & 1= Gy (Bﬁ,) ¥ a¢(aﬁ,) * T\ (4-30)

b
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Figure 4-2. Body-Fixed System

The partial derivatives of the nonspherical portion of the potential with respect to r, @,
and A are given by

oy 1 u

or rr

(%)n(n + 1) Z (C™ cos md + ST sin mA) Pi'(sin ¢} (4-31a)
m=0

@0
n=2

w _ 4 (&)n (CF cos mid + S7 sin mi)
3 ot E At z : (4-31b)
n=2 m=0
x [Pr*l(sin¢) - (m tan ¢) PY(sin ¢)]
Z—f - A E (&)n E m(S® cos md ~ CJ sin mi) Py(sin ¢) (4-31c)
r r
n=12 m=0
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The Legendre functions and the terms cos mA, sin ma, and (m tan ¢) are computed via
recursion formulas, as follows:

(2n — 1) sin ¢ PS(sin @) - (n - 1) P,(sin ¢) (4-32a)

n

Pﬁ(sin ¢l) =

P2(sin ¢) = PR,(sin @) + (2n — 1) cos ¢ PR7i(sin ¢) (m = 0, m < n) (4-32b)

Pi(sin ¢) = (2n - 1) cos ¢ P2-i(sin ¢) (m # 0, m = n) (432¢)
where
Pi(sing) = 1 (4-33a)
P{(sin ¢) = sin ¢ (4-33b)
Pi(sin ¢) = cos ¢ (4-33¢c)
and
sin ml = 2 cos A sin [(m - 1) 4] - sin [(m - 2) 4] (4-34a)
cosmi = 2 cos A cos [(m - 1) 4] - cos [(m - 2) 2] (4-34b)
m tan ¢ = [(m - 1) tan ¢)] + tan ¢ (4-34c)

The recursion relationships above are the most efficient method of computing the com-
plete set of associated Legendre polynomials and spherical harmonics up to a certain
order and degree. However, higher degree harmonic terms can cause satellites with re-
peating ground tracks to undergo large perturbations when the trajectory and the harmon-
ic frequency are synchronized (resonant). The synchronization causes the satellite to
sample the gravitational field in such a way that large cumulative perturbations result.
Individual resonant harmonics can be computed in GTDS without using the recursive
algorithm described above. Use of a low-order recursive harmonic model with
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nonrecursive computation of high-order resonant terms is considerably more efficient
than carrying out recursive computation of the total high-order harmonic model.

The partial derivatives of r, ¢, and 4 with respect to X, yb, and z, are computed from
the expressions

o R (4-35)
61’1, r
6¢ 1 Zp f'—g aZb:I
= - + 4-36
o Jx + y%[ o 9
o4 1 ayb dXp
—_— = X — ettt (4'37)
o (X + y%)[ R O of

where 9x,,/9%, dy,/0f, and 8z,/oF, are the row vectors (1,0,0), (0,1, 0), and
(0, 0, 1), respectively.

Substituting Equations (4-35) through (4-37) into Equation (4-30) yields

_ (18w Zp oy 1 3_‘!’)
Ay, = (r or r?. ?X% + y“%’ a¢) Xy ('—“-“——'-(xg " y%) y) Yb (4 388.)

1 ay

Z0 o 1 azp)
(2 4 S 4-3
oo (1‘ ar  2J/2+ v a¢) o (x‘b +yo o4 o (+380)

3, = (l ) /%6 + % &Y (4-38¢)
® or P

where a,,, ay, and a, are the components of the inertial acceleration of the spacecraft
expressed in the body-fixed coordinate system and not the acceleration with respect to the

body-fixed coordinate system. Thus, it is necessary to transform these components into an
inertial frame before integrating the equations of motion.

Since the numerical computations of the program are calculated in the inertial mean
equator and equinox of B1950.0 or J2000.0 coordinate system, a series of transformations
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is made to represent the acceleration vector in this system. For the case of the Earth,
there are two options available to accomplish this. The first is the more accurate, whereas
the second is computationally faster.

For the more accurate option, the inertial acceleration &, expressed in body-fixed coordi-
nates, is transformed to the inertial mean of B1950.0 or J2000.0 axes by means of the
transformation

ﬁNS = CT BT ap (4'39)

where BT transforms from body-fixed to true of date coordinates and CT transforms from
true of date to inertial mean of B1950.0 or J2000.0 coordinates, as discussed in Sec-
tions 3.3.1 and 3.3.2. The matrix BT accounts for polar motion and Greenwich sidereal
time. :

The simpler option neglects polar motion by assuming the geographic pole Zv to be
aligned with the spin axis z in the true of date system. This allows the nonspherical
gravity components to be expressed directly in true of date coordinates. Thus, by replac-
ing (f'v, Xp, ¥b, Zv) in Equations (4-30) and (4-35) through (4-38) by (r, X, ¥, z), the true
of date components are calculated directly. The longitude and latitude are calculated as
follows:

l=a-a (4-40)
¢ = sin’! (E) (4-41)
r
where
a = right ascension of the spacecraft, a = tan™! (y/x)
a, = right ascension of Greenwich

Computation of the acceleration due to the nonspherical Moon in B1950.0 or J2000.0
coordinates requires some different operations than those used for the Earth. Because the
right ascension of the Greenwich meridian has no meaning, the step of going from body-
fixed coordinates to the true of date system cannot be implemented.
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The lunar body-fixed coordinates (also known as selenographic coordinates) are coinci-
dent with the principal axes of inertia and are defined in the following way:

e X' axis lies along a direction nearly colinear with the Moon-to-Earth vector
e <z’ axis lies along the axis of rotation, or polar axis, of the Moon

e v axis lies in the equatorial plane of the Moon and completes a right-handed
coordinate system

Three rotations are necessary to transform the selenographic acceleration vector to a
vector referred to the mean Earth equator and equinox of B1950.0 or J2000.0 system. The
first rotation transforms the acceleration vector to the true Earth equator and equinox of
date coordinate system centered at the Moon (selenocentric). The other two rotations
involve the precession and nutation effects that are included to express the acceleration in
the B1950.0 or J2000.0 system. These rotations are discussed in Sections 3.3.1 and 3.3.3.

4.3.2 ASSOCIATED PARTIAL DERIVATIVES

The partial derivatives of &, with respect to T, are obtained by differentiating Equa-
tion (4-30), yielding

9y _ i(.?.‘_!i) o, _f’_(ai % . i(ﬁ.'!i)a_ﬂ
af,  of\or ) of,  ofp,\9¢J ok,  of \ 34 ) on
oy o oy d¢ oy A
t—— =t o = Y 37 =
ar afc  0¢ ot Y

(4-42)

The required partial derivatives of dy/dr, 9y/d¢, and dy/6A with respect to Ty, are ob-
tained by differentiating Equations (4-31) as follows:

[ oy | [ 3%y 8%y oy | [ or]
ar or? orog arod ot
2z 2 2
o |ew ] _| v Py 'y | | 9@ (4-43)
of, | 9¢ d¢par o’ oo oy
| |y Pyl A
| 9d | | oder YRy 017 | | ofs |
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To minimize computations, the symmetry property of the second partial derivatives of
is utilized as indicated below:

[+ =]

& o
a—;f = % z(%) (n+2)n+ 1)

=2
’ (4-442)

X Z (C® cos mA + SY sin mi) PP(sin ¢)
m=0

[x-]

D)
ardg - agar | O z S @+ D
he2 (4-44b)

X z(@’ cos mi + ST sin md)
m=10

x [PP*(sin ¢) - m tan ¢ Py (sin ¢)]

w25
aros  oker 1 Z r (n o+ 1)

" (4-44c)

X zm (S® cos mi - C¥ sin mi) PF(sin ¢)
m=0

-]

i‘g _ K E (.R_e)n E (C™ cos mi + ST sin mA) {tan ¢ P21 (sin @)
iler r r
n-3 m=0 (4-44d)

+ [m? sec? ¢ - m tan® ¢ - n(n + 1)] P (sin ¢)}
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o n

e 3501 S S
ogal = oAdg = - » m(SP cos mi - CP sin md) (4-440)

n=2 m=0

X [P2*(sin ¢) ~ m tan ¢ P} (sin ¢)]

] n

"’;T'f __H Z(f_ig) Zmz(cnm cos mA + S® sin mi) PR(sin¢)  (4-44f)

r r
n=2 m=0

The partial derivatives of r, ¢, and A with respect to Ty are given in Equations (4-35)
through (4-37). The required second partial derivatives of r, ¢, and 1 with respect to T
are obtained by differentiating Equations (4-35) through (4-37) with respect to 7, yield-

ing
&r 1 o o
"ol (43
32¢ o 1 9z \T % I x &) N %
o2 x2 + y&)¥2 Lofp r? *om Yo ot
(4-46)
1 _ {9z 2Zp _
- 1- Z2R/ig
258 + yﬁ[rb(al’b) TR TR ]
-¥ 0 -1 0
6'22 2 6‘xb ayb)] 1
- - X 2wl 22 ¢ —— |1 0 0] (447
AN N [ (ar-,,) ()] 47

0 0

o

where dx,/0F, dye/0f, and dzw/of are (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.

The symmetry properties of the second partial derivatives of r, ¢, and A yield

82 62
= (4-48a)
Bxb 6yb ayb axb
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Xy, 0Zy 0z 0Xp

8% a°
- (4-48¢)
ayb sz aZb Byb

As noted previously, the potential function ¢ satisfies Laplace’s equation, Vi = 0.
Therefore,

321;0 - _(azw + ﬂ) (4-49)

ox? ayé oz

In view of this and the symmetry of the matrix in Equation (4-43), it is necessary to
compute only the three elements above the principal diagonal and the two elements on the
principal diagonal.

The equations for computing the elements of the C-matrix appearing in the variational
equations (Equation (4-7)) are obtained by differentiating Equation (4-30) with respect to

C» and Sy
w o (w)x o ()8 () B
oCH aCT\ or J ofy aCh\ 0¢ J ofy aC™\ 84 J oy

on | 0 ()2, (W) 6 (W) s
ISy S\ or } ofy aST \ ag ) 9% ST\ al J onp .

where the second partial derivatives of ¥ are obtained by differentiating Equations (4-31)
with respect to C' and S¢

-%(n + 1) cos md Py(sin ¢)

& ||~ (O
acm (09/9¢ |7\t Ut} | cos mi[P>*!(sin ¢) - m tan ¢PR(sin ¢)]
/oA —m sin ml PP(sin ¢) _

(4-52)
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oy/or ) —-l(n + 1) sin md P(sin ¢)
5 | awiee |= (ﬁ) (&) 2 mALPE )
98z rJUr sin mA[PPt(sin ¢) - m tan ¢ P5'(sin ¢)]

dy/aA | m cos mi PP(sin ¢) _

As in the case of the accelerations due to nonsphericity that were developed in Sec-
tion 4.3.1, the partial derivatives for use in the variational equations must be transformed
from the body-fixed axes to inertial mean of B1950.0 or J2000.0 coordinates. As dis-
cussed previously, these transformations can be determined to high precision or by a
simpler and faster method in which polar motion is neglected.

In the more accurate option, where polar motion is accounted for, the transformations of
the partial derivatives of Ryg with respect to R are determined by taking the partial de-
rivatives of Equation (4-39) as follows:

0Rys _ T 9% O _ T 9% (4-54)
aR ®C) f, oR BO) aﬁ,Bc

The matrices C and B are presented in Section 3.3.1 and 3.3.2, respectively.

In the simpler option, polar motion is neglected and &, as well as its partial derivatives,
are calculated with respect to the true of date coordinates. This is accomplished by replac-
ing (v, Xb, ¥, Zb) in Equations (4-39), (4-42), (4-43), and (4-45) through (4-49) by
(r, X, v, z), the true of date coordinates, and by replacing the matrix B with the identity
matrix I in Equations (4-39) and (4-54).

The partial derivatives of ﬁNS with respect to model parameters C; and S} are obtained
for the more accurate option as follows:

8Rys _ T 0 (4-55)
Flo- ®C) aCD

aﬁﬂs _ T 98 4-56
asm BC) aSm (4+59)

For the simpler option, (T, Xu, ¥, Zv) is replaced by (r, x, y, 2) in Equations (4-50) and
(4-51), and the matrix B is replaced by the identity matrix I in Equations (4-55) and
(4-56).
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4.4 INDIRECT OBLATION PERTURBATION MODEL
(NOT CURRENTLY AVAILABLE IN GTDS)

Up to this point, two types of gravitational accelerations acting on the spacecraft have
been considered: the acceleration due to n point masses, measured relative to one of the
point masses, called the reference body; and the acceleration arising from the nonspheri-
cal portion of the gravitational potentials of one or more of the n bodies, which directly
influence the spacecraft motion. These nonspherical attractions also affect the inertial
acceleration of the reference body, resulting in an indirect acceleration of the spacecraft
relative to the reference body (Reference 6). The two bodies of most concern are the
Earth and Moon.

Inspection of Equation (4-29) reveals the rapid attenuation of the gravitational attraction
with increasing order of the spherical harmonics and increasing distance from the body.
For the Earth, C§ (or -J;) is of order 1073 of the Keplerian term, while all the other
harmonic coefficients are of order 1096 or less. In the Moon's gravitational potential, the
size of the higher order terms relative to the central term is larger than in the case of the
Earth, but the ¢ term is dominant. Consequently, the only nonspherical potential terms
considered for the mutual interaction of the Earth and Moon are the second zonal har-
monics of each, and the resulting effects are referred to as indirect oblation effects.

The complex motions of the Earth-Moon system, including lunisolar precession and nuta-
tion, physical libration of the Moon, and perturbations in the lunar orbit, are accounted
for in GTDS. Thus, any significant indirect oblateness effects are due to the use of a
relative coordinate system (Equation (4-16)) in place of an inertial coordinate system and
not to errors in the lunar ephemeris.

Considering the Moon to be the spacecraft, the force acting on the point-mass Moon due
to the nonsphericity of the Earth is (Section 4.3)

pns Ru(®) = 1(Ch 8L o, 1) (4-57)
where
C and SJ; = harmonic coefficients of the Earth’s nonspherical potential
TEM = Moon’s position vector in geocentric coordinates
t - time argument used to determine the orientation of the inertial

and geocentric axes
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Similarly, the force acting on the point-mass Earth due to the nonsphericity of the Moon is

ue ReM) = £(), s, P, 1) (4-58)
where
ch and g} = harmonic coefficients of the Moon's nonspherical potential
fmEe = Earth's position vector in selenocentric coordinates

t

time argument used to determine the orientation of the inertial
and selenographic axes

The force acting on the point-mass Moon due to the Earth's oblateness, 4m Rm(E), pro-
duces an equal and opposite force acting on the Earth. Therefore, the inertial acceleration
of the Barth due to the force of attraction between the Earth and Moon due to the oblate-
ness of the Earth and the point-mass Moon is given by

ReE®) = -2M Ru(®) (4-59)
HE

Similarly, the force of attraction between the Earth and Moon due to the oblateness of the
Moon and the point-mass Earth produces an inertial acceleration of the Moon given by

RuM) = -£2 Reom) (4-60)
Hw

Therefore, the inertial acceleration of the Earth due to the oblateness of the Earth and
Moon is

B = KO + Ro®) = -iin [i Ru(®) - —— ﬁ‘e(M)] (4-61)
HB Hm

and the inertial acceleration of the Moon due to the oblateness of the Earth and Moon is

Ry = Rm(E) + Ru(M) = e [L Ru(E) - = ﬁ13(M):| (4-62)
HE MM
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The resuiting indirect acceleration of the spacecraft is equal and opposite to the accelera-
tion of the reference body; consequently,

- 1 = 1 = when the Earth is
) -Re = pm [;; Ru(®) - o RE(M)] the reference body
£, - (4-63)

. 1 = 1 = when the Moon is
-Rm = -up [’;‘; Ru(E) - ;1\; RE(M)] the reference body

The method for determining the inertial acceleration of the point-mass Moon due to an
oblate Earth, RM (E), and the inertial acceleration of the point-mass Earth due to an oblate
Moon, RE(M), are presented in Section 4.3. However, since the effects of the higher
harmonic terms can be neglected for this application and only the second zonal harmonics
considered, the gravitational potential in Equation (4-29) reduces to

Y(r, @) = % C3 (%)2 (3 sin? ¢ - 1) (4-64)

The partial derivatives of ¢ with respectto r and¢ are

%% - ..% L+ ROGsin g - ) (4-652)
2% - {is R, C2 (3 sin ¢ cos ¢) (4-65b)

and the partial derivatives of r and ¢ with respect to T are

T

o _ P (4-66a)
or r
1 -sin ¢ cos 4
%g - -sin ¢ sin A (4-66b)
r r cos ¢ cos? ¢
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Since the oblate potential model is symmetric about the pole, and neglecting polar mo-
tion, the inertial acceleration of the point-mass Moon due to the Earth’s oblateness can be
expressed in geocentric true of date coordinates as follows:

- oy  arm \* oy { odm YT
am(E) = 2 —_M— + ¥ ‘"?i.ﬁ)
orp \ 8m oy \ M
(4-67)
_ o | =sin gy cos Ay
= —% fTE R, CJ (3 sin* ¢y - 1) ™, }-?‘io—%gz - sin ¢y sin Ay
I
M M M M COSZ ¢M
where
#p = gravitational constant of the Earth
R. = equatorial radius of the Earth
CY = second zonal harmonic coefficient for the Earth
fiy = lunar position vector in true of date coordinates
¢m = geocentric latitude of the Moon
Jm = right ascension of the Moon in true of date coordinates

The acceleration vector ay(E) is transformed to inertial mean of B1950.0 or J2000.0
coordinates via the transformation matrix CT of Section 3.3.1.3, i.e.,

Ru(E) = CT am(E) (4-68)

The inertial acceleration of the point-mass Earth due to the Moon’s oblateness is ex-
pressed in selenographic coordinates as

—sin ¢e cos Ag
—sin ¢g sin Ag | (4-69)
cos® ¢g

3um Rp €3

3 , T
(M) = -— ZM Rl (3 sin? ¢ ~ 1) i e alere

2
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where

uyv = gravitational constant of the Moon

R, = equatorial radius of the Moon

¢ = second zonal harmonic coefficient for the Moon

fg = position vector of the Earth in selenographic coordinates
¢ = selenographic latitude of the Earth

Ag = selenographic longitude of the Earth

Transformation of @g (E) to inertial mean of B1950.0 or J2000.0 coordinates yields
Re(M) = CTMT az(M) (4-70)

where the MT matrix transforms from selenographic to selenocentric true of date coordi-
nates (Section 3.3.3), and the CT matrix transforms from true of date to mean of B1950.0
or J2000.0 coordinates. If a true of reference date inertial system is being utilized, then
the CT matrix in Equations (4-68) and (4-70) is set equal to the identity matrix.

4.5 AERODYNAMIC FORCES AND ATMOSPHERIC MODELS

A general discussion of the aerodynamic forces acting on a spacecraft and the related
atmospheric models is presented in Section 4.5.1. Descriptions of the GTDS aerodynamic
force modeling and related partial derivatives are given in Sections 4.5.2 and 4.5.3, re-
spectively. The Jacchia-Roberts atmospheric model is discussed in Section 4.5.4, with the
related partial derivatives given in Section 4.5.5. The modified Harris-Priester atmos-
pheric model is described in Section 4.5.6, with the related partial derivatives in Sec-
tion 4.5.7. Section 4.5.8 describes the low-altitude model.

4.5.1 INTRODUCTION

The modeling of the aerodynamic force acting on a spacecraft in a near-Earth orbit is
difficult from two standpoints. First, the characterization of the density at very high alti-
tudes above the surface is extremely complex. Although the exact natures of the phenom-
ena are not well understood, there is experimental evidence that diurnal and seasonal
variations, as well as effects due to changes in solar flux and geomagnetic activity, can be
modeled with some degree of success.

4.25



Atmospheric density models can be divided into two types. Models of the first type are
characterized by their dependence on altitude and their independence of any other pa-
rameters. Those of the second type are characterized by their dependence not only on
altitude, but also on the position of the Sun relative to the Earth and the amount of energy
emitted from the Sun.

Several atmospheric models have been constructed over the past several years (Refer-
ences 7 through 14) to account for various geomagnetic and solar activities. There are
three main types of solar radiation known to affect the atmospheric density. The first
type, which is the most important in terms of the effect on the structure of the atmos-
phere, results from solar ultraviolet radiation impinging on the atmosphere. Its effect on
temperature and density is at a maximum 2 to 3 hours after local noon. This radiation
heats the atmosphere by conduction and thereby increases the density at higher altitudes.
The process is known as the diurnal (or day-night) effect and causes a redistribution of
density, resulting in a diurnal bulge in the atmosphere.

The second type of solar activity affecting the atmosphere results from extreme ultraviolet
radiation. The atmospheric oscillations that are in phase with this solar flux are often
referred to as the erratic or 27-day variations, since the oscillations sometimes exhibit a
semiregular character for intervals of several months, during which a period of 27 days is
easily recognizable. It has been found that the decimetric flux from the Sun apparently
varies in the same manner as the extreme ultraviolet emission and can therefore be used
as a fairly reliable index of short-term solar activity. The decimetric flux, specifically the
10.7-centimeter radiation, is expressed in units of 1072* watts/meter2/hertz bandwidth and
is denoted by the symbol Fyq 7.

The third type of radiation is corpuscular in nature and is referred to as the solar wind. It
is responsible for the changes in intensity and energy spectrum observed in the cosmic
radiation and is the largest single factor affecting short-term fluctuations in the atmos-
pheric density. Experiments onboard Pioneer V were the first to establish that the 11-year
solar (Sun spot) cycle is a phenomenon that is not localized near the Earth or its immedi-
ate environment but rather affects large volumes of the inner solar system. The solar wind
is modeled as an interplanetary plasma streaming radially and irregularly outward from
the Sun, compressing the Earth’s magnetic field on the sunward side and extending it on
the night side.

Atmospheric oscillations connected with geomagnetic storms are of significant amplitude
but of very short duration (1 or 2 days). Present-day studies indicate a correlation of the
atmospheric density with the geomagnetic activity.

Apart from the difficulty of accurately representing the environment (density) at the
spacecraft location, the second aspect of the problem lies in the complication of rigor-
ously modeling the force itself as a function of the spacecraft configuration and attitude.
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GTDS provides the user with the choice of two atmospheric density models and three
types of force representation. The atmospheric density models available are the modified
Harris-Priester and the Roberts analytic formulation of the Jacchia 1971 model (referred
to as the Jacchia-Roberts model). The Harris-Priester model is the simpler of the two and
permits the most rapid computation of the density. It does not include effects due to
seasonal variations or to changes in the solar flux or geomagnetic activity, as does the
Jacchia-Roberts model.

The aerodynamic force can be represented, at the specification of the user, as the follow-
ing:

® A simple drag force acting along the relative wind velocity vector on a spherical
spacecraft

e A force with components normal to and along the axis of a cylindrical space-
craft

e A force with components along each of the three spacecraft body axes for a
configuration consisting of a cylinder with solar paddles oriented at some angle
to the axis of the cylinder

These modeling options, and the related partial derivatives, are described in detail in the
following subsections.

4.5.2 AERODYNAMIC FORCE MODELING

Rigorous treatment of the aerodynamics of free molecular flow involves the representa-
tion of the complex interaction of the atmospheric molecules with the surface molecules
of the spacecraft. Under certain conditions, this interaction is characterized as a specular
or perfectly elastic reflection of the impinging molecules. The reflection is termed diffuse
when the impinging molecules penetrate the surface, experience muitiple collisions with
the body molecules, and are reemitted randomly with no memory of their prior history. In
the case of specular reflection, there is no momentum transfer and, hence, no force tan-
gential to a local surface element. Diffuse reflection does result in such a component of
force, although it is small. In general, both types of phenomena are involved in varying
degrees, depending upon the details of the surface reflectivity and emissivity, tempera-
ture, and free-stream constituents and their mean molecular motion. Conditions typical of
most actual situations result in forces that can be adequately represented in terms of the
specular reflection equations. Therefore, the force modeling in GTDS makes this simplify-
ing assumption and computes the force acting on a local surface element as the momen-
tum transfer normal to that element.

The forces on all elements of the spacecraft surfaces exposed to the free-stream must be
resolved in some coordinate frame and summed to obtain the total acrodynamic force
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acting on the spacecraft. This resolution has been performed for a number of elemental
shapes at various orientations. GTDS makes use of the force coefficients defined in
Table 4-1 for spheres, cylinders, and flat plates. A force coefficient, Cg, is defined as the
nondimensional quantity

F
Cr=4—— (4-71)

1

—oV?A

2 e
where

F = magnitude of the force acting on the object

density of the medium through which the object is moving

e
"

V = magnitude of the velocity of the object with respect to the medium
producing the force

A = arbitrary reference area

The velocity of the spacecraft relative to the atmosphere is determined in the inertial
coordinate system by subtracting the motion of the atmosphere, assumed to rotate with
the Earth, from that of the spacecraft, as follows:

Vo= R - @ x B (4-72)

The Earth rotation vector, @, must be appropriately defined in the inertial frame (mean
equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true equator
and equinox of reference date). :

For the case of a spherical spacecraft, the drag acceleration is computed as follows, using
the general form of Equation (4-71) and Cp = 1.0 from Table 4-1:

ﬁD = = Ss e Vrel Ivrell (4-73)

where
2
(“_d ) (4-74)
4m
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Table 4-1.

Aerodynamic Force Coefficients for Elementary Surfaces

SURFACE SHAPE

REFERENCE DIRECTION FOR
MEASUREMENT OF ANGLE a
TO RELATIVE VELOCITY VECTOR

REFERENCE AREA

FORCE COEFFICIENT(S)
AS FUNCTIONS OF a

DIRECTION OF
FORCE COMPONENT

Sphere

Relative wind velochty

Cross-sectlonal
area of sphere

Along relatlive wind vector

Clreular Cylinder {exterior
surface only)

Cylinder axls

Length times dlameter
of the cylinder

Normal to cylinder axis
I the plane of the axis
and the relative veloclty

Along cylinder axls

Flat Plate

Normal to plate

Area of plate

4.0 cos? a

9}
zZ
o

]

Normal to the plate

Tangent to the plate




In the above equation, d is the spacecraft diameter and m is the spacecraft mass. If there
is propulsive thrust acting on the spacecraft, the mass m is variable and is represented as
a polynomial in the burn time. The polynomial coefficients are assumed to be known.

When the spacecraft configuration is more complicated than a sphere, it is necessary to
know the attitude, in addition to the orbit, in order to model the aerodynamic force.

It is not necessary to compute the entire direction cosine matrix Q when the spacecraft is
a cylinder (with enclosing end plates). Due to the axial symmetry, it is only necessary to
know the direction cosines qq1, qz1, Qu Of the cylinder axis. The unit vector

A A

A A A )
Xg =qu i +qn ) +0n k (4-75)

then gives the axis orientation in the inertial coordinate frame. As indicated in Table 4-1,
the force component along the axis is proportional to the square of the velocity compo-
nent normal to the end plates. The normal force component is proportional to the square
of the velocity component normal to the cylinder.* Therefore, the velocity relative to the
atmosphere is resolved into normal and axial components to obtain the total acceleration
for the cylindrical spacecraft as

N = Sc )A(B X ()A(B X Vm]) |)A(B x Vrell (4-76&)
A = - Se )A(B ()ﬂ(B ) v‘1-31) Ii\(B ' vl'rell (4_76b)
Rp = o(N + A) (4-76c)

In these equations

RERTE-STES VO HE S
2\sin® aJ\m 2\3/\m 3m

Y e U N ’“‘2)- 7 & 4-77b

Se = 2(0052 a)(m) - 2(2)(4111 "~ 4m (4-770)

* This is analogous to the solar radiation case, where the force is proportional to the effective area
normal to the incident radiation (Section 4.6), and the determination of this effective area is di-
rectly analogous to the determination of the effective area normal to the relative velocity vector.
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where L is the length of the cylinder and d is the diameter. As before, m is the spacecraft
mass, which can be variable.

The third type of spacecraft configuration optionally available in GTDS is a cylinder with
solar paddles, mounted on trunnion pivots which are orthogonal to the cylinder axis. The
incidence angle, ip, defines the angle between the axis and the paddle surface. The space-
craft axis system is chosen so the x axis corresponds with the cylinder axis, y is the
trunnion axis, and z is orthogonal to x and y. The y axis is directed so that positive ip
corresponds with positive rotation about y, according to the right-hand rule.

This configuration is not axisymmetric and therefore requires the calculation of the com-
plete transformation matrix Q (from body to inertial axes). It is most convenient to trans-
form the relative wind velocity into spacecraft body axes, compute the force components
in this frame, and then transform the result back into the inertial coordinate frame. This
leads to the following equations for the aerodynamic acceleration:

V4 T . A <A
Vo = Q' Vg = %p ip + Vs ip + 28 ks (4-78a)
VN = Xp sin i, + Zp c€OS iy (4-78b)
Fry = -Se Xp |Xg] = Sp V|V sin ip (4-78c)

Fy, = -Sc ¥ VY3 + 74 (4-78d)

FZB = "'Sc éB V}% + Z% - SP VN IVNl cos ip (4-786)
Rp = -0QF; (4-78f)

The definitions of S. and S. are the same as in Equations (4-77). The solar paddle

contribution is
S, = l( Cry )(.A_P) ) (4-79)
2\cos” a m m

where the paddle area, A, is an input constant.
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The representation of the aerodynamic forces in Equations (4-79) does not consider the
effect of mutual shadowing or shielding from the free-stream flow between the cylindrical
and solar paddle surfaces.* Such effects are geometrically very complex, particularly if
multiple interference reflections between cylinder and paddles are considered. The simpli-
fications resulting from the neglect of this phenomenon in Equation (4-78) are thought 1o
be consistent with the original assumption of purely specular reflection in the specifica-
tion of the individual surface type coefficients.

The factor ¢ in the three expressions for ﬁD is not simply the atmospheric density, Qa. It
also includes the following scale factor to permit an adjustment of the g Cy product:

0=0.(1+¢1) (4-80)

A default value of p; = 0 is set in the program. However, this value can be modified by
user input, or it can be estimated in the differential correction process. Adjustment of €1
does not alter the instantaneous direction of Rp; it simply changes the magnitude.

Optionally, the drag scale factor ¢1 can be modeled as a polynomial such that

N

01 = Z aiti (N = 5) (4-81)

i=0

In addition, the trajectory propagation timespan can be partitioned into segments, and
independent values for the drag scale parameter coefficients, a;, can be specified/
estimated for each segment.

4.5.3 ASSOCIATED PARTIAL DERIVATIVES FOR AERODYNAMIC FORCE
MODELING

When the aerodynamic force option is exercised in GTDS, it is necessary to compute the
partial derivatives of Rp with respect to variations in the spacecraft local inertial state for
use in the variational equations. For all configurations, the portion of the partial deriva-
tive that accounts for the effects of density variation is

Ro _ Rp 20 (4-82)
oR 0. OR

* Shadowing of the cylinder end plates by the cylindrical surface itself is considered.

4-32



since density depends only upon the spacecraft local position and not upon the local
velocity. The forms for dg,/dR are presented in Sections 4.5.5 and 4.5.7 for the Jacchia-
Roberts and Harris-Priester models, respectively.

All three forms for Ry are expressed in terms of Vi, which can be written in a slightly
different form from that in Equation (4-72), as follows:

T = & - OF (4830
where the matrix Q is given by
0 -y s
Q = W 0 - (4'83b)
-3 w1 0

Thus, the partial derivatives can be computed with respect to V.1, and these can then be
used to compute

Fp _ 2o (4-84a)
ali av1-el
oRp _ ( Rp )g (4-84b)
R \oVa

The partial derivatives of the three configuration forms with respect to Vi (X1, X2, Xs)
are given below:

Sphere

3Rp _ Vet Vi ) 4-85
= ST+ i N
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lin

M = |Xp % Vil (4-862)
'Mz = (5\(3 X V,e;) * ()A(B X V,Bl) (4'86b)
o = )"‘(B ¢ Voot _ (4-86¢)
— 2 A A A
Wi=(@h -1 i +quda j +q1uds k (4-86d)
- A A A
W, =ququ i +(@ -1 +giank (4-86¢)
— A A A
Ws = GaqQu i + @ J + (@5 - Dk (4-86f)
R, . N 2A .
—2 =9 [ScMwi - (W - Vi) + — Clil] (i=1,2 3) (486g)
Bxi M g

The partial derivatives of the atmospheric drag acceleration with respect to the drag scale
factor, 01, and the drag scale factor polynomial coefficients, a;, are the following:

aR R;

= (4-87a)
901 (1 + 01)
aRD - BRD 391 - ti RD (4-87]3)
03, 901 93y (1 + 01)
Cylinder + Paddles
Fxs _ _a[s, [xs| + S, [Vn| sin? i) (4-882)
0 Xp

4-34



9Fy

X 2 (4-88b
0¥p )
oF. .
—2 = -28,|VN| cos i, sin ip (4-88c)
dig
oF

.YB =0 (4-88(1)
0 Xp
3 Va3 4 2
T o e BB (4-88f)
0% [+ 5
0Fy _ 9Fx (4-88¢)
d Xp dZp
OFs _ Fy (4-89h)
B?B aiB

oF : : %
T o 5, |VV% + 2 + ——2—| - 25, [Vn| cos® i, (4-88)
d2p VY3 + Z}

Rp Fs 4-88j
V. - 225w, © (4-82)

4.5.4 JACCHIA-ROBERTS ATMOSPHERIC MODEL

In Reference 13, L. G. Jacchia defined two empirical profiles to represent the tempera-
ture as a function of the altitude and the exospheric temperature. One profile is defined
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for the altitude range from 90 to 125 kilometers and the other for the region above
125 kilometers. Jacchia used these temperature functions in the appropriate thermody-
namic differential equations to determine the density as a function of the altitude and the
exospheric ternperature. He assumed that mixing is predominant between 90 and
100 kilometers and substituted the low-altitude temperature profile into the barometric
differential equation for this regime. Diffusive equilibrium was assumed above 100 kilo-
meters, leading to the use of the low-altitude temperature profile in the diffusion differen-
tial equation for altitudes between 100 and 125 kilometers and the high-altitude
temperature profile for altitudes above 125 kilometers.

Jacchia solved these differential equations by integrating them numerically over the alti-
tude regions for various constant values of exospheric temperature, assuming fixed
boundary conditions at the 90-kilometer lower altitude limit. He then tabulated these nu-
merical results for use in the simulation of aerodynamic drag effects upon satellites. Most
mechanizations of this atmosphere model in computer programs have involved some
means for storing the tabular data and for interpolating values at altitudes computed by
the trajectory integration and at exospheric temperatures calculated by the Jacchia formu-
las. Although the densities determined by this model are accurate, these mechanizations
are generally slow running and/or require large blocks of core storage. In addition, the
absence of explicit analytic expressions means that the drag partial derivatives must be
calculated numerically.

C. E. Roberts, Jr., presented a method (Reference 14) for evaluating the Jacchia model
analytically, and this formulation is used in the mechanization in GTDS. Roberts found
that the barometric and diffusion differential equations could be integrated by partial
fractions, using Jacchia’s low-altitude temperature profile for the range from 90 to
125 kilometers. Above 125 kilometers, Roberts used a different assymptotic function
than the one introduced empirically by Jacchia to obtain an integrable form. Apart from
the difficulties of numerical computations with a finite number of digits, the Roberts
analytic expressions match the Jacchia results exactly from 90 to 125 kilometers and to
close approximation above 125 kilometers. The existence of these analytic expressions
makes possible the computation of analytic forms for the drag partial derivatives. Since
the Roberts formulas were derived for the Jacchia 1970 model, his constants have been
adjusted for the later 1971 model. In addition, an error has been corrected in the function
W(v) given by Roberts in Equations (12) of Reference 14.

The computations begin with equations given in the Jacchia report to determine the ex-
ospheric temperature and corrections to the standard density due to various effects.

Before execution of a trajectory generation, GTDS determines the total timespan of inter-
est. Then, from a permanent data file, one set of values of geomagnetic activity data and
two sets of solar flux data are retrieved. The geomagnetic data set is the 3-hour geo-
magnetic planetary index, K,. One set of the solar flux data is the daily average
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10.7-centimeter solar flux, ¥, ,, as observed at the solar observatory at Ottawa, Canada;
the other set is the 81-day running average (centered at the day of interest), Fig¥,, of
Fyo - The solar flux data are substituted into the equation

T, = 379° + 324 Fig, + 173 [Fuo.s - Fuoy (4-89)

for determining the nighttime minimum global exospheric temperature for zero geomag-
netic activity. The preprocessing computation of Equation (4-89) is done for each day of
the timespan of interest, beginning 1 day prior to the start of the trajectory. The daily
values of T, and the 3-hourly values of K, (beginning 6.7 hours prior to trajectory start)
are stored in a working file for use in the computation of the trajectory.

At each trajectory integration time point, the value of T, is retrieved from the working file
for the day before the current time. This accounts for the fact that there is a 1-day lag in
the temperature variation with respect to solar flux change. This value of T, is used to
compute the uncorrected exospheric temperature T, from the formula

T, = T, {1 + 0.3|:sir12'2 8 + (cos®?y — sin*? 6) cos®? (%):I} (4-90)

where

1
7= 5 lp -0 (4-91a)
1
e = 0 | + &l (4-91b)
r = H - 37°0 + 620 sin (H + 4370) (-7 < T < 7) (4-91c)

In the above equations, &, is the Sun’s declination, and the geodetic latitude, ¢, is given
by

1 X
- e (ot [} @
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The constant f is the geodetic flattening, and X;, X,, X, are the components of the unit
position vector of the spacecraft in true of date coordinates. The parameter

o [ (81 %2 - S2Xy) i [ $1X: + 52X ]}
H = 180.0 cos 4.93
{n 1S1 Xz ~ Sz X4 (S + S92 (X} + X%/ %53)

is the local hour angle of the Sun (counted from upper culmination). The compo-
nents S;, S;, S; comprise the unit vector to the Sun in true of date coordinates.

The effect of the geomagnetic activity upon the atmospheric temperature and density
shows a lag behind the geomagnetic disturbance. Thus, the value of K, is retrieved from
the working file for a time 6.7 hours earlier than the current integration time point. The
correction to the exospheric temperature is given by

AT = 28°0K, + 0703 ¢¥» (Z = 200 kilometers) (4-94a)
AT, = 1470K, + 0702 fe (Z < 200 kilometers) (4-94b)

The corrected exospheric temperature is

Te = T] + AT (4—95)

and the inflection point temperature is

T, = 3716678 + 0.0518806 To — 294:3505 ¢70-00216222 Te (4-96)

These two temperatures, together with the spacecraft altitude, are used in the Roberts
equations to compute the standard density value. However, a number of corrections must
be applied to the standard density values to account for various physical effects. These
corrections are given by formulas from Jacchia’s paper (Reference 13) and are presented
next, before the discussion proceeds to the Roberts equations.

In addition to the correction to the exospheric temperature, there is another direct geo-
magnetic effect on the standard density below 200 kilometers, as follows:

(A logio 0)g = 0.012K, + 1.2 x 1075 ¢¥r (4-97)
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The semiannual density variation is given by the following relationships (for altitude Z in
kilometers):

»

(A logio O)sa = f(Z) g(t) (4-98)

where
f(Z) = (5.876 X 1077 Z2-331 4+ 0.06328) ¢~0-0028682 (4-99a)

g(t) = 0.02835 + [0.3817 + 0.17829 sin (27 7sa + 4,137}

(4-99b)
X §in (4.?'5 Tsa + 4259)
1 1 . 1.65 1
Tsa = @ + 0.09544{[-5 + 5 sin 2o ® + 6.035)] - E} (4-99¢)
_ _Dioss (4-99d)
365.2422

In the last equation, JD;gss is the number of Julian days from January 1, 1958, and
365.2422 is the number of days in a tropical year.

The correction for the seasonal latitudinal variation of the lower thermosphere is given by

A lo = 0.014 (Z - 90 e[—o.oma(z-go)zl
(A logie @LT ( ) 100

x sin (27 ® + 1.72) sin ¢ |sin ¢

Finally, the correction for the seasonal latitudinal variation of helium is

[sin3 (—’3 - i’iﬁ) - 0.35355] (4-101)

Os
(A logio Q)ne = 0-‘55| - n 215

where € is the obliquity of the ecliptic.
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As mentioned earlier, for altitudes below 125 kilometers Roberts used the same tempera-
ture profile that Jacchia used, i.e.,

T(Z) = Ty + % C, Z" (4-102)
n=0
where

dy = T, - To (4-103a)
To = 183°0K (4-103b)
Co = -89284375.0 (4-103c)
Cy = 3542400.0 (kilometers™) (4-103d)
C, = -52687.5 (kilometers2) (4-103¢)
Cs = 340.5 (kilometers™) (4-103f)
Cs = -08 (kilometers™) (4-103g)

and where T, is the inflection point temperature (at Z, = 125 kilometers) given by
Equation (4-96). Roberts substituted the temperature profile given by Equation (4-102) in
the barometric differential equation and integrated by partial fractions to obtain

o) = (";Af") YD R explkFa) (4-104)
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as the expression for density for 90 < Z =< 100 kilometers, where the subscript 0 refers
to conditions at 90 kilometers. The mean molecular weight is given as

]

M(Z) = ZAn Ve (4-105)
n=90
where

Ap = —435093.363387 (4-106a)
A, = 28275.5646391 (kilometers™?) (4-106b)
A, = -765.33466108 (kilometers™2) (4-106¢)
As = 11.043387545 (kilometers>) (4-106d)
Ay = -0.08958790995 (kilometers™) (4-106¢)
As = 0.00038737586 (kilometers™) (4-106f)
A¢ = -0.000000697444 (kilometers®) (4-106g)

These constants give a value of M(90) = M, = 28.82678, which is not too different from
the value of the sea level mean molecular mass, M;, of 28.960.

The value of the density at the lower limit is assumed to be constant at
o = 3.46 X 107 grams/centimeter®. The constant k in Equation (4-104) is

_ 35%g RS

4-107
Rd, C4 ( )
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where

9.80665 meters/second? = sea level acceleration due to gravity
6356.766 kilometers
8.31432 Joules/degrees Kelvin-mole (universal gas constant)

g
Ry
R

The functions F; and F; in Equation (4-104) are

E - (z + R.)"l (z -n )"2(2 - l'z)p3( Z} - 2XZ + x22+ Y:)m (4-1083)
90+ R.J (90 -] \90-r;) |B100 - 180X + X% + Y
= (Z - Ps Ps . . Y(Z - 90) ]
F, = (Z - 90) [As + TR0 . Ra):l + 3 e [Yz T - X)(90 - X)] (4-108b)

In these functions, r, and r, are the two real roots and X and Y are the real and imagi-
nary parts (Y > 0), respectively, of the complex conjugate roots of the quadratic

4

P(Z) = z c. z» (4-109)

n=0

with coefficients

. 354 T, Co

Co = ke 4-110a

0 Ca d, + C, ( )

. Ca

Co = =2 (1 <n =< 4 (4-110b)
Cs

for values of C, given by Equations (4-103). The parameters p; in the functions F
are given by

_ St ]
P2 = T (4-111a)
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. ZS) (4-111b)

Ps = U(rz)
S(-Ry)
= 2 4-111
Ps v ( )
ps = {Bp - 111 R2 [By + Bs(2X + 11 + 1z = R)] + W(r) p2

1 BsR, (X? + Y2 + W(ra) ps (4-111d)
+ 1R - X2 - YY) pst/X*

Ps = Bs + Bs(2X + 11 + 12 - Ry) = ps = 2(X + Ra)ps

(4-111€)
= (r2 + Ry)ps - (1 + R)p2
Pt = Bs - 2ps - pP3 - P2 (4-111f)
In these parameters,
X* = -2rp Ry(R2 + 2X R, + X2 + YP) (4-112a)
V= (Ra + 1)Rs + 1)(RE + 2X R, + X2 + YP) (4-112b)
Um) = (n + R - 2Xn + X2 + Y)(n - 12) (4-112¢c)
2 2

W(r) = 113 RaR, + ri)(Ra + 5;’—“'») (4-1124)

The function W(r;) is corrected from an erroneous expression giveﬁ in Reference 14.
Finally, the coefficients B, and the function S(Z) are given by

T«
B, = a, + ﬁn ﬁ (4-1138)
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5

S2) = 2 B, Z° (4-113b)

n=10

wheren=20,1, ..., 5, and
ag = 3144902516.672729 (4-114a)
a; = -123774885.4832917 (4-114b)
a; = 1816141.096520398 (4-114c)
as = —11403.31079489267 (4-114d)
as = 24.36498612105595 (4-114¢e)
as = 0.008957502869707995 (4-114f)
Bo = -52864482.17910969 (4-115a)
B = -16632.50847336828 (4-115Db)
B, = -1.308252378125 (4-115c)
By = 0.0 _ (4-115d)
Ba = 0.0 - (4-115¢)
fs = 0.0 (4-115f)

As noted above, Equation (4-104) is valid below Z = 100 kilometers, where mixing
is assumed to be predominant. However, diffusive equilibrium is assumed above
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Z = 100 kilometers; hence, the profile given by Equation (4-102) was substituted into the
diffusion differential equations (one for each constituent of the atmosphere) and inte-
grated by partial fractions by Roberts to yield, for 100 < Z < 125 kilometers,

5

02 = z o2) (+116)

i=1

Rigorously, the density at 100 kilometers, ¢ (100), should be evaluated by means of Equa-
tion (4-104) for the particular exospheric temperature Te of interest. However, since the
evaluation of that equation is computationally expensive, it is preferable to avoid adding
that expense to that already necessary to compute Equation (4-116). This is avoided in
GTDS by precomputing values of ¢(100) using Equation (4-104) for a series of values of
T.. These values have been least-squares curve fitted by the polynomial

6
%0:})* = Z b To (4-117)

n=0

where

o = 0.1985549 x 10710 (4-118a)
& = -0.183349 x 107 (4-118b)
& = 0.1711735 x 107V (4-118c)
£y = -0.1021474 x 107%° (4-1184)
gy = 0.3727894 x 107 (4-118e)
s = -0.7734110 x 1073 (4-118f)
s = 0.7026942 x 107 (4-118g)
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and M is the sea level mean molecular mass = 28.96 grams/mole. This approximation is
used in Equation (4-116).

The constituent mass densities for altitudes between 100 and 125 kilometers are given by

oi(Z) = 0(100) % Hi [T'I(‘tg))):llmi F3' exp(M; k Fy) (4-119)

The identification of the constituents and the values of the corresponding constants in
Equation (4-119) are given in Table 4-2.

Table 4-2. Atmospheric Constituents and Related Constants

THERMAL CONSTITUENT KUMBER
INDEX MOLECULAR DIFFUSION DENSITY x [M,;/p(100}]
" CONSTITUENT MASS (M) COEFFICIENT DIVIDED BY AVOGADRQ'S
{GAAMS/MOLE) (a;) NUMBER
! (5}
1 N 28.0134 0 0.78110
2 Ar 35.948 0 0.93432 x 102
3 He 4.0026 -0.38 0.61471 x 1075
4 Q, 31,9088 0 D.161778
5 o 15.00984 ] 0.95544 x 107!
6 H 1.00797 ] -

Hydrogen is an insignificant constituent at altitudes below 125 kilometers; hence, it is not
included in Equations (4-116) and (4-119). The temperature at 100 kilometers is given by
Equation (4-102) in the form

T(100) = Tx + Qds (4-120)
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where

4
Q = 357 z C,(100)® = - 0.94585589 (4-121)

n=0

is the precomputed value of the polynomial for 100 kilometers. The parameter k in Equa-
tion (4-119) is the same as defined previously, and the functions F3 and Fy4 are given by

- - 2 _ 2 2
E, - Z + R, )‘h( Z -1 Yef Z -1, )‘13 Z 2 2XZ + X2+ Y* | (4-1224)
R, + 100 100 - ry 100 - 1002 ~ 200X + X% + Y?

By, o o BZ 100 g [ Y(Z - 100) ] (4-122b)

Y? + (Z - X)(100 - X)

The parameters g; are defined as

1

= 4-123
q2 Uw) ( a)
-1
= 4-123b
Qs Ur) ( )
1
9= 3 (4-123¢c)

1+ nn® - X -Y)qs + W) 9z + Wirs) s (4-123d)
Qe = X*

Ge = -qs - 2(X + R)gs - (rz + Ry qs - (11 + R @2 (4-123¢)

Q1= 2G4 - Q3 — Q2 (4-123f)

and X, Y, r;, 1z, X*, V, U(v), and W(v) are the same as defined previously.
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Finally, diffusive equilibrium is still assumed for the region above 125 kilometers, but the
temperature profile given by Equation (4-102) is no longer valid. Jacchia defined the
temperature for the upper region by the empirical asymptotic function

2 - Ty - T Z -~ 125
T(Z) = Tx + ;(Tco - Ty tan! {0.95:: (T: — 'I?x)( 35 )

(4-124)
% [1+45 x 10 (Z - 125)2'5]}

In order to be able to integrate the diffusion differential equations in closed form, Roberts
replaced Jacchia’s Equation (4-124) with the function

1@ = 7. - - - 1 o [-(2 ) (555 ()|

This temperature profile is continuous at Z, = 125 kilometers regardless of the choice of
the parameter £. The slope is continuous at Z, if

! = 1.9(R, + Z,) = 12315.3554 (kilometers) (4-126)

The value of ¢ is not set equal to this constant in GTDS but is computed by a procedure
to be described later.

Integration of the diffusion differential equations for the temperature profile given by
Equation (4-125) yields, for the first five constituents (i = 1, 2, ..., 5) in Table 4-2,

T\t Ty, = T W
; = o:i(125)] =X = 4-127
ei(2) = al 5)(T) (Tm - Tx) (4-127)
where
. 2 -
= M;goRe [T - Tx 35 ) (4-128)
RIT. \ Tx - Tp J\ 6481.766
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The constituent mass densities at 125 kilometers can be obtained rigorously from Equa-
tion (4-119). However, as in the case of the density at 100 kilometers, GTDS makes a
curve-fitting approximation to give (fori=1, 2, ..., 5)

6.

lng [d,(lZS)] = z éij Tjao (4-129)

j=0

as a function of the exospheric temperature, where d; is the constituent number density
divided by Avogadro’s number (g; = M;di). The polynomial coefficients §; in Equa-
tion (4-129) have been determined for best fits to the values corresponding to Equa-
tion (4-119) and are given in Table 4-3.

The value of the helium density computed by Equation (4-127) must be corrected for the
seasonal latitudinal variation as given by Equation (4-101). The specific form is

[QS(Z)]corrected = QS(Z) 10(Al081°Q)H° (4-130)

Above 500 kilometers, the concentration of hydrogen (i = 6 in Table 4-2) becomes suffi-
ciently large that it also must be taken into account, as follows:

T(500) (1+aa+)’a)[ To - T(Z) T
Z) = 06(500 4-131
0@ = eutso0| o | T @131)
where the hydrogen density at 500 kilometers is
06(500) = &6.. 10173.13 - [39.4 - 5.5l0g10(Ts00)] log10(Ts00)} (4-132)
A

For exospheric temperatures lower than approximately 600 degrees Kelvin, the relative
concentration of hydrogen is significant. At altitudes lower than 500 kilometers, however,
the resulting density error is partially compensated for by the least-squares fitting of
Roberts’ parameter ¢ (see Equation (4-136), given later).
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Table 4-3. Polynomial Coefficients for Constituent Densities at 125 Kilometers

DEGREE OF CONSTITUENT (1)
POLYNOMIAL
TERM (]) (1) N, {2y Ar {3) He (4} O, (51 ©

0 0.1093155 x 10? 0.8049405 x 10! 0.7646886 x 101 0.9924237 x 10! 0.1097083 x 10%
1 0.1186783 x 1072 0.2382822 x 10°% -0.4383486 x 1073 0.1600311 x 1072 0.6118742 x 10*
2 -0.1677341 x 1073 -0.3391366 % 103 0.4604319 x 1078 -0.2274761 x 1073 -0.1165003 x 10°%
3 0.1420228 x 1078 0.2009714 x 10°% -0.2894886 x 107 0.1938454 x 1078 0.9239354 x 10-10
4 -0.7139785 x 10°12 -0.1481702 x 10711 0.9451989 x 10°13 -0.9782183 x 10712 -0.3490739 % 10713
5 0.1969715 x 10713 0.4127600 x 10-1% -0.1270838 x 10°16 0.2698450 » 10-13 0.5116298 x 10717
6 -0.2206182 x 10°%9 -0.4837461 x 10°1° 0.0 -0.3131808 x 10°1° 0.0




In Equation (4-131), ¥s is computed by means of Equation (4-128). The quantity A in
Equation (4-132) is Avogadro’s number (A = 6.02257 X 10%%). The temperature at
500 kilometers is computed in Equation (4-125). Finally, the constituents are summed to
yield

6

0(Z) - Z o) (4-133)

i=1

as the standard density for the region Z > 125 kilometers.

The standard density, as computed by Equations (4-104), (4-116), or (4-133) must be
corrected for geomagnetic activity (by Equation (4-97)), the semiannual variation (by
Equation (4-98)), and the seasonal latitudinal variation of the lower thermosphere (by
Equation {4-100)). These effects are summed logarithmically to obtain

(A 10g10 Q)conr = (A logio ) + (A logio @)sa + (A logig @ur (4134

Thus, the final corrected density is
0(Z) = 04(2) 10(A10g10 @)corr (4-135)

The standard densities, as computed by Equations (4-104) and (4-116) for the region
90 < Z < 125 kilometers, agree exactly with values published by Jacchia in Refer-
ence 13. Above 125 kilometers, however, the values given by Equation (4-133) do not
agree exactly with the Jacchia data, due to Roberts’ introduction of a different form
(Equation (4-125)) for the temperature profile at the higher altitudes. Values of the pa-
rameter ¢ in Roberts’ temperature profile were determined for a series of exospheric
temperatures, such that the resulting density profiles versus altitude (from 125 kilometers
to 2500 kilometers) gave the best least-squares fit to the Jacchia tabulated data. Three
sample fits are shown in Figure 4-3 for low, medium, and high values of the exospheric
temperature. Note that the maximum deviation from the Jacchia values is less than
6.7 percent. The best-fit values of £ are shown in Figure 4-4 as a function of the ex-
ospheric temperature Te. The curve in the figure is the polynomial

= Z 4T (4-136)
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computed to best fit the optimum ¢ values. Equation (4-136) is programmed in GTDS to
provide the means for selecting ¢ in Equation (4-125). In general, the values of £ are
such that the slope of the temperature profile is discontinuous at Z, = 125 kilometers,
but this is not thought to be of any serious consequence.

4.5.5 ASSOCIATED PARTIAL DERIVATIVES FOR THE JACCHIA-ROBERTS
MODEL

The equations for computing the partial derivative d0/6R, which appears in Equa-
tion (4-82), are presented in this section for the Jacchia-Roberts model. Equation (4-135)
for the density is written in the form

e(Z) = os(Z) Ao (4-138)
and the desired partial derivative becomes

ag 8(Ao.) 305
- = Ap, — 4-139
oR : * 80 IR ( )

The variation of the correction factor is derived from Equations (4-134) and (4-97)
through (4-100)

8(A0.) Ag. { . o7,
= 1) £'(Z) —=
R~ oasazsazans 180 TP 3R
+ 0.014 sin RQa ® + 1.72) ~0-0013(Z-90)
5 (4-140)
X ([1 - 0.0026(Z - 90)?] sin ¢ |sin ¢| R
+ 2(Z - 90) |sin @] cos ¢ S—Q}
where
£(Z) = -0.002868 f(Z)
(4-141)

+ 2.331(5.876 x 1077) Z!-3¥! ¢~0-002868Z
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The variation of altitude with position, 8Z/8R, is equivalent to 9h/oR computed in Equa-
tion (4-166) in Section 4.5.7. Differentiation of Equation (4-92) yields

e

X
X2 + X3

X (4-142)
X? + X2

o sin 2¢

21
[

The variation of the standard density is computed directly from the barometrlc differential
equation (Reference 13) for altitudes below 100 kilometers

905 1 4 Mg\ ¥ 1 8T
—_3 o _— Zn-t | 2
R & ME,“A”

T/ oR T oR
n=1l

and from the diffusion differential equation (Reference 13) for altitudes above 100 kilo-
meters

004 l 0z T
3% = [(ﬁ%ﬁ) — + (0s + @3 03) %] (4-144)

where

6

@ = 2 o M;

i=1

The partial derivatives of the temperature are computed by differentiating Equa-
tion (4-102) for altitudes below 125 kilometers

= 4-145
R (4-145)

4
T _ T -Tofd aTm z:nCnZ“‘l 9z
aR d aT 3R
n=1
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or Equation (4-125) for altitudes above 125 kilometers

T _ aT. T-T. { - T fz-z)f
aR = R Te - Tx 3T R, + 2 J135
4

0T, Ty To 9T, Ty - To ol L Te (4-146)
19T, T T. - T, (1 aT.) Ty E , j4Te oK

j*1

T-T. R, +2, |{¢) oz
" ('r.. - Tx) (Tx - To) [(R. + z)’] ('5?) R

Finally, the derivatives of T, and T are computed by differentiating Equations (4-96)
and (4-90), respectively, as follows:

x  0.0518806 + (294.3505)(0.0021622) ¢"0-0021622T= (4-147)

BBTE = 0.3T, {2.2 sin'? @ cos 9[1 ~ cos>? (%)] g%

- 2.2 cos*? g sin 5 cos®? (%) % (4-148)

_E 2.2 9 o ain2-2 2 {T) o {197
2(cos n - sin“* 6) cos > sin > I15R

In the latter expression (from Equations (4-92) and (4-93)),

m 1 ¢-06 9 (4-149a)

R 2 |¢ - & 9R

8 1 ¢+0, 8¢ (4-149b)

—_— = —_ — —
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o i—{l + = cos #(H + 43'0)] o (4-149¢)
X 180 30 180 axXj

gH 180(slx2 - sle)
6Xi - 4 ]Sl Xg - Sz X1|

1
X 4-149d
{[(X% + X2 (82 + 8% - 81Xy - 82 Xz)zluz} ( )
J[SX-SX)X | XX (1 - X
X2 4+ X3 S R

— =0 (4-149%¢)

In the above equations, the subscript i = 1, 2.

It might be argued that the term in Equation (4-146) involving the derivative 8//0T
should not be included, since Roberts considered ¢ as a constant in his integration. How-
ever, To and T, = F(T«) were also held constant for the integration over altitude.
Therefore, if variations in T are taken into account, and £ is a function of T«, then the
derivative of £ should also be included and is computed by differentiating Equa-
tion (4-136), the best-fitting polynomial to the optimum values of /.

4.5.6 MODIFIED HARRIS-PRIESTER ATMOSPHERIC MODEL

Harris and Priester determined the physical properties of the upper atmosphere theoreti-
cally by solving the heat conduction equation under quasi-hydrostatic conditions (Refer-
ences 10 through 12). Approximations for fluxes from the extreme ultraviolet and
corpuscular heat sources were included, but the model averaged the semiannual and sea-
sonal latitudinal variations and did not attempt to account for the extreme ultraviolet
27-day effect. The atmospheric model presently included in GTDS is a modification of the
Harris-Priester concept. The modification attempts to account for the diurnal buige by
including a cosine variation between a maximum density profile at the apex of the diurnal
bulge (which is located approximately 30 degrees east of the subsolar point) and a mini-
mum density profile at the antapex of the diurnal bulge. Discrete values of the maximum
and minimum density-altitude profiles, shown in Table 4-4, correspond to the mean solar
activity and are stored in tabular form as om(h) and oem(h), respectively. Different
maximum and minimum profiles can be specified for different levels of solar activity.
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Table 4-4. Density Altitude Tables

HEIGHT] MINIMUM DENSITY | MAXIMUM DENSITY HEIGHT | MINIMUM DENSITY | MAXIMUM DENSITY
(KM} {GM/KM3) (GM/KM?} (KM} (GM/KM3) (GM/KM?)
100 487400. 457400, 420 1.558 5.684
120 24900. 24900, 440 1.091 4,355
130 8377. 8710. 460 0.7701% 3.3682
140 3899. 4059, 480 0.5474 2.812
150 2122. 2215, 500 0.3916 2.042
160 1263. 1344, 520 D.2819 1.605
170 800.8 875.8 540 0.2042 1.267
180 528.3 £601.0 S60 0.1488 1.005
150 361.7 429.7 580 0.1092 0.7997
200 255.7 316.2 €00 0.08070 0.6390
210 183.9 239.6 620 0.068012 0.5123
220 1341 185.3 640 0.04519 0.4121
230 99.49 145.5 660 0.03430 0.3325
240 74.88 115.7 680 0.02632 0.2691
250 57.09 93.08 700 0.02043 0.2185
260 44,03 75.55 720 0.01607 0.1779
270 34.30 61.82 740 0.01281 0.1432
280 26.87 50.9% 760 0.01036 0.1180
290 21.39 42.26 780 0.008496 0.08776
300 17.08 35.26 800 0.007069 0.08059
320 10.89 25.11 B4 0.004680 0.05741
340 7.214 18.19 860 0.003200 0.04210
360 4.824 13.37 920 0.002210 0.03130
380 3.274 §.955 860 0.001560 0.02360
400 2,249 7.492 1000 0.001150 0.01810
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Exponential interpolation is used between entries, i.e., the minimum and maximum densi-
ties, Om and @M, are given by

om(h) exp ("‘H‘ h) h < h £ hy)  (41508)

juil

om(h)

em(hy) exp (hiH_ h) (hy = h < hin) (4-150b)
M

It

em(h)

and the respective scale heights, Hyand Hy, are given by

hi = hi+1
In [Qm(hiﬂ)] (4'1513)

H, =

Qm(hi)

hj — hiy
In [QM(hiH)] (4-151b)
om(hy)

Hy =

A good approximation (neglecting polar motion) for the height, h, is

h=r-t (4-152)

where r, is the radius of the Earth given by Equations (3-116) and (3-128) as

i R(1 - 1)
P J1 - @f - %) cos? &

(4-153)

and

magnitude of the satellite position vector
equatorial radius of the Earth

H-;zd"!
It o

Earth’s flattening coefficient
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d = declination of the satellite; it is assumed that d equals the geocentric
latitude of the subsatellite point

If the density is assumed to be maximum at the apex of the bulge, then the cosine vari-
ation between the maximum and minimum density profiles is

oot = 0u®) + low(® - ea(®] cos* (£) @159

where 1 is the angle between the satellite position vector and the apex of the diurnal
bulge. The angle 3 is given by

cos 3 = sin & sin & + cos & cos O cos (@ — as ~ Auap) (4-155)
where
d; = declination of the Sun
a = right ascension of the satellite
a, = right ascension of the Sun

Ang = lag angle between the Sun line and the apex of the diurnal bulge
(approximately 30 degrees)

It can be calculated in vector notation as

W = cos™! (r ' UB) (4-156)

or the cosine function in Equation (4-154) can be determined directly as

= . D ”
e (Y [Lrcosv® TL, T Usf (4-157)
2 2 2 2r
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where

satellite position vector expressed in inertial geocentric coordinates

[

>
o
[}

unit vector directed toward the apex of the diurnal bulge expressed in
inertial geocentric coordinates

A L
The vector Ug has the following components:

Up, = cos & cos (as + Alag) (4-158a)
Up, = cos d; sin (as + Anag) - (4-158b)
Ug, = sin 6; (4-158¢)

FA

In the modeling of accelerations in GTDS, the drag coefficient, Cp, and atmospheric
density, @ (h), always occur together as a product. The following error model is introduced
to account for systematic errors in either Cp or €:

Cpo = Cp,(1 + @[l + @20t - t)] [1 + 03 cos” (%)] go(h) (4-159)

where

Cp, = a priori specified drag coefficient

01 = scale factor error coefficient on Cp o

o2 = error coefficient of time variation of Cp @

o3 = error coefficient accounting for deviations in the diurnal variation of
e(h)

t = time of the instantaneous satellite position

ty, = epoch time

The altitude density function, @o(h), is determined from Equation (4-154). The quantities
01, 02, 03, and n are adjustable parameters for the error model.
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4.5.7 ASSOCIATED PARTIAL DERIVATIVES FOR THE MODIFIED
HARRIS-PRIESTER MODEL

Equation (4-159) for the product of the drag coefficient and the density can be partitioned
as follows:

Cp = Cp,(1 + o)1 + 0a2(t - )] (4-160)

o) = 1+ o3 cov (2] [0+ (o - o o (¢)] @

Making use of Equations (4-150) and (4-151), the partial derivative of the density with
respect to position is then given by

% _ (69 dom 00 39M) h 90 dy (4162)

oK ~ \do. oh  dom onh J aR ~ 8y oR

where

|

3(1?Qm [1 - cos® (%)] [1 + 03 cos® (%)] (4-163a)
;f; cos® (%)—) [1 + 03 cos® (%)] (4-163b)

I

Wom _ _Om (4-163¢)
ah H,
dom _ _oM (4-163d)
oh Hy,
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The partial derivative of the density with respect to and the partial derivative of ¥ with
respect to R are obtained from Equations (4-156) and (4-161) as follows:

-:% = —% cos™! (—%J—) sin (%) {(QM - gm)[l + 03 cos® (%—)]

(4-164)
+ 03 [Qm + (oM - Om) cos® (%)]}
p __1 [(ﬁ' ﬁa)}—{_ flﬁ] (4-165)
R sin ¢ R? R

The partial derivative of the height with respect to R is obtained by differentiating Equa-
tion (4-152), yielding

oh R 1 - )(2f - %) cos O } d{cos &)
— = = - 4-1
R R Re {[1 — (2f ~ %) cos? 8]*/* aR (4-166)
where
d(cos 0) 1 Xz
0s _ ) i
3R Ricos d YZ (4-167)
~Z(X?* + Y?

Substitution of Equations (4-163) through (4-167) into Equation (4-162) determines the
partial derivative of p with respect to R, as required in Equation (4-82).

The error coefficients @i, @2, and g3 contribute the following partial derivatives to the
C-matrix appearing in the variational equations:

aRp Rp Rp _
2D - 2 Cp,ll t - = — (4-168a)
%0, o poll + 02(t - to)] a+ o)

aﬁn Rp I'_(‘1:1(1 - 1)

=D . 2 CpQ 1 - tg) = (4-168b)
002 Cp oi(1 + en)l 0 [1 + 02t - to)]
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4.5.8 LOW-ALTITUDE MODEL

For orbit propagation at altitudes below approximately 100 kilometers, a low-altitude at-
mospheric density model is available. This model consists of a tabulation of the density,
0a, versus the altitude extracted from the U.S. atmospheric model (Reference 15).

4.6 SOLAR RADIATION PRESSURE

The GTDS solar radiation pressure model and the associated partial derivatives are dis-
cussed in Sections 4.6.1 and 4.6.2, respectively.

4.6.1 SOLAR RADIATION PRESSURE PERTURBATION MODEL

The force due to solar radiation pressure on a vehicle’s surface is proportional to the
effective area A of the surface normal to the incident radiation, the surface reflectivity #,
and the luminosity Ly of the Sun; and it is inversely proportional to the square of the
distance R,, from the Sun and the speed of light c.

The magnitude of the force due to direct solar radiation pressure on an area A is there-
fore given by"

F-&A (4-169)
4t Ris ¢
where
CR=1+19 (e.g., Cr = 1.95 for aluminum) (4-170)

* The determination of the effective area A of the surface normal to the incident radiation is directly
analogous to the determination of the effective area normal to the relative velocity vector for modeling
aerodynamic forces, which is discussed in detail in Section 4.5.2.
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The magnitude of the acceleration acting on a spacecraft of mass m and area A, due to
direct solar radiation pressure at one astronomical unit from the Sun, is

F _5&A (4-171)
m c

where S denotes the mean solar flux at one astronomical unit. The quantities Cg, A, and
m are grouped together, since they are spacecraft properties and can be determined prior
to flight. The magnitude of the acceleration on a spacecraft due to direct solar radiation at
the actual distance R,, from the Sun is given by

5 R CrA (4-172)
c RE m

F
m

where R,,, designates one astronomical unit, i.e., the semimajor axis of the Earth’s orbit.

All of the above factors except R,, are cgnstant for a given spacecraft and mission. For
computational convenience, P, replaces —. The quantity P; is defined as the force on a
perfectly absorbing surface (7 = 0) due to solar radiation pressure at one astronomical
unit.

The acceleration due to direct solar radiation is away from the Sun, that is, in the direc-
tion of

R, = R - R (4-173)

where

e
[}

position vector of the vehicle in inertial mean of B1950.0 or J2000.0
coordinates

position vector of the Sun in the inertial mean of B1950.0 or J2000.0
coordinates

1l

The model for the acceleration ﬁsa due to direct solar radiation is

CrA R

I‘_{.SR = VP Rgun ’ — 3 (4-174)
m R
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where v is an eclipse factor such that

0 if the satellite is in shadow (umbra)
v = 1 if the satellite is in sunlight

0 < v < 1 if the satellite is in penumbra

v

1

A simple cylindrical shadow model is used to determine the eclipse factor. From Fig-
ure 4-5, it is apparent that the satellite is in sunlight (v = 1) if

D=FR -0, >0 (4-175)
where
R' = satellite position vector relative to the shadowing body
65 = solar position unit vector relative to the shadowing body

IfD < 0 and the vector
S.=-R -D0, (4-176)

has a magnitude less than the body radius a,, then the spacecraft is in shadow (i.e.,
y = 0); otherwise, it is assumed that the satellite is in sunlight and v = 1.

: SUNLIGHT SPACECRAFT
| 4
l R

|§c| >ap \ 3.

S 18] <2p T
- 3p
: 0 4 —» SUN.U,

|
1
I

|

D<0 | D=R'cosd>0
|
|

Figure 4-5. Cylindrical Shadow Model
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4.6.2 ASSOCIATED PARTIAL DERIVATIVES

The partial derivatives of Ry with respect to position are

. ) _ T
aRlS_R = v Pg Esun C_R?[ _ -?’[E __ﬁs][R ; Eﬂ] (4_177)
R m|R - R R - Ryl
Rsr _ o, (4-178)
R
and for the solar pressure model parameter
g o DA (4-179)
m
Rer _ g2 ¢, [IR-Rl 4-180
3k = VRmm CR |E . Egls ( )

4.7 ATTITUDE CONTROL EFFECTS

The function of the attitude control system is related to two modes of operation. During
the first mode, commonly known as the acquisition and cruise mode, the attitude control
system is used to establish and maintain three-axis-stable orientation of the satellite. Such
an orientation is obtained during an interplanetary flight, for example, by fixing two
directions in space. One direction is always such that the sensitive surface of the solar
panels faces the Sun and the other direction is determined by pointing an onboard sensor
toward a predetermined star, Usually another requirement that must be satisfied during
the latter portion of the flight is that the high-gain antenna used for communications
should point toward the Earth.

In the second mode of operation, applicable during midcourse maneuvers, the attitude
control system orients the satellite so that the thrust vector of the vehicle-fixed rocket
motor is aligned along a predetermined direction in space. This orientation is maintained
during the maneuver by controlling the thrust vector to pass through the center of mass of
the satellite. After the maneuver, the attitude control system reestablishes the cruise ori-
entation.
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The low-thrust forces, generated by the normal functions of the attitude control system,
can produce accelerations of 1 X 1077 centimeters/second® to 3 X 10”7 centimeters/
second?. This can result in a target miss of 100 to 300 kilometers at Mars, for example.
The translational forces producing the acceleration are the result of thrusters not acting in
couples, thruster misalignment and unbalance, or gas leaks through the valves during
times that the thrusters are not firing.

The attitude control perturbation model is described in Section 4.7.1, and the associated
partial derivatives are given in Section 4.7.2.

4.7.1 ATITTUDE CONTROL PERTURBATION MODEL (NOT CURRENTLY
AVAILABLE IN GTDS)

The model used to account for the attitude control accelerations has been constructed
from the application of curve-fitting techniques to telemetered data and is defined as
follows:

ay + byt ~ Tac)) + cx(t = Tac1)?
iT‘TAC. = ay + by(t - Tacl) + cy(t - Tac1)2 [l.l(t = Tacl) = U(t - TacZ)] (4'181)
a; + bz(t - Tacl) + cz(t = Tac1)2

The coefficients (ax, 8y, 38, ° ° ° Cx Cy Cz) are low-thrust polynomial coefficients to
be determined. The terms T,., and T, are input epochs at which the attitude control
acceleration polynomials are turned on and off, respectively. The function u is defined by

1 (¢t 2 Tar)

u(t - Tec1) = {0 (t < Tacl) (4-182)
1 (t = Tnc2)

ut - Tyeo) = {0 t < Toc2) (4-183)

The subscript x denotes the acceleration component along the spacecraft’s x, (roll) axis,
the subscript y denotes the acceleration component along the spacecraft’s y, (pitch) axis,
and the subscript z denotes the acceleration component along the spacecraft’s z, (yaw)
axis.

Two transformations are necessary to represent this acceleration in the. mean of B1950.0
or J2000.0 coordinate system: (1) a transformation from the vehicle-fixed coordinate
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system (Xy, Vv Zy) to the true of date coordinate system and (2) a transformation from
the true of date coordinate system to the mean of B1950.0 or J2000.0 coordinate system.

The transformation from the vehicle-fixed coordinate system to the true of date coordi-
nate system is described in Section 3.3.12 and is given by

f=Qry (4-184)

where the transformation matrix Q is defined in Section 3.3.12. The matrix CT, which
transforms from the true of date system to the mean of B1950.0 or J2000.0 system, is
described in Section 3.3.1. Thus, the total transformation is given by

Rrac = CT Qfrac (4-185)

4.7.2 ASSOCIATED PARTIAL DERIVATIVES

Since C, Q, and Frac are functions of time only, and not of the satellite position or
velocity, then

aﬁ'rAc _ aKTAC = 03 (4-186)

R oK

The contributions to the variational equations (Equation (4-7)) of the control system ac-
celeration parameters ay, ay, 3; ..., C; are

“aﬁa—'r];_;m = CT Q [u(t - Tac]) - u(t - TacZ)] (4'1873-)

dRrac _ t - o) dRtac (4-187b)
ab “/ ea

Rrac _ ( _ 1,2 dRrac (4-187¢)
oc iy oa

4-69



where 7, b, and € denote the vectors

(4-188a)

|

"

]
e

b= |b (4-188b)

(4-188¢)

0

n

o
]

4.8 THRUST EFFECTS

There are many forces acting on a spacecraft during the transfer phase and orbiting
phases of its trajectory. Even though such forces have been modeled, the state of the
vehicle is still uncertain, primarily because of the imprecision associated with the injection
conditions and the physical parameters appearing in the mathematical models. Very small
errors in the thrust magnitude and/or thrust direction at injection magnify into very large
errors in the position and velocity near the target body. To avoid such errors and attain
preassigned terminal conditions, spacecraft are designed with the capability to perform
multiple propulsive maneuvers during the interplanetary phase of a mission. Furthermore,
if the spacecraft is to orbit a distant planet, maneuvering capability must be available to
inject into orbit.

The GTDS polynomial thrust acceleration model is described in Section 4.8.1, and the
associated partial derivatives are given in Section 4.8.2. The GTDS tabular thrust force
model and high-thrust maneuver modeling are discussed in Sections 4.8.3 and 4.8.4, re-
spectively.
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4.8.1 POLYNOMIAL THRUST ACCELERATION MODEL

The model describing the acceleration during corrective maneuvers is based on the reduc-
tion of data taken during the motor burn testing procedures and is represented in an
inertial true of date system by

. A
fr = afu(t - To) - u(t -~ T9] Ur (4-189)
where
a = magnitude of the thrust acceleration
I
Ur = unit vector in the direction of the thrust acceleration
T, = effective initiation time of the motor burn (ET)
T; = effective termination time of the motor burn (ET)

and u is as defined in Equations (4-182) and (4-183).
The motor’s effective burn time is

To = Tt - Ty (4-190)

The magnitude of the propulsive acceleration is modeled as follows:

A =89+ 2T +aT° +asT +as7 (4-191)

where

r=t-T, (4-192)

Equation (4-191) characterizes the thrust acceleration as a fourth-degree polynomial in 7,
the time from effective thrust initiation. The polynomial coefficients ap, a1, az, as, and
a, are dynamic mode! parameters, which can optionally be specified or estimated, and
represent the effective thrust-mass ratio as a function of time.
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- A - - - ] -
The unit vector Uy is directed along the spacecraft’s thrust axis (assumed to be coinci-
dent with the x, axis). The true of date components of the vector Uy are

cos ar cos Ot
Ug = | sin at cos O (4-193)
sin 6'1"

where

ar = right ascension of the spacecraft’s thrust axis relative to the true equator
and equinox of date

dr = declination of the spacecraft’s thrust axis relative to the true equator and
equinox of date

The thrust axis orientation is represented by the fourth-degree polynomiais in 7, as fol-
lows:

Gr = o + Q1T + G2 7% + Q3 T° + a4 7° (4-194a)
6'1' = 60 + 611' + 62'[2 + (53 '5'3 + 6414 (4-194b)
where ao, @, .., Qa, 0o, ..., 04 are dynamic parameters, which can optionally be esti-

mated.

A . .
The unit vector Ur can also be expressed in the orbital frame system, which is obtained
from the orbit plane system (Section 3.2.5) by a translation of the origin to the center of
mass of the spacecraft and a redesignation of axes such that

Tot = El ITop (4-195)
where
0 1
E, =] 0 0 1 (4-196)
i 0 0
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The thrust direction is defined by a rotation of Yy (the yaw angle) about the z, axis,
followed by a rotation of Py (the pitch angle) about the new x axis. The components of
IAJT in the orbital frame system are of the same form as Equation (4-193), with Ot re-
placed by Yt and ar replaced by Pr. The true of date components of Uy are then given
by

A

Ur = EB)T {\JTM = B} {\JTM (4-197)

where E is the transformation matrix from the inertial true of date system to the orbit
plane system (see Section 3.3.5).

The thrust acceleration is ef)\cpressed in the true equator and equinox of date coordinate
system via the unit vector Ur. The transformation to the mean equator and equinox of
B1950.0 or J2000.0 coordinate system is accomplished as follows:

Rr = CTrp (4-198)

where the transformation matrix CT is described in Section 3.3.1.

4.8.2 ASSOCIATED PARTIAL DERIVATIVES

When the acceleration Ry is modeled in the direction IAJT given by Equation (4-193), it is
independent of both R and R; therefore,

Ry _Rr _ (4-199)

r
R 3R
However, when the direction of the acceleration f\JT is expressed as in Equation (4-197),

the following partial derivatives are used.

Using Equations (4-189), (4-197), and (4-198), the thrust acceleration during a thrusting
interval can be expressed as

B = a B EOT Up, (4-200)
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Since only the matrix E is a function of position and veloéity,

Ry )
ﬁ - CT AR ET UTor (4 201)
and
" T
Re _acr E g b, (4-202)
aR aR

’I;\he nrows ofnthe matrix E are defined in Section 3.3.5 to be the unit vectors
U, V, and W. The necessary partial derivatives then can be expressed, using subscript
notation, as

U

— =0 (4-203)
axj

WU % xX (4-204)
3%y r r}

oW, 1 8L; L; oL

o e T 4-205
an L an L2 an ( )
oW, 1 8Ly L oL
— = — -0 - 1z - 4-206
an L an LZ BXj ( )

[ 8U, | [ oW, |
v 0 -Ws w,] | %P 0o U, -ug]| P
Hoclws 0 -wy Uzl l-u; 0 Uyl | 22| 4207
P l-w, W, 0 op U, U 0 op
9U, aW,
| dp | | 9P
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where

0y = Kronecker delta operator
1; = components of the angular momentum vector R x R
L = magnitude of the angular momentum vector
p = any one of the parameters of R or R, x;, X3, x3, Xy, Xz, X3
and
0 X3 —X
Lok 0 x (4-208)
an . .
X -% 0
0 — X3 Xq
Lol % 0 -x (4-209)
axj -X3 X1 0
3
oL _ 1N 4 (4-210)
ap L ap
i=1
The C matrix components resulting from the acceleration model parameters ag, ..., a4
are given by
R _ Rrpr 4-211)
0a a
3—;‘5_1 - afuft - To) - ut - T)] CT U, T (4-212)
%?- - afult - To) - u(t - T] CF Ty 1 (4-213)
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where

|
It
]

¥

IT=0,r1 7 .. 1

A - sin @t cos o1 |
= cos ar cos Or
0

oD " ~cos ar sin O |
I = | -sinar sin 01

80
T cos Ot

4.8.3 TABULAR THRUST FORCE MODEL

(4-214)

(4-215)

(4-216)

(4-217)

(4-218)

(4-219)

The GTDS tabular thrust model is appropriate for long-burn, low-thrust maneuvers. This
model provides a linearly varying thrust acceleration interpolated from values provided in
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a table of mass and thrust as functions of time. The table can contain up to 101 values of
thrust and mass, and up to 20 such tables can be included (with nonoverlapping times of
applicability). Either the thrust can be applied as provided or a correction can be esti-
mated.

The thrust acceleration vector, ﬁ(ti), at a tabular point, t;, is computed as follows:

- F(t) | 4
R(t) = (1 v{t: (4-220)
where
i = 1,2, .. 101
a, = estimated thrust variation coefficient (set to zero when not estimating)
M(t) = table entry for the mass (kilograms)
() = unit velocity vector

and the thrust magnitude, F(t;), in kilonewtons, is given by

F(t) = F(t;) C (4-221)
where
F'(t) = table entry for the thrust magnitude value (kilonewtons)
C = calibration factor (0 percent to 100 percent)

The value of the thrust acceleration at any given time between maneuver ignition and
cutoff is computed by linear interpolation between two consecutive values of Ry that
bracket the time in question.

If the application option is chosen for the thrust, then a, is set to zero; and the thrust
table, mass table, and corresponding calibration factor of the thrust are the only items

used in calculating Ry at any instant of time. If the thrust estimation option is chosen,
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then the variational equations require the partial derivative of Ry with respect to a ,
which is given by interpolating between two consecutive values of the following equation:

aRp(t)  Ft) a )
2 - ) (4-222)

One thrust coefficient, a, , can be estimated for each thrust table included in the force
model computations.

The limitation to this model is that thrust levels can be applied or estimated only in the
spacecraft velocity direction.

4.8.4 HIGH-THRUST MANEUVER MODELING

For launch support, high-thrust maneuvers are modeled in the spacecraft orbit frame
coordinate system, so that the nominal maneuver parameters determined prior to launch
will be independent of the actual liftoff time. Section 4.8.4.1 describes maneuver model-
ing, and Section 4.8.4.2 discusses the estimation of maneuver parameters.

4.8.4.1 High-Thrust Maneuver Model

The maneuver is characterized by the following quantities:

t, = maneuver start (ignition) time
tyo, = maneuver end (burnout) time

m;, = vehicle mass at ignition time

my,, = vehicle mass at burnout time

P, = pitch angle at ignition

Y, = yaw angle at ignition

T, = thrust magnitude at ignition

f’ig = pitch angle rate (assumed constant during a maneuver)
i’ig = yaw angle rate {assumed constant during a maneuver)
'i"is = thrust rate (assumed constant during a maneuver)
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The coordinate system in which the pitch and yaw angles are mcasurgd is defined in

" . . . i A A
terms of the position of the vehicle at a given time. The quantities X,, ¥,, and Z, are
unit vectors describing this coordinate system, where

>
=
X
=

Xp = (4'223)
|¥ % F|
A Fx ?c
- 2 (4-224)
| T X X,
A r
= — 4.2

where T and F are the vehicle position and velocity vectors, respectively.

Two cases must be distinguished. The maneuver platform is said to be ‘fixed’ if the
(?cp, §p' %p) coordinate system is evaluated at ignition and not reevaluated during the
rest of the maneuver interval. The maneuver platform is said to be ‘torqued’ if the
(?cp, 91,, 2 p) coordinate system is evaluated each time the thrust acceleration is com-
puted. The mass loss rate, m, which is assumed to be constant, is given by

o= oo ~ Mig (4-226)

tbu:r - l'fig

If the platform is torqued, ﬁp, ?p, and ﬁp are computed from Equations (4-223)
through (4-225) above. The mass, m(t), at the current time of integration (t) is then found
as

At =t -t (4-227)

m(t) = my - m At (4-228)

The pitch and yaw angles (P and Y) and the thrust magnitude (T) (see Figure 4-6) are
found using

P =P+ PAt (4-229)
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2p(- Y)

THRUST
DIRECTION

\J

X (P)

NOTE: THE ROTATIONS ARE FIRST ABOUT THE ﬁp AXIS BY AN ANGLE P
AND THEN ABOUT THE - Ep AXIS BY AN ANGLE Y.

Figure 4-6. Yaw and Pitch Angle Coordinate System

Y = Y+ Y A (4-230)

T - T, + TAt (4-231)

The vehicle’s thrust acceleration vector, fi}, in the coordinate system of integration, is
then found using

& Tlcos (P) sin (Y) JQP + cos (P) cos (Y) ?’p + sin (P) %p] (4-232)
m

0
n
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4.8.4.2 High-Thrust Maneuver Estimation

Accurate prediction of the trajectory of a spacecraft during a maneuver period requires
estimation of the parameters pertinent to the thrust model (e.g., P, Y, and T and their
rates in Section 4.8.4.1). The method of determining these parameters assumes that both
the preignition and postburnout state vectors are known and that a maneuver is required
that will allow the orbit predictor to generate the postburnout vector from the preignition
vector via the normal orbit prediction processes.

4.8.4.2.1 Initialization

The initial configuration for maneuver computation is shown in Figure 4-7. From this
configuration, the following parameters are defined:

t = time of preignition state vector

t; = time of postburnout state vector
S; = preignition state vector = (T, )7
5, = postburnout state vector = (f, )T
fmax = Maximum position tolerance

= maximum velocity tolerance

4 Lig toe i

| l
i |
S l-— MANEUVER ———I S

Figure 4-7. Initial Configuration for Maneuver Computation

—= TIME

The following preparatory steps are then taken:
. The vector §; is integrated to ty, generating Sy = (g, Tig)"

2. The vector S; is integrated to tyo, generating Soo = (Tvor i’bo)T

3. The vector S; is integrated to t; , assuming an entirely free-flight trajectory,
generating S¢ = (fo, )"
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. A A
The unit vectors X, and Y, are computed as

4,
§, = XD (4-233)
|7y X Tl
A I, X 3\{
y, = ———" (4-234)
|i-b X Xpl

and the velocity difference at t; is computed as

The initial estimate of the maneuver parameters is then

Py = sin’! fl’-—ﬂ (4-236)
7| |AT]

X, * AT
Yo = tan! | 2 _ (4-237)
¥, AT
T m |AF
0= In mig (4-238)
mlg - m (tbo - tlg)
By = 0 (4-239)
YO =0 (4-240)
Ty = 0 (4-241)
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4.8.4.2.2 Estimation

An iterative method is then invoked to successively refine the estimates of the maneuver
parameters until either acceptable agreement between the initial and computed burnout
vectors is obtained or a user-specified maximum number of iterations is reached. A de-

scription of the convergence test and differential correction process for this method is
given below, followed by a discussion.

Convergence Test

A convergence test is applied after each iteration; this test proceeds in the following
manner. First, S is integrated to time tyo using the current estimate of the maneuver
parameters

M = (Po, Yo, To, Po, Yo. To) (4-242)

thereby generating Sy, . The miss vector, AS, is computed as

AS = Sy - Sve = (AF, AT)T (4-243)

If |AF| < fmax and |AT| < fpax, then the agreement is satisfactory, the current maneu-
ver parameters are accepted, and processing terminates.

Diferential Correction P

If the convergence test fails, the first-order Taylor series expansion of the state vector is
made using

_ aSY) . —
AS = (ﬁ) AM (4-244)

where AS is the miss vector in Equation (4-243) above; and AM, the unknown correction
to M, is given by

AM = (APo, AYs, ATo, APy, AYq, ATy (4-245)
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The transformation matrix 35/6M is computed using approxXimations to the various par-
tial derivatives as follows:

35 _ Sio(Po + OP) - Sua(Po) (4-246a)
9P 6P

8 Svo(Yo + 6Y) = Sua(Yo) (4-246b)
oY oY

a5 _ Spo(To + 0T) — Suo(To) (4-246c)
8T oT

35 _ Spo(Po + 6P) - Sea(Po) (4-246d)
ap oP

35 _ Seo(¥o +8Y) - Suo(¥o) (4-246¢)
9Y oY

aS _ Seo(To + 8T) = Sio(To) (4-246f)
aT oT

where the following abbreviations are made:

§;0(P0+6P) = §b'0(P0+dP! YO! TD! PO; YO, 'i-‘{]) (4-2473')
Sve(Yo +8Y) = Spo(Po, Yo+08Y, To, Po. Yo, To) (4-247b)
Suo(To+8T) = Svo(Po, Yo, To, Pos Yo, To+4T) (4-2479)
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The quantities S,o(Po + JP), etc., are found by incrementing the appropriate maneuver
parameter (keeping the remaining five parameters at their nominal values) and using the
orbit predictor to integrate S to time tyo with the new maneuver parameters. The vari-
ations (0P, 8Y, etc.) are differentials whose default values are the following:

P = 1 degree
JdY = 1 degree
4T = 2200 newtons

8P = 0.01 degree per second
dY = 0.01 degree per second
6T = 4.4 newtons per second

Generation of the state vectors in Equations (4-246) requires six computation cycles by
the orbit predictor, one for each variation in the nominal values of the maneuver parame-
ters, M.

The matrix 9S/9M is then found as

85
dP

S
aY

a5
T oT

oM oS
P
as
Y
aS
| 8T J

(4-248)
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and Equation (4-244) is solved as
SY! , =
AM = —— A 4“249
(BM) S ( )

The new maneuver parameters are then found using
M« M+ AM (4-250)
Next, the convergence test described above is applied.

Discussion

In practice, reevaluating the transformation matrix in Equations (4-246) in every iteration
can be very time consuming if the orbit predictor uses a Runge-Kutta integration method
with a small step size for integrating over a maneuver period. A considerable savings can
be obtained if the transformation matrix is evaluated in the first iteration and then not
evaluated in the next N (user-specified number) iterations. Only when the corrections AM
(in Equation (4-249)) are small would the full transformation matrix in Equation (4-246)
be reevaluated to reflect near convergence.

4.9 ANALYTIC PARTIAL DERIVATIVES

The differential correction process requires the development of a set of partial derivatives
called the matrizant, or state transition matrix. These partial derivatives give the relation-
ships between perturbations in the spacecraft state at observation times to perturbations
in the state at the epoch. Analytic expressions for these partial derivatives, which were
developed originally for the Brouwer-Lyddane method (References 16 and 17), are avail-
able for use with all of the orbit generators utilized in GTDS. The perturbation variables
utilized in the analytic partial derivatives are defined in such a way as to couple the
perturbation propagation process with the differential correction process. These variables
are referred to as the DODS variables.

4.9.1 DEFINITION OF THE PERTURBATION VARIABLES
In the statistical estimation process, the spacecraft dynamic state variables in X are nor-

mally expressed in an inertial Cartesian coordinate system. As a result, the estimator
algorithm solves for the differential correction, 6%,1, to be added to the epoch state on
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the i™ iteration, ¥, to yield an improved estimate, X1 Note that the unknowns that are
solved for are corrections to the Cartesian state variables. The variables for the Brouwer-
Lyddane theory are also state corrections, but are defined as follows:

Xy = g (semimajor axis) (4-251a)
a

x; = Oe (eccentricity) (4-251b)

X3 = e of (true anomaly) (4-251c)

Xq4 = Oa (rotation about a) (4-251d)

A

xs = 08 (rotation about §) (4-251¢)

X = Oy (rotation about ﬁ‘;) (4-251f)

X7 = f—z or (radial distance) (4-251g)

2 :

Xz = v (velocity) (4-251h)
na 1l -e2cos E

Xg = 00 (flight path angle) (4-2511i)

X9 = 02 + dw (longitude of periapsis) (4-2513)

The variables X{, Xz, and X3 account for in-plane perturbations of the orbit, i.e., pertur-
bations in the semimajor axis, a, the eccentricity, e, and the true anomaly, f, respectively.
The variable X3 can also be related to a perturbation in the mean anomaly, M, as fol-
lows:

2
evl - & g (4-252)

" { - e cos E)?

X3
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The variables X4, Xs, and X¢ account for angular rotations of the orbit plane. Figure 4-8
illustrates an orbit around a planet. The unit vector 4 is normal to the orbit plane; the
unit vector ﬁ lies in the orblt plane and is displaced from the ascendmg node by the
angle &,. The unit vector y forms a right-hand system with 4 and ﬁ

1’> = a x ﬁ Variable X4 accounts for the rotanonal perturbation da about a, Xs
accounts for the rotational perturbation §8 about ﬁ and X accounts for the rotational
perturbation dy about ? Variables X4, Xs, and Xg can be related to the orbit inclina-
tion, i, the right ascension of the ascending node, Q, and the argument of periapsis, o,
as follows:

i = x5 cos 8, - Xg sin &, (4-253)
50 = Xs sin O, .+ ?c6 cos 0, (4-258)
sin 1
dw = X4 - % - (x5 sin 8, + x5 cos J,) cot i (4-255)
z
a A 5

ORBIT PLANE

A

>y
\ /
\
EQUATOR \ s

—

Figure 4-8. Orbital Geometry

The angle &, between the line of nodes and the ﬁ vector defines the ﬁ and y directions.
This angle can be @o, wo + fo, @ + f, or son}\e other specified angle. In the equations

that follow, 0, is assumed to be @ + f , i.e., B is directed towards the spacecraft.
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Only six of the 10 variables in Equation (4-251) are independent. Therefore, any six can
be selected to be solved for in any orbit determination problem. The selection criteria are
dependent upon the sensitivity of the variables to pertinent characteristics of the orbit
being determined. Experience has shown that variables X;, Xz, X3, X4, X5, Xg, and Xy
are usually a reliable set of variables to use in a variety of Earth orbital missions. The
dependence of the variables on orbital characteristics is shown in Table 4-5.

Table 4-5. DODS Variable Dependency

a [ I Q [ M E f r & da v
¥y »
X, »
X3 P A I B
X - -
Xg | - »
Xe » | o v
Xy v | - e A
Xa - » » » » » -
X » » e e > »
X9 [ [l - >

The Brouwer-Lyddane theory was developed for use with drag-free orbits. However, for
high-altitude, small-eccentricity orbits, the primary effect of drag is a secular change in
the mean anomaly. This effect is relatively small and is noticeable only over a long period
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of time. Consequently, an optional first-order correction to the mean anomaly is included
of the form

m 3
AMprag = Z Z Npqlt = tg)? m=01,2 ..,19) (4256
q=0 p=2

L
[

= Brouwer drag parameters

reference time associated with the Brouwer drag parameters

-
N
"

The correction is applied to the mean motion as follows:

i

M’ = ng At + M At + My + AMprac (4-257)

Forty DODS variables, which account for the forty drag parameters Npg in Equa-
tion (4-256), are defined as

N

Xaoeg = —3 (@ =0, 1,19 (4-258a)
N

g = 3+ @=01..,19 (4-258b)

These variables are estimated by means of the differential correction process to determine
the secular corrections to the mean anomaly.

4.9.2 STATE TRANSITION MATRIX ELEMENTS

The statistical estimation algorithm requires the matrix of partial derivatives of the obser-
vations f(t;) at time t; with respect to the solve-for state variables X; at the epoch time tg.
These partial derivatives are computed as follows:

of(t)  of(t) of(t) -
o = ) o G=1 2 . 19) (4-259)
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The partial derivative of the observation model f(t)) with respect to the osculating
Cartesian state vector £(t}) is modeled as described in Chapter 7. However, the partial
derivatives of the osculating Cartesian state with respect to the DODS variables must be
determined. When the Brouwer or Brouwer-Lyddane theory is being utilized, 97(t;}/0x; is
obtained analytically, where the solve-for variables X; are the DODS variables. When one
of the other GTDS orbit generators is used, requiring numerical integration of the orbital
equations, two options are available: (1) the required partial derivatives can be obtained
from numerical solution of the variational equations or (2) the above analytic partial
derivatives can be used by replacing, via the chain rule, the required partial derivative in
Equation (4-249) with

oF(t) _ of(t) 8%«

4-260
3Xj dXx an ( )

where, in this case, the variables Xy are the DODS variables, the first term on the right
represents the analytic partial derivatives of the osculating Cartesian state with respect to
the DODS variables, and the second term represents the partial derivatives of the DODS
variables with respect to the appropriate solve-for variables, depending on the orbit gen-
erator being used.

The analytic partial derivatives of the osculating Cartesian state with respect to the DODS
variables are approximated by two-body Keplerian partial derivatives evaluated using the
osculating Keplerian elements at t; and t . This approach neglects the higher order ef-
fects of the Brouwer secular variation, as well as the partial derivatives of the osculating
position and velocity with respect to the Brouwer mean position and velocity. These par-
tial derivatives, which are developed in Reference 18, are presented below.

ar 3 .

O ro 2h-t)F 4-261
el AU (4-261)
oF _ f  3uflt - t) (4-262)
—_— e e — o ———

0X; 2 2 !'3

o _ _ ! [(cosEo +e)F - l(2 - e? - e cos E)(sin E) 1'7] (4-263)
dXa (1 - €% n
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F : in B
oF ! = (cosE)f—ﬂsmz (1+ecosE-e2-—ezcoszE)F]
dX2 (1 -¢e9 nr
of a2{ sin E ) A
_— = — 2 cos Eg + e sin? Bg — 2e - (1 - e¥) cos E] P
3%s . {ﬁ[ 0 0 ( ) ]
+ [1 - (2 cos Ep + e sin? Ey - cos E) cos E] a}
'_ 4
or N2 {[1 + 2 cos E(cos Ey - cos E)
Xy J1-e2r
-e[cos E(sin? E + cos® Eg) + 2 cos Eq)
+ €%(2 cos? E + cos? Eg) - e cos® E] p
A
-J1 — e? sin E{(cos E; - cos E){e(cosE + cos Eg) - 2]} 4
or A _
— =a X T
Bx.,
o7 A .
— = a4 X F
dXa
or A _
— X T
0Xs ﬁ
oF A
_ X r
a)(5 ﬁ
LI
6X6
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(4-264)

(4-265)

(4-266)

(4-267)

(4-268)

(4-269)

(4-270)

(4-271)



OF _ 4 « ¢ (4-272)
0Xg

=t

oF o of of

— =2— + (1 -¢€f E— - J1-¢* By — -
poen o, + ( } cos p e* sin By v (4-273)
af o oF aF

I a2 % s 1 -e)cos E— - 1 - e? sin Bp — (4-274)
97 X4 (1 - ¢ cos B © S R0 o

oF of of oF

& 2 (1-ecos BEp— + (1 - %) cos Bg — - 41 - By — (42
= ¢ e + (1= € cos Bo oo - 1 - &% sin Bo o2 (4275)
ar

— = (1 - e cos Eo)%" + (1 - €% cos Ey .;’i - J1 - ¢ sin By ;’_r (4-276)
X2 X3

0Xg X1

5F
. -y1 - €? sin E, L (e + cos Ep) o (4-277)
IXp X3 0X3

of ; of of 4-278
2 = -J1 -¢* sinEy— - (e + cos Eg) — ( )
IXo 0X3 X3

oF a(l - e cos Ep)® [ ) A A

= -y1 - €* (sinE 1 - e¥){(cosE 4-279

dX19 (1 - e(1 - e cos E) (sinE) P+ ( A ) 4] )

i 4 _ 2

ar _ a n(1 - e cos E) [(e - cos E) b - /1- ¢ (sinE) a] (4-280)
9X19 r*/1 - €

where p and q are unit vectors in the orbit plane, with p directed toward pengee and q
advanced 90 degrees in the direction of motion from perigee, i.e., q =a X p The
parameter n is the mean motion.

The Brouwer mean elements are utilized when the above equations are used for determin-
ing the partial derivatives at time t. Although the Brouwer mean clements at time t are
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not determined from two-body relationships, the above equations still provide a good
approximation for the state transition matrix elements for the mean motion.

The partial derivatives of the position and velocity with respect to the DODS drag parame-
ters Xog, cecvees , Xsg are

or

= ng Tt - tg)? 4-281a
aX2{)+q 0 ( q) ( )
oF = - t - t)* {(csc E - €p) p + /1 - € (sinE) 4} (4-281b)
0X20+q Jagr? °
of of
= noft - t 4.282a
0X40+q ol ) 0X20+q ( )
3f aF
= nlt - ¢ (4-282b)
3X40+q 0 q) ax20+q

In the above equations, q = 0, 1, ..., 19.

4.9.3 CONVERSION OF DIFFERENTIAL CORRECTIONS

Use of the preceding partial derivatives results in the expression of the state perturbations
at epoch time in terms of DODS variables. Consequently, the weighted least-squares esti-
mator algorithm yields the differential corrections in terms of DODS variables. These
corrections must then be converted into more meaningful variables, such as Keplerian
elements or Cartesian components. Specifically, GTDS converts the DODS corrections
X1, X2, eene , Xyo into corrections of the Brouwer mean elements, i.e., Keplerian elements.
The reference mean elements at epoch are then updated to begin the next iteration.

As described in Section 4.9.2, when analytic partial derivatives are used in GTDS with
orbit generators other than the Brouwer or Brouwer-Lyddane techniques, the statistical
estimation algorithm is modified by introducing the partial derivatives of the DODS vari-
ables with respect to the solve-for state variables appropriate for the orbit generator in
use. The estimation algorithm then yields the differential corrections in terms of these
solve-for state variables.

Only six of the DODS variables described in Section 4,9.1 are independent. The user has
the option of selecting which elements are to be corrected. The following conversion
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equations show the dependency of the mean Keplerian element corrections on all the
DODS variables. However, only the six independent variables selected for inclusion in the
differential correction process should be included. All the other DODS variables should
be set equal to zero. The following equations also include the conversion relationships for
the related variables E, f, r, 8, §,, and V:

Aa = ax; +2a%; + a° s Xg (4-283a)
Ae = X3 + L1X7 + Es8sXs + 183 Xo (4-283Db)
Ai = X5 cos 0, ~ X sin J, (4-283c)
AQ = —1(xs sin &, + X cos &) (4-283d)
sin i
1
Aw = " X3 + Xe ~ C1aXs - 13 %6 — Laxg — & xg — GoXo (4-283¢)
1
AM = z b1 Xs + E38p X7 + &7 811 Xe + &9 G11 X0 + &1 Xus (4-283f)
1
AE = o CioXs + E3iwXr + L7 Gioxs + &y Ci0 X9 + 10 X19 {4-283g)
Af = %Xa + §3Xge + 7 Xg + Lo X9 + Xpg (4-283h)
A = b (4-283i)
AO = Xo (4-283))
A, = X4 - 12 X5 — $13 X6 + X9 (4-283k)
AV = % Ea X (4-283)
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where

1-e2-r*V3icosé

C1= ”azc

6= L

¢ EiQae+rcosf) + L(1+ecosf) -2a(1 - ¢)
3=

re sin f

£s = nyl - € cos? E

& = ~ ¢,
i

(1 - e*) a® - r* cos* ¢

86 =

2e
£ = Ests(2ae +re + rcos f) - a® (1 - &%)
7o re sin f
rv: .
= n @ cos 0
Ls Y si
£ = £ (2ae + r cos f)
’ - e sin f
f10 = 1 -ecos E
(1 - ¢ cos E)®
b = :
\/l—e

496

(4-284a)

(4-284b)

(4-284c)

(4-284d)

(4-284¢)

(4-284f)

(4-284g)

(4-284h)

(4-284i)

(4-284))

(4-284K)
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CHAPTER 5—FORMULATION OF THE ORBITAL
EQUATIONS OF MOTION

5.1 INTRODUCTION

Direct analytical solution of the differential equations desctibing the motion of a satellite
perturbed by the total acceleration vector (Equation (4-1)) is not possible. Historically,
solutions to this problem have been obtained using two principal approaches. In one ap-
proach, known as the General Perturbation Method, the perturbation model is limited
such that an analytical solution is possible. Brouwer theory is a well known orbit genera-
tion technique that falls in this category. Brouwer formulated the problem of an Earth
satellite, perturbed by point-mass and zonal gravitational effects, in terms of canonical
variables and analytically solved the resulting Hamilton-Jacobi differential equations to
first order in a small parameter, using the Von Zeipel method. The resulting orbit genera-
tion method is extremely efficient, but its accuracy is limited by the restricted perturba-
tion model and the truncated small-parameter expansions (Reference 1).

In a second approach, known as the Special Perturbation Method, the entire perturbation
model can be included in the differential equations (also known as the equations of mo-
tion). The differential equations are solved by the numerical integration techniques de-
scribed in Chapter 6. The Cowell method is the best known orbit generation technique
that falls into this category. In the Cowell approach, the equations of motion are ex-
pressed in terms of the total acceleration vector (i.e., point-mass central body effects plus
perturbing accelerations) and solved directly for the position and velocity vectors.

Considerable research has been done that focused on improving the accuracy and effi-
ciency of orbit generation methods. This research indicates that there is no best orbit
generation procedure for all orbit types. For this reason, several orbit generation formula-
tions are included in GTDS; taken togsther, these formulations are suited to a broad range
of accuracy and efficiency requirements for the various classes of satellite orbits sup-
ported by GSFC.

In general, development of optimum methods for orbit prediction consists of reformulat-
ing the equations of motion in terms of a new set of variables such that the resulting
equations are more amenable to solution. The principal guidelines used in these refor-
mulations are given below.

General Perturbation Methods usually require the use of canonical variables, which are
amenable to the use of averaging transformation techniques such as the Von Zeipel
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method. Similarly, in the Special Perturbation Methods, selection of appropriate variables
may be dictated by the numerical method of solution. For example, the accuracy of nu-
merical integration formulas increases with order. However, each integration formula has
a numerical stability region, outside of which the error growth is exponential (see Refer-
ences 2 and 3 for a more complete discussion of numerical stability). For a given set of
differential equations, this stability region dictates the allowable stepsizes. As a result,
changing dependent variables can affect the stability characteristics of the process.

Reformulations of the Class I equations of motion® in terms of other dependent variables
usually results in a set of Class I equations of motion,* e.g., the Variation of Parameters
equations (Section 5.7). In general, Class I muitistep numerical integration formulas
(Equations (6-21) and (6-26)) have smaller regions of numerical stability than the Class II
multistep methods (Equations (6-22) and (6-27)). Consequently, the numerical stability
characteristics of the transformed equations of motion are a very important consideration.

Well-behaved equations of motion, i.e., those that change only slightly due to a small
change in the elements, will yield large regions of numerical stability in terms of stepsize,
thus allowing the use of the accurate high-order formulas. For example, element sets that
are constants, or vary linearly with time in the unperturbed problem, yield equations of
motion that are more numerically stable than the corresponding set of equations ex-
pressed in terms of the position and velocity coordinates.

Efficient numerical integration can be achieved by adjusting the stepsize to achieve a
uniform local error over the entire orbit. For near-circular orbits, fixed-step integration
produces a uniform local error when time is the independent variable. To achieve a uni-
form error for eccentric orbits, a mechanism is required for using a small time step in the
region of large perturbations and a large time step in the region of small perturbations. A
variable stepsize integration algorithm is available in GTDS (see Section 6.9); however,
frequent stepsize changes are costly and usually introduce error. For this reason, formula-
tions have been developed that achieve a uniform error through analytic stepsize regu-
larization, accomplished through the use of an independent variable other than time. A
new independent variable s, related to the time t by

ds = r—JEdt (5-1)

is available in GTDS, where r is the magnitude of the satellite’s position vector and n is
known as the uniformization constant. The effect of such a transformation is that fixed

* Class I differential equations are of the form dy/dx = f(x,y); Class II differential equations are of the
form d2y/dx® = {(x, y)
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steps in s yield smaller steps in time for small r (where the perturbations are usually
larger) than for large r.

The appropriate choice for the uniformization constant depends on both the dependent
variable set and the local error source. In the Cowell method, the primary source of local
error is inaccurate integration of the point-mass and J; gravitational effects of the Earth.
A uniformization constant of 3/2 is appropriate for these perturbations and is used in the
Time Regularized Cowell orbit generator (Section 5.3). The Delaunay-Similar (DS) equa-
tions of motion (Section 5.5) are uniformized for the J, oblateness perturbation through
the choice of a uniformization constant of 2. The Kustaanheimo-Stiefel (KS) formulation
(Section 5.4) uses a uniformization constant of 1, which removes the singularity at colli-
sion from the equations of motion. In the Intermediate Orbit formulation (Section 5.11),
the uniformization constant can be adjusted to produce uniformization with respect to the
dominant source of local error. It should be noted that uniformization of local error can-
not be achieved through analytic stepsize regulation alone for highly elliptic, long-period
orbits, for which both the nonspherical effects of the Earth and lunar effects are equally
important. In such cases, a variable stepsize algorithm is also needed.

3. Choose a dependent variable set in terms of which the solutions to the unperturbed
oroblem are closed, explicit expressions in the independent variable.

In General Perturbation applications, the need for such dependent variable sets is clear.

However, such variable sets also are advantageous for use in Special Perturbation Meth-

ods. Differential equations for quantities that vary slowly and smoothly with time are

known to be more amenable to numerical integration methods (i.e., more numerically

stable) than those for quantities that vary rapidly. In the case of satellite motion, the

acceleration caused by the attraction of the primary body is usually much greater than the

perturbing accelerations arising from other bodies, nonspherical effects, etc. Since de-

pendent variable sets exist that yield closed, explicit solutions to the unperturbed prob-

lem, it is logical to remove the point-mass effects of the primary body from the

differential equations by considering the relative elliptic orbit described about the primary
as a first approximation to the motion. Thus, the equations of motion of such dependent
variables include motion arising only from the perturbing acceleration vector. Methods

that employ this approach are known as Variation of Parameters (VOP) methods (Sec-
tion 5.7). GTDS includes VOP orbit generators that use Keplerian, equinoctial, rectangu-

lar, Delaunay-Similar (DS), and Kustaanheimo-Stiefel (KS) element sets. The resultant
formulations vary with respect to the regularity of the dependent variables and the choice

of independent variables. GTDS also includes the Intermediate Orbit formulation, in
which the equations of motion represent the variation, arising from other perturbations,

about the solution to the point-mass Earth plus J, problem.
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4. nt vari

It is desirable, from the standpoint of generality, to use a set of dependent variables that
is well defined, or regular, for the full range of possible orbital conditions. For example,
the Keplerian and Delaunay variables are not well defined for small eccentricities or for
small or near 180-degree inclinations. Unfortunately, regularity and the requirement for
tractable canonical formulations of General Perturbation Methods appear to be mutually
exclusive. For this reason, the Brouwer-Lyddane formulation was developed in terms
of Poincaré rather than Delaunay variables for use with small eccentricity and small incli-
nation satellites. For Special Perturbation applications, the KS and rectangular variables
are completely regular. The equinoctial elements consist of two variable sets which to-
gether yield a completely regular set except at collision.

The practical effect of singularities in the equations of motion is to cause rapid oscilla-
tions in some of the orbital elements when the orbit is in a near-singular condition. This
condition is not desirable from the standpoint of efficiency in numerical integration.
Accurate integration of such equations requires extremely small stepsizes in the near-
singular region. The rectangular variables and equinoctial elements yield completely regu-
lar equations of motion except at collision. The KS equations of motion are completely
regular, while the VOP equations of motion are singular for the Kepler and Delaunay
elements at small eccentricities and at small and near 180-degree inclinations.

A solution is dynamically stable if small variations of the initial values produce a variation
of the solution that remains small for any value of the independent variable greater than
zero. Dynamic stability is one of the primary motivations for the KS transformation. This
characteristic should be particularly advantageous when the solution is obtained via nu-
merical integration.

As mentioned previously, the efficiency of numerical integration is optimal for the inte-
gration of variables that vary smoothly and slowly. Elimination of short periodic effects
from the equations of motion significantly smooths the dependent variable motion, thus
allowing the use of very large stepsizes. The Intermediate Orbit elements and the Method
of Averages (Section 5.8) use this approach. The equations of motion of an averaged
element set are integrated. The resulting orbit generation method is extremely efficient
but is limited to average element accuracy rather than the osculating element accuracy
achieved in high-precision methods.
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It should be noted that several of the guidelines stated above are mutually exclusive. The
requirements of the specific application dictate which of the guidelines are most impor-
tant. The characteristics of the orbit generation methods available in GTDS are summa-
rized in Tables 5-1 and 5-2.

The choice of an optimum orbit generation method is dependent on the orbit type, accu-
racy, and efficiency requirements. In general, the reformulated high-precision methods
are more accurate than the Cowell method. However, the transformations required in
these formulations increase computational time; therefore, these methods should be used
only for orbits for which they yield improved accuracy at larger stepsizes as compared
with the Cowell method, or where these methods have a more appropriate method of
analytic stepsize control than does Time Regularized Cowell.

For circular orbits, analytic stepsize regularization is not necessary. In fact, integration of
the time equation increases computational time and can introduce errors into the solution.
For orbits with eccentricity greater than 0.1, analytic stepsize regulation is usually benefi-
cial. The independent variable is therefore an important consideration in the choice of the
orbit generation formulation. As the uniformization constant is increased, the size of the
time step at perigee decreases and that at apogee increases. This constant should be
chosen so that the local error is uniformized over the entire orbit.

For applications that require high efficiency, it is important to consider the number of
output points required. Using analytic methods such as Brouwer theory, the computational
cost is directly proportional to the number of output points. However, when numerical
integration is used, the cost is mainly dependent on the arc length and not the number of
intermediate output points. For DC applications, the computational cost of the averaged
orbit generation methods is often competitive with that of Brouwer theory and offers
considerably greater flexibility with respect to the perturbation model.

5.2 COWELL METHOD

The Cowell equations of motion of a satellite are expressed by the general formula

d*r uft =
= = - P 52
dt? | F|? ¥ (5-2)

where

position vector in an inertial Cartesian coordinate system

s |
" I

physical time
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Table 5-1.

Characteristics of High-Precision Orbit Generators

ANALYTIC TIME
ORBIT GENERATOR MSEJL"‘U‘?T?O?‘F COMPSUJE‘ETD'ONAL STEPSIZE | REGULARIZATION|  LIMITATIONS COMMENTS
CONTROL CONSTANT
Cowell Multistep numerical integration Medium No None
using Stormer-Cowell formutas
Time Regularized Multistep numerical Integration Medium Yes 3/2 None
Cowell using Stormer-Cowell formulas
VOP—Keplarian Muttistep numerical Integration Medium No Singularities for Provides closed-form
using Adams formulas e=0; =0, 1B0® solution to unperturbed
Ellptic motlon only | problem
VOP—Equinoctlal Multlstep numerical integratlon Medium No Efliptic motlon only | Provides closed-form
using Adams formulas solutlon to unperturbed
problem
VOP—HRectangular Multlstep numerical integration Medium No None Provides closed-form
using Adams formulas solutlon to unperturbed
problem
Intermediate Orbit Multistep numerical Integration Medium Yes 2 Singularitles for Provides closed-form
uging Adams formulas e=0; |=0, §3.4° solution to J, through
Eliptic motion only | Jy problem
KS Multlstép numerleal Integration Medium Yes 1 Eliptle motion only | Provides closed-form,
using Adams formulas stable oscllator
solution to unpearturbed
problemn
DS Multistep numericat integration Medium Yeos 2 Singularities for Provides closed-form,
using Adams formulas e=0; =0, 160° dynamically stable
Eliptic motlon only | solutfon to unperturbed
problem
Chebyshev Serles Plcard lteratlon Low N/A None
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Table 5-2. Characteristics of Approximate Orbit Generators

ANALYTIC TIME
ORBIT GENERATOR METHOD o COMPUTATIONAL | STEPSIZE | AEGULARIZATION|  LIMITATIONS COMMENTS
CONTROL CONSTANT
Brouwer Anatytic High N/A Singularitles for Solution Includes only
e=0, |=0, 63.4° J, through J; effects
Elliptic motlon only
Brouwer-Lyddane Analytic High N/A Singularities for Solutlan Includes only
=63.4° J; through J,; effects
Eliptic metion only
Vintl Analytic High N/A Eliptic motion only | Solutlon includes J,
through J, effects
Averaged Kepler Multistep numerical integration High No - Singularitiss for Solutlon does not
using Adams formulas e=0, i=C¢, 180° nclude short-period
Eliiptic motion only | effects
Averaged Multtstep numerical integration High No Eliptic motlon only | Solution does not
Equinactial using Adams formulas Include short-peried

effects




gravitational constant of the central body
total perturbing acceleration

u
P

The acceleration P can include any of the perturbing accelerations discussed in Chap-
ter 4.

This set of three Class II differential equations is solved directly for the position vector
using the Stormer-Cowell numerical integration formulas (Equations (6-22) and (6-27)).
The three Class I equations for the velocity vectorf

dF "ur‘
— = - P (5-3)
dt | T ¥

are integrated using the Adams numerical integration formulas (Equations (6-21) and
(6-26)) in the case of velocity-dependent perturbations, such as atmospheric drag.

The Cartesian coordinates and the equations of motion are regular, except at collision.
This method can be used for elliptic, parabolic, and hyperbolic orbits. The point-mass
gravitational attraction of the primary body appears explicitly in the equations of motion
and is usually the dominant acceleration that must be integrated.

For circular orbits, the choice of time as the independent variable produces a uniform
local error with respect to the integration of the two-body acceleration at each integration
step. The Time Regularized Cowell formulation (Section 5.3) was developed to achieve
uniformization of local error in the case of noncircular orbits.

5.3 TIME REGULARIZED COWELL

Efficient numerical integration is aided by making the local error uniform at each integra-
tion step. With the Cowell method, the equations of motion (Equations (5-2) and (5-3))
must be uniform with respect to the dominant local error source, which is generally the
point-mass and J, gravitational accelerations. These equations are already uniform for
circular orbits. For noncircular orbits, however, the Cowell equations must be reformu-
lated in terms of a new independent variable s, defined by the relationship

d Ju d
™ as -4

(741

where n is the uniformization constant and r is the magnitude of the position vector. The
resulting equations of motion are called the Time Regularized Cowell equations. The



choice of 3/2 for n uniformizes the local error with respect to the point-mass and J,
gravitational effects.

Under this general transformation, the Time Regularized Cowell equations of motion be-
come

o r B r') (5-5)

where the prime notation refers to differentiation with respect to the independent vari-
able s. This equation involves derivatives with respect to the variable s only. The inertial
position vector is obtained by integrating Equation (5-5) using the ClassII
Stormer-Cowell formulas (Equations (6-22) and (6-27)). The inertial velocity vector is
obtained by integrating Equation (5-5) using the Class I Adams formulas (Equa-
tions (6-21) and (6-26)). Since the velocity appears explicitly in the equations of motion,
the velocity equation must be integrated event in the case of velocity-free perturbations. In
addition, the following Class II equation is integrated for the time:

n-1 ¢
¢ o RCTT (5-6)
7
Comparison of the Time Regularized Cowell and the Cowell integration schemes indicates
that the favorable properties of simplicity, precision, and adaptability are shared by both
methods, while for highly eccentric or drag-perturbed orbits, the analytic stepsize regu-
larization afforded by the Time Regularized Cowell method is superior. It should be noted
that uniform local error cannot be achieved through analytic stepsize control alone for
highly elliptic, long-period orbits with equally important contributions from the nonspheri-
cal effects of both the Earth and Moon. For these cases, a variable stepsize algorithm, or
regularization of both time and the separation from the Earth center of mass, should be
used.

5.4 KUSTAANHEIMO-STEIFEL (KS) FORMULATION

By means of the KS transformation, the nonlinear equations of two-body motion are trans-
formed to a set of linear, dynamically stable differential equations, similar to those of an
unperturbed harmonic oscillator (see Reference 4 for a complete derivation). This trans-
formation consists of choosing a set of regular dependent variables such that the resulting
differential equations are regular, i.e., have no singularities. Regularization of the dif-
ferential equations requires the extension of the position and velocity vectors from
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three-dimensional to four-dimensional vectors. The singularity at collision is removed by
choosing the generalized eccentric anomaly E as the independent variable, such that

—_ = = (5-7)

where the frequency @ is related to the negative of the total energy o = Jh/2 . In addi-
tion, this transformation produces analytic stepsize regulation with a uniformization con-
stant of 1. Therefore, a time equation must also be integrated. A time element 7 is
introduced such that

t-1- 1@ 0 (5-8)
w

where T and @ are the transformed position and velocity vectors (I' = du/dE), and the
notation (T, T’) denotes the scalar product of the two vectors. This time element varies
linearly with the independent variable for unperturbed motion and is therefore more ame-
nable to numerical integration than the time equation. (See Appendix B for a more de-
tailed discussion of the time elements.)

Regularized equations of motion behave considerably better with respect to numerical
integration than the corresponding nonregularized equations. For unperturbed two-body
motion, every solution to the regularized differential equations is dynamically stable. This
means that small variations of the initial values produce a variation of the solution that
remains small for any positive value of the independent variable. Dynamic stabilization of
the KS equations of motion is accomplished by using a time element and by including as a
dependent variable the frequency @, which is related to the total energy, and taking
advantage of the fact that it is a constant of the motion for conservative forces. Conse-
quently, a total of 10 equations of motion are integrated.

The KS equations of motion are formulated as VOP equations in terms of regular ele-
ments: the frequency o, the time element 7, and the two vectors of four components
each, @ and B . Elements are quantities which, during unperturbed two-body motion, are
constants or linear functions of the independent variable. The advantage of introducing
elements is that they vary almost linearly if the motion is subjected to weak perturbations.

5-10



5.4.1 THE KS VARIATION OF PARAMETERS (VOP) EQUATIONS OF MOTION

The KS equations of motion are VOP equations in Lagrangian form. The equations for &
and g are

dz 1 [V_ NV _rp)], 29 E

da _ | 1L I i = 9
dE {2w2[2“ ¥ 4(311 - )] ¥ wdEu} sin (2) (5-92)
df 1 [v_ rfav To 2 do _, E

E - _{2(92[2“ + Z(an' - 2L P)] + ;d_Eu} cos (—2—) (5-9a)

while the equations of motion for the time element T and the frequency w are

dz 1 r v 2 dw
— = — T, _2LTP| - S —(u, u) (5-10a
E - 87 160° (" En ) o & T G0

dw r oV T
dE 8w? 811 ( , L7P) ( )

In the above equations,

V = perturbing potential function

P = additional perturbing accelerations

i = gravitational constant of the central body

L = KS transformation matrix defined by Equation (5-21)

In GTDS, the perturbing potential V which is used is the potential arising from the J;
nonspherical effects given by

72
V = —ﬂRz [—5 = 3:_3] (5-11)

T

where R, is the radius of the central body. The quantity P represents the perturbing
accelerations due to higher harmonics, drag, radiation pressure, etc.
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The components of T, the transformed position vector, and T, the transformed velocity
vector, are obtained from the elements as follows:

i = & cos (%) + B sin (—E;—') (5-12)

1 E 1 - E
T = ——asin|=)+ = = 5-13
T 2asm(2)+2ﬁcos(2) (5-13)

The magnitude of the position vector is

r=ud+ud+udeud (5-14)

The position vector F of the satellite is computed for use in the evaluation of the perturb-

ing accelerations using Equations (5-37) through (5-39). The velocity f is also computed
in the case of velocity-dependent accelerations, using Equations (5-40) through (5-42).
The physical time is computed from

t=7- —l-(tr, ) (5-15)
w

The notation (T, @) denotes the scalar product of the two vectors.

The transformed components of the perturbing accelerations are computed as

(LTP); = Py + P, + u3Ps (5-16)
(LTP); = -w Py + u; P + iy P3 (5-17)
(LTP)3 = -u3 Py - usP; + uy P (5-18)
(LTP)s = us Py - usPz + 0z Py (5-19)
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542 TRANSFORMATION FROM CARTESIAN POSITION AND VELOCITY TO
KS PARAMETRIC VALUES

The KS transformation is defined as
X=L({u) = U (5-20)
where X is a vector whose first three components are the Cartesian position coordinates

and the fourth component X4 is always zero, i.e., X = (%, ¥, z, 0).

The matrix L(u) is the KS matrix with components given by

u; —uz; —uz Uy

L = Uz U; —Us =Uj (5_21)
U3 Uy J35] Uz

Us —uz Uz -

The elements of this matrix are computed as follows.

Assuming that ¥ and f are given at the instant t = to, the radial distance is computed
from ‘

r= yx*+y + 22 | (5-22)

and the frequency from

2w = B2 Liip-v (5-23)
r 2

where V represents the perturbing potential, which is the J; potential in GTDS (see Equa-
tion (5-11).

If x = 0, the parametric state vector is found from

u +uf = % r + %) (5-24)
gy = L I ZH (5-25)
r+ x

5-13



or, if x < 0, from

The derivatives of the transformed position vector with respect to E are

Zu; — YU

Uy =
r + X
2 2 1
u; + U3 = a—(r-—X)
yu; + ZUs
=T
ZU; — VU3

4w

4w

4w

4w

The initial value of the time element is

5-14

1 . } .

— (U X + Uy + U3 Z)
1 . . .
— (~up X + u; y + Uy 2)
1 . . .
—(-u3x—u4y+u1 Z)

1 - . .
—(l.l4x—ll3y+ll22)

(5-:26)

(5-27)

(5-28)

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

(5-34)



If E = 0 is adopted as the initial value of the eccentric anomaly, then

(5-35)

&
"
=

and

B =2 (5-36)

5.4.3 TRANSFORMATION FROM KS PARAMETRIC VARIABLES TO
CARTESIAN POSITION AND VELOCITY

Using Equation (5-20), the Cartesian components of position are calculated from

x=ud-ud-u}+ i} (5-37)
y = 2(u1uz — U3 Uy) (5-38)
7 = 2(1,11 uz + Uz ll4) ' (5-39)

and the Cartesian velocity components are determined from

)'{. = T (U1 u'] - U U'z = U3 u; + Uy u;) (5-40)
. 40} ' [ ¢ '
¥ = T (l.lz U; + Uy Uz — ugliy - Uj |.14) (5'41)
N 4(0 ] ' ' '
zZ = —r—- (usu; + Uguy + Uy Uz + U Ug) (5-42)
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5.5 DELAUNAY-SIMILAR (DS) ELEMENTS

The DS method is a VOP formulation that was developed using the generalized true
anomaly as the independent variable, such that

dt 2
ds 1 U (5-43)
- 6" 5[“’ § 75‘5]

where L, G, and ® are defined later in this section (see References 5, 6, and 7 for a more
complete discussion).

This choice for the independent variable is particularly appropriate for numerical integra-
tion of the oblateness perturbation. The dependent variables are a generalization of the
classical Delaunay elements and are singular for e = 0, i = 0, and at collision. The trans-
formation of the equations of motion is carried out in terms of canonical variables. This
approach leads to the requirement for a canonical variable, conjugate to the physical time,
which is the negative of the total energy. The resulting set of equations of motion is
uniformized with respect to integration of the J, nonspherical perturbation.

The geometrical and physical interpretations of the eight DS elements for the unperturbed
problem are as follows:

= true anomaly

= argument of pericenter

= longitude of the ascending node

= “mean” mean anomaly

measure of the perturbing energy, which vanishes in unperturbed motion
= total angular momentum

= z component of the angular momentum

M QeSS e
[

= total energy

where L, is the initial value of the total energy.

This set of DS elements contains one fast variable, the generalized true anomaly . The
element 7 has been defined such that it is a constant in the case of unperturbed motion.
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For the two-body problem, the DS elements yield closed and explicit solutions in terms of
the independent variable. Not all of the DS elements are osculating. The reason is that the
orbits are situated on the energy surface

F=F+rfV=20 (5-44)

where Fy is the unperturbed Hamiltonian.

This energy manifold depends on the perturbing potential V. The compute the osculating
elements at a certain time, the potential V must be set equal to zero since, by definition,
osculating elements represent the Keplerian position and velocity with respect to the mov-
ing coordinate system inherent in the VOP equations of motion.

In the following sections, the DS elements vector is denoted by

(a1, az, a3 Ga, G5, G6, @7, 08) = (¥, g, h, & €, G, H, 1) (5-45)

5.5.1 THE DS VARIATION OF PARAMETERS (VOP) EQUATIONS OF MOTION

The DS equations of motion, which are VOP equations in canonical form, are as follows:

4 .
da; _ 9F @ (5_) N E (D) (PX - pj) (i=1,..4) (546)
ds a4 daia \q q 9%
j=1

4

. 2 2 .
dais _ _y 0 (r_ o E Dy (ﬂ _pj) (=1, .., 4 (547
ds da; \ q q 9%; .

i=1

where X;, X2, and X3 are the three components of ¥ and X4 is the time. The quantity V
is the perturbing potential given in Equation (5-11), and the scaling factor q, defining the
time transformation in Equation (5-43), is given by

(5-48)
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The unperturbed Hamiltonian Fj is given by

Pg = Qg — 75% (5-49)
- 8
and its derivatives by
o _ 4 (5-50)
das
Fo _p (5-51)
dag
%o _ (5-52)
daas
o “ (5-53)

das  (2as)*?

The vector P is the additional perturbing acceleration vector expressed in rectangular
coordinates. The extension of phase space by the inclusion of time and total energy as
variables results in the introduction of an additional canonical force

Pp= - —— P (5-54)

The elements of the 8 x 4 matrix D

3(xy, Xa, X3, X4)
D= L 5-55
B(al, az, ..., ag) ( )
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are computed by the following relationship:

where
T3
T2
T3
and

]

|
[y
-

o 3)
)

0% or ot (1 =

_— = — 1

r — .
aaj aaj aa_] (J

]
—

cos(a; + @3) cosas — sin(a; + az)sin a3 cos I

cos{a; + az) sinas + sin(a; + az)cos as cos I

sin{fa; + az) sin 1

a
cos I las|
Qg
2
. a
sin 1 = sign (@7) /1 - —
s
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(5-56)

(5-57)

(5-58)

(5-59)

(5-60)

(5-61)

(5-62)

(5-63)
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The partial derivatives of 7y, 72, 73, and X4 are given in Table 5-3; the partial derivatives
of r, p, q, and e are given in Table 5-4. The vector a(r*/q)/da is evaluated using the
relationship

2 2
9 (f_) _x o (5-65)

The conservative accelerations present in V give rise to a differential equation for L, the
total energy of the orbit,

2
a _r (E.‘i i, R,) (5-66)
ds q \ 0X4
where
N _p=o0 (5-67)
aX4

Therefore, L is a constant in this case. This fact is exploited in GTDS by not numerically
integrating the equation for L when only conservative forces are present. This avoids
cumnulative magnified errors in other elements that are driven by small numerical errors
in L.

5.5.2 TRANSFORMATION FROM CARTESIAN POSITION AND VELOCITY TO
DS ELEMENTS

Tt is assumed that T, F, and t are given. In order to numerically integrate the DS equa-
tions of motion, the initial values of the DS variables are computed. The total angular
momentum G is computed from

G = VG} + G} + G} (5-68)

where

(5-69)

<y
]
e
X
1
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Table 5-3. Partial Derivatives of the Auxiliary Parameters 74, 13, 73, X4
s faay Jaay o oy
- sinfay + ag) cos - cos(ay + a4) sin a
a'rlf 1 2 3 % 1 a2 3 o
- coslay + a3} zin ay cos | 1 - sin{ay + az) cos ag cos I
- sin{oy + aq) sinD @ coa(ay + as)} cos @
afz,’ 1 r 3 % 1 a2 3 0
+ cos{ay + a3) con ay cos 1 1 - sinfa; + ay) sin ay cos |
93
ar3/ cot(ay + ag) sin 1 Jar 0 o
2
] —E I a - e 0 0 0
x4f (203)3/2 [Pz ¢ 9
faas faag foas faas
an/ ¥} ?16. sin{ay + ap) sin a3 cos If- “1_6 sinfa; + ap) sin a3 [¥]
araf 0 - ;16- sinfay + ay) cor az cos I|é sin(a; + ap) cos @3 0
1 cos2 1 . 1 cos 1 .
ary/ 0 ;: T sinfay + #3) - -;-6- T sin(a; + a3) ]
3 I T
. 2 —_ - - —
axy/ _ ] e " %ag 0 J-—._z | ) .
xsmal(-;-vl)s;; % ¥l - & nnal(iol)rs
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Table 5-4. Partial Derivatives of the Auxiliary Parameters g, p, €, r

das

G & o |
W{ﬁ{‘j Jaay /oaz Jaas Joay
aq/ ] 0 0 0
ap/ 0 0 0 0
e/ o 0 0 o]
or/ 22 sin o 0 0 0
P
[das foag /3ar /oag
oq/ -1 1 0 _"'-""_3_
2 2(2ag)*/?
P ap B ap
-2 jE - = 0 2
20/ JE as e a5
—ag dp as dp -1 ap
- i - L8 0 —— e
oe/ eu das e odag He [p T aag]
e _ 3 R il ) Il _ 8
o1/ p[aas r cOs @ P[aas T3 . o5 Q) p[aas r P o8 dy
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The z component of the angular momentum G is given by

H

The total energy L is computed as

where

= (G

v=/ﬁ2+y2+22

and V is given by Equation (5-11).

The perturbing energy @ is

®=G- JG +2r°V +

The generalized true anomaly is computed as

where

P =

5-23

tan~! (M)
cos Y

K

V2L

(5-70)

(5-71)

(5-72)

(5-73)

(5-74)

(5-75)

(5-76)

(5-77)



. E- D) (5-78)

. (G f B @)Z (5-79)
P 2L
e=.j1-%5 (5-80)
i
and
. q a(rZ/q)] ]
w_r2[1+v - (5-81)

This last derivative, given by Equations (5-48) and (5-65), depends only on L, G, and &
given above.

The longitude of the ascending node h is given by

h = tan™ (”Géz) (5-82)

and the argument of pericenter g by

g=u-y (-x=<g=a) (5-83)
where
z(G? + GI) - G3(xGy + YGz)]
u = tan’! (5-84)
[ GG - xGy)

The eccentric anomaly E is computed as

E = Zmn"[ 1-¢ tan (2)] (-n = E = 7 (5-85)
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and the variable ¢ is given by

{ =t a [E ~yp-eqf1-¢ %;- sinw] (5-86)

- (ZL)S/Z

5.5.3 TRANSFORMATION FROM DS ELEMENTS TO CARTESIAN POSITION
AND VELOCITY

Predicted values of the DS variables (3, g, h, £, ®, G, H, and L) obtained from the
numerical integration must be transformed to physical Cartesian position, velocity, and
time to evaluate the perturbing forces and for computation of observations. The following
equations yield the Cartesian state:

F=Cxs+dx; (5-87)
l‘T =C 5(1 +d )-(2 + E X + d_ X2 (5'88)
where € and d are the vectors

cos g cos h - sin g sin h cos I
T =|cosgsinh+sing cos h cos I (5-89)
B sin g sin [

—sing cos h - cos g sin h cos I

d=|-singsinh+ cosgcoshcoslI (5-950)
| cos g sin I
and
Xy =1 Ccosy (5-91)
Xy = 1 sin @ (5-92)

and cos I, sin I, and r are computed using Equations (5-60) through (5-64).
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The required derivatives for the velocities are given by

c=dg (5-93a)
g=rc8 (5-93b)
X, = T cos g ~ ¥ siny (5-94a)
X, = F sing +r ¢ cosy (5-94b)
The quantity r can be expressed directly in terms of DS elements as
.ersng [io . (1 y mSY "”)] (5:95)
1% m r ie

and ¥ is given by Equation (5-81).

The physical time is computed from

t = ¢ # (E -yP-T %Jl - &% sin zp) (5-96)

+ L7

where E is computed from Equation (5-85) and ¢ is computed from Equation (5-86).

5.6 PICARD ITERATION USING CHEBYSHEV SERIES

The Picard iteration method used in GTDS (derived in Reference 8) can be used to inte-
grate the Class 1 Cowell equations of motion

d_f" _-uf 5 (5-97)
dd +F

dr .

el 5-98
= g (5-98)
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using the following iterative process (Reference 9):

t
far1 (1) = T(t0) + J P, fp, fo) dt’ (5-99)
g
1
fani(t) = Flto) + I fper dt’ (5-100)
to

The starting values Fo(t), fo(t) are arbitrary continuous vector functions on the interval
[to, t], which satisfy the given initial conditions

Folto) = Tlto) (5-101)

fo(to) = (to) (5-102)
In the present version of GTDS, fo(t), f, (t) are solutions to the unperturbed problem
(P = 0 in Equation (5-97)). Since the sequence converges to a close approximation of the
exact solution, the method can be used to generate very accurate solutions. Except at
collision, the Cartesian coordinates and equations of motion are regular, which means
that the method can be used for elliptic, parabolic, and hyperbolic orbits.

In order to solve Equations (5-97) and (5-98) for a given value of n (i.e., to accomplish
one iteration), the Chebyshev series is used as follows. The position and velocity vectors
available from the {(n-1)* iteration, Ty and f,.1, are evaluated at the Chebyshev points
in time. (The precise locations of the Chebyshev points are given in the next section.)
The forces (per unit mass) are then evaluated at each of these points in time (using the
values of T, and f‘n_l). These special values of the acceleration vector are then used to
determine the interpolating polynomial in time in the form of a Chebyshev series. The
coefficients of the Chebyshev series are determined directly from the special values in a
rather simple way due to the orthogonality of the Chebyshev polynomials (as described
later in this section). The Chebyshev series representation of the acceleration is then
integrated to obtain the Chebyshev series representation of the velocity to within an arbi-
trary constant of integration. The constant of integration is determined by requiring that
the initial velocity T (to) agree with the series for the velocity evaluated at ty. The result is
an approximation to T, . Similarly, the series representation of the velocity is then inte-
grated to obtain the series representation of the position, where now the initial posi-
tion F(to) is used to determine the constant of integration. The result is an approximation
to f,, thus completing one step of the Picard Iteration procedure.
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The preceding set of operations is repeated until two successive approximate solutions
agree to within a tolerance that can be specified by the user. This completes one step of
the integration, and the process is continued stepwise until the final time is attained.

A finite Chebyshev series fitted to a function has the significant property of making the
least possible maximum error of all the common interpolating orthogonal polynomial
series. The maximum error committed, as well as the overall truncation error, diminishes
as the number of points used in the fitting increases. Since the error in the fitting of the
accelerations oscillates with an amplitude less than or equal to the maximum error, the
errors partially cancel each other during integration.

The Chebyshev series solution is derived in the following manner. The interval of
time (o, t) is mapped linearly onto the interval (-1, 1) by means of the expression

Eo1-2 (t - ‘“) (5-103)
-1
where
E = normalized time
to = initial time
t; = final time
t - tp = interval of time for which the orbit is to be integrated by

Chebyshev series

The normalized time & = 1 corresponds to t = to. The time points for which the
Chebyshev series is to be fitted are the zeroes of the (N+ 1)® Chebyshev polynomial. At
these points, the Chebyshev polynomials have an orthogonality property with respect to
summation. The Chebyshev polynomials T; are defined as

Ty (£) = cos j (cos™ &) -1 =< & =1) (5-104)

and the N + 1 Chebyshev points are given by

E = cos (-IENE) k =0, 1,..., N; (N < 48)] (5-105)
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An interpolating polynomial pm(&), representing the ith component of acceleration as a
function of the normalized time §, is expressed as a finite series in Chebyshev polynomi-
als

M

L

pm(é) = z ¢ Tyé) (5-106)

j=0

where M is the degree of the polynomial (M < N) and the prime denotes that the first
term is factored by one-half (if M = N, the last term should also be factored by one-half).
The quantities ¢; are numerical coefficients which are determined from the ith accelera-

tion components tj (&) at the Chebyshev points by means of the relationship

N !
G = 'I% Z fii) Ti(6x) (5-107)
k=0

where the double prime indicates that the first and last terms (for j = 0 and j = M) are
factored by one-half.

The integration with respect to time is carried out using the following formula:

JT,-(«E) d¢ = -;—[(3-%—1) T - (J_if) T,-_l(!j)] G>1) (5108

Special cases hold for j=0and j = 1, ie,

IT°(§) d€ = Ty(8) (5-109)

J' T,@) d& = 7 [To(® + Tal®)] (5110

The coefficients for the integral of the series for pm(£) are represented by by, ie.,

§ M+1
J . pMm(x) dx = z b; T;(6) (5-111)
=0
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At £ = 1, this expression for the ith velocity component is set equal to the initial value of

_that component of velocity by adjusting the constant by to satisfy this condition. A similar
adjustment is made after the integration of the velocity components to match the series
evaluated at £ = 1 with the initial component of position.

The integration formulas lead to a simple relationship between the quantities b; and ¢,
given by

b-glr-g) [sis M) (5-112)

where ¢y, = Cmez = 0 by definition, and by is obtained as described above.

Once the values of ¢; are known, the summations required to evaluate pm(§) for any
value of time can be done more efficiently by use of a backward recurrence relationship.
Intermediate quantities d; are computed using the algorithm

dy(€) = 2& djsa(E) - djal®) + ¢ (5-113)

for j = M, M-1, ... 0, starting with dm+1(8) = dms2(§) = 0. The value pm(&) is then com-
puted from

pu®) = 3 [ - G2(O) (5-114)

5.7 GAUSSIAN VARIATION OF PARAMETERS FORMULATIONS

In real space, the unperturbed satellite orbit is a conic section lying in a plane that has a
constant orientation, shape, and size relative to an inertial frame. For a perturbing accel-
eration that is small compared with the central attraction, the characteristics of the conic
section (e.g., semimajor axis, eccentricity) vary slowly with time. To a lesser extent, the
attitude of the orbital plane with respect to the inertial frame is a continuous function of
time. However, the satellite’s position along its orbit changes rapidly with time.

The numerical integration process is improved by introducing state variables that take
advantage of this disparity of effect. The introduction of such variables allows comparison
of the motion within the plane to a reference orbit and treatment of the motion of the
plane as a slight correction. The VOP method uses this approach.
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In this section, three orbit generators are discussed that are based on the Gaussian form
of the VOP equations

da G
2 .%EZp i
5t o7 (5-115)
where
a = slow element
f = velocity vector
P = perturbing acceleration vector
and
0 o8 —
¥ g+ —‘B P (5-116)
at ar
where
p = fast element
p = derivative of g for unperturbed two-body motion

These three orbit generators differ in the choice of dependent variables, i.e., either
Keplerian, equinoctial, or rectangular elements. Some of the Keplerian elements become
undefined when the inclination is zero or near 180 degrees, when the eccentricity is zero,
and at collision. The equinoctial elements (discussed in Section 3.2.6) and rectangular
elements are selected to eliminate all singularities except for collision. All three genera-
tors use time as the independent variable and are therefore well suited to the accurate
integration of circular orbits. The Keplerian, equinoctial, and rectangular VOP formula-
tions are discussed in Section 5.7.1, 5.7.2, and 5.7.3, respectively.

5.7.1 KEPLERIAN ELEMENTS

The input initial conditions for an orbit in GTDS can be expressed as rectangular compo-
nents of the position and velocity at a given time t. The equations used in GTDS for the
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conversion of rectangular position and velocity components to Keplerian elements are
discussed in Section 3.3.8.3. For calculation of disturbing forces and for printout, GTDS
converts instantaneous values of the Keplerian elements to rectangular components of
position and velocity. The formulation used for these conversions is discussed in Sec-
tion 3.3.8.1. Although all three classes of Keplerian orbits (elliptic, parabolic, and hyper-
bolic) are treated in the conversions, the VOP methods of GTDS apply only to the elliptic
case.

The VOP equations of motion for Keplerian elements are taken in the form of the
Gaussian planetary equations

da _ 2 5 (5-117a)
dt n*a

ti

s 2
de _ vy1-¢” [yp 4 o, N1 -¢€ ] P (5-117b)

dt na’e

N, &, -x, §,)cosi+ o] p

O R 30 (5-117c)
dt na? /1 - e? sin i
dQ 1 of

= — - P 5-117d
dt na? /1 -e? sini 9 ( )
do 1 [-J1-¢€e* & A coti OF| =
— = X N —| - P -117
dt n a’ [ e L Xp + N §p) + 1 - ez o (5-117¢)
dM 1 _ 1 - Cz A A

where x, and y, are the orbit plane coordinates given in Equation (3-176), ?;p and 9;,
are Keplerian unit vectors defined in Section 3.2.5 and given by the inverse of
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Equation (3-190), and P is the perturbing acceleration vector. The following auxiliary

quantities are also defined:
n = /% (5-118a)
a

oF -y
—_— = 5-118b
e X (. )
0
oF z sin £ _
— = -z cos Q (5-118¢c)
01 (x, Sin @ + y, cos @) cos i
a2
L=— [e cos E - 1 ~ sin* E] (5-118d)
a? sin B
N = (cos E - €) (5-118e)

ryl - €?

The eccentric anomaly is obtained by solving Kepler’s equation according to the method
described in Section 3.3.8.1.

5.7.2 EQUINOCTIAL ELEMENTS

Since disturbing forces are calculated as rectangular components, and initial values can
be rectangular components of position and velocity, GTDS has a capacity for converting
Cartesian coordinates to equinoctial elements (see Section 3.3.9.2). The transformation
from equinoctial elements to Cartesian coordinates is discussed in Section 3.3.9.1. The
Gaussian equations in equinoctial elements are given by the following expressions (Refer-
ences 10 and 11):

da 2F

da _ . 5-119
dt n?a P ( 2)
dh

1 . . A . a k A
i [; [CX, Yy - X1 Yy) | - Xo X gl + G (QlY: - pXy) W] - F (5-119b)
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o i B E - @ - % Y § - D @It - p X w] P (51190

%Ln_hf ﬁ(kz—hr——h%) - - pXy) ar]-ﬁ (5-119d)

&, :}_%“f ¥, w] . (5-119€)

da :(1 el w] . (5-1191)
where

G =na?/1 - h? - K (5-119g)

The f ¢, and % unit vectors are defined in Sections 3.2.5 and 3.3.9.1, while the compo-
nents of the position and velocity vectors in the orbit plane X;, Yy, X1, Yl, and f§ are
defined in Section 3.3.9.1.

5.7.3 RECTANGULAR FORMULATION (Not Currently Implemented in GTDS)

The initial Cartesian compornents of position and velocity completely define any orbit
whether it be elliptic, parabolic, hyperbolic, or any degenerate rectilinear orbit. From the
initial position and velocity, a completely general closed-form solution of the two-body
problem is available for determining coordinates and velocities at any other time (Refer-
ence 12). The closed-form solution avoids the singularities associated with different types
of two-body motion. In the rectangular VOP formulation, the dependent variables Ty and
fp are the initial COI’ldlthﬂS at the time tp on an osculating two-body trajectory that yields
the same state To and Tp at time t as that of the perturbed trajectory. The dependent
variable is the time. The osculating position and velocity at time t are obtained by insert-
ing the perturbed initial conditions for the time of interest in the standard closed formulas
for two-body motion.

The dependent variables, or perturbed initial conditions, are all slow variables, i.e., their
time derivatives are all zero when the perturbing accelerations are set to zero. (A
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perturbed initial condition is indicated by an asterisk in the following equations.) There-
fore, all the equations of motion are in the form given in Equation (5-115). Then,

where the partial derivative matrices

o
dt

dt

Brg
dr

dTg
r

P

P

are as follows:
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(ax5/o%  axe/dy oxo/d7 ] (g 0 0 x5 |
dys/ok dya/dy dyefoz | = -|0 g 0|+ U Y| [x ¥ 2]
| 920/0%  Bzofdy 8Zo/0Z_ [0 0 g | z5
[ %) X |
. fs, -f-1s
Yo Yo .
L e -1 s - g%
Zg Zn
Caxs/ox axy/oy oxsfoz| [f 0 0] Ed
dy0/0% 0y0/0y 8Y0/0%Z 0 f 0|+Ujyo|lxy2z]
| 920/0% 0zo/dy 0zgfoz_| |0 O f | 7o
%o %o fs;+ (-D/rg (-5
LI r‘ r‘
+| Yo Yo ,0 0
e - f 81 (f - 1) S2
K

X
b'e

(5-120a)

(5-120b)

(5-121a)

y z
y z

(5-121b)
X y z

Xy 2



The position and velocity are computed as follows:

F=fFf + gf
F=ff+ gh
where
Fo1- #fz
Iy

In the above formulas, x is the gravitational constant and

ro = [(x0)? + (vo)? + (z0)2)"/?

f =ToSo + OoS1 + U Sz

a ¥ @3yt (@Y Y

So =1+ = 41 61
a‘3 (a‘zs a')S.w?
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(5-122a)

(5-122b)

(5-123a)

(5-123b)

(5-123c)

(5-123d)

(5-124a)

(5-124b)

(5-124c¢)

(5-124d)



. 2 6 3,8
§3 = -gi' + a41!p + (a6)!1‘b + (aé!tp + (5-124¢)
3 * 15 "2 207 "3 .9
s3=£—+aw +(a)1,l) +(a)1,0 + .. (5-1241)

31 5! 71 9!

where the parameter y satisfies the following modified form of Kepler's equation:

t =1t + IrgSy + OoSz + HS3 (5-125)

The equation is solved for ¢ using a Newton-Raphson iteration process. In this equation,

o5 = X5 Xo + Yo Yo + Zo Zo ~ (5-126a)
- ey 2 "%y 2 cat 2 2”
a = (X)) +{¥) + zo) - — (5-126b)
r

The parameter U is evaluated as follows:

U = p(se - 359) (5-127)
where
4 * 6 *2 .8 3 10
we Loy, Bly, @y, . (5-1282)
' ay @Yy | @)’y
Ss= o7ty YT o1 YTy T (5-128b)

The following accelerations at time to on the osculating trajectory are also used:

..% M xa
x = - —a— 5-129
0 (r0)3 ( a)
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jo = - BL (5-129b)

i = - B2 (5-129¢)

Initial conditions are specified by the values Xo, Yo. Zo, X0, Vo, Zo of the coordinates at
a given reference time tg. At time tqg,

B RS
¥o Yo
e (5-130)
Xo X0
Yo Yo
2] [ 2o

5.8 NUMERICAL AVERAGING FORMULATIONS

The efficiency of numerical integration methods can be increased by eliminating short-
period effects (i.e., those with a period less than or equal to the satellite’s period) from
the equations of motion. The Method of Averages uses this approach, wherein the equa-
tions of motion for an average element set are integrated. The resulting orbit generation
method is extremely efficient but is limited to average element accuracy rather than the
osculating element accuracy achieved in high-precision methods.

The averaging methods are particularly useful for orbit determination problems for which
the cost of precision orbit calculations is prohibitively expensive or where high accuracy is
not essential, Mission design, for example, is based on the consideration of both the
scientific objectives of the mission and the engineering constraints. Optimum mission
design us:ally requires a large number of orbit calculations to determine the characteris-
tics of the proposed orbits. An averaging orbit prediction process is well suited to the
preliminary stages of mission planning where long-term trends, not local fluctuations, are
of primary interest. The averaging methods can also be useful for differential correction
problems involving large quantities of data. The only assumption required for application
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of the averaging method is that the orbital elements remain reasonably constant through-
out one period.

The averaging process can be handled either analytically or numerically (Reference 13).
The analytic method averages the effect of each perturbation (drag, oblateness, third-body
effects, etc.) separately. The resulting closed-form expressions for the averaged rates can
be used to construct a very efficient orbit generator. The numerical averaging technique
combines many of the advantages of analytic averaging with the ability to simulate the
effect of any small perturbations that can be deterministically modeled. These effects are
included by averaging out the short-period oscillations in the perturbations by means of a
mechanical quadrature technique. By using the Gaussian form of the Variation of
Parameters equations in conjunction with the GTDS force model, the long-term effect of
any combination of perturbations can be computed. Consequently, the numerical tech-
nique is more flexible than the analytic method.

5.8.1 THE AVERAGED EQUATIONS OF MOTION

The averaging methods in GTDS use either the equinoctial or the Keplerian formulation
(Section 5.7) of the Variation of Parameters equations of motion. The precision Variation
of Parameters equations can be written in the form

e (X, v) (5-131a)

X

h(%) + €g(Xy) (5-131b)

et
l

where
g = vector of slow osculating or orbital elements
y = fast osculating orbital element (e.g., mean or eccentric anomaly)
¢ = a small parameter that is proportional to the perturbing acceleration

and f, g, and h are sufficiently smooth functions that are periodic in y with period 27. The
averaged solution to these equations is defined by (Reference 14)

1 ya()+m

== X(t") dya(t’) (5-1322)
27 Jyp)-=

Xalt) =
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1 ya(ty+a
yalt) = — y(t') dya(t) (5-132b)
2z ya(t)-7

Differentiating Equations (5-132) and substituting the results into Equations (5-131) yields
the averaged equations of motion

ya(ty+m
Xalt) = o= f [x(t), y(t)] dya(t) (5-133a)
2 yalt)-m
. 1 YA(t)‘hﬂ
Fa®) = o hIF)] + €glR@), YOI dra@)  (-1330)
27 Jya)-n

When %a(t') and §a(t) are used in the evaluation of the arguments of the f, g, and h
functions, the standard first-order averaged equations of motion are obtained (Refer-
ence 15). In GTDS, the integrals in Equations (5-133) are evaluated numerically using a
Gaussian quadrature method.

5.8.2 NUMERICAL EVALUATION OF THE AVERAGED EQUATIONS OF
MOTION

Four different approximations are currently available for evaluation of the arguments of
the f, g, and h functions in Equations (5-133):

1. Traditional mean element behavior

Z(t') = Xa(t) (5-134a)

y(t) = yat) (5-134b)

2. Traditional mean element behavior plus mean long-period effects

X(t') = Xat) + Xa®) [t - 1) (5-135a)

l

y(t") = yalt) (5-135b)
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where X, is the averaged rate computed in the previous evaluation.

3. Traditional mean element behavior plus short-period effects arising from J;

R(t) = Xal) + A%, (3-1360)

y(t') = yalt') + Ay, (5-136b)

The short-period corrections are obtained using Brouwer theory.

4. Traditional mean element, mean long-period and short-period effects

X(t) = Xalt) + Xalt) [t' - t] + AX, (5-137a)

n

y{t') = yalt') + Ay, (5-137b)

Currently, only Equations (5-134) are available for evaluation of the argument in Equa-
tions (5-137).

5.8.3 AVERAGED EQUINOCTIAL VARIATION OF PARAMETERS
FORMULATION

The averaged equinoctial formulation (Section 5.7.2) uses a slow element vector
x = (a, h, k, p, Q) and a fast variable equal to the mean longitude, A. To uniformize the
integrand in Equations (5-133) and to reduce computational time, the integration variable
is transformed from the mean longitude to the eccentric longitude, F, using the relation-
ship

ﬁ = (1 - kA cO0s FA - hA sin FA)_I (5-138)
dda

5.8.4 AVERAGED KEPLERIAN VARIATION OF PARAMETERS FORMULATION

The averaged Keplerian formulation uses a slow element vector X = (a, e, i, Q, w) and
a fast variable equal to the mean anomaly, M. All four methods outlined in Section 5.8.2
are available for evaluation of the equations of motion. When methods 3 and 4 are used,
the integration variable is transformed to the true anomaly, f, using the relationship

de azA\fl - Ci (5_139)

dM A I'zA

where r, is the magnitude of the position vector computed using the averaged elements.
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5.8.5 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO
AVERAGED ELEMENTS

The accuracy of predictions obtained using the averaged orbit generator are improved if
initial average elements are used instead of osculating elements. In GTDS, this transfor-
mation is accomplished by solving the integral equation for the average semimajor axis

t+Taf2
as(t) = — aft') dt’ (5-140)
Ta 1-Ta/2

using the following Newton-Raphson iterative procedure:

1 t+(Ta/2)n
Fp = [aa®la - J a(t’) dv (5-1412)
(Ta)n t=(Ta/2)s
dF,
D, = —— 5-141b
PRGN (3-1410)
F,
[2a®)ae1 = [2aO]n - D (5-141c)
where
[aa(t)]o = a = osculating semimajor axis
and where T,, the average period, is
ad
Ta = 27 " (5-142)

The average equinoctial element set is then computed by averaging the osculating ele-
ments over the average period, i.e.,

1 t+T,/2

XA(t) = — X—(t') dllIr
Ta Ji-1y2

(5-143a)
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t+Ta/2

yal) = — y(t') dt’ (5-143b)
Ta Ji-Tp2

The average equinoctial elements are transformed to average position and velocity vec-
tors, Keplerian elements, and spherical coordinates.

5.9 BROUWER THEORY

GTDS includes two analytical solutions of satellite motion for a simplified disturbing
potential field limited to zonal harmonic coefficients for Jz through Js (see Section 4.3).
Brouwer’s first-order solution of this problem is obtained by applying the Von Zeipel
method in Delaunay canonical variables (Reference 1). The resulting solution contains
singularities for small inclinations and eccentricities and at a critical inclination of 63 de-
grees, 26 minutes.

Tt was shown in Reference 15 that the first-order Brouwer solution for secular and long-
period effects is identical to that obtained using first-order numerical averaging (Sec-
tion 5.8) with the same perturbing force model. Thus, Brouwer theory is equivalent to the
first-order averaging solution plus short-period effects for the J, through Js perturbing ac-
celeration. For applications that require more complete perturbation models, averaging
methods are more accurate than Brouwer theory.

Brouwer theory provides a rapid means of determining a satellite ephemeris. Its precision
is related to the error committed in omitting all perturbations except the low-order zonal
harmonics. The orbit from the Brouwer theory can also be used as an intermediate orbit
in the semianalytic techniques discussed in Section 5.11.

For applications that require high efficiency, it is important to consider the number of
output points required. For Brouwer theory, the computational cost is directly propor-
tional to the number of output points. However, when averaged numerical integration is
used, the cost is mainly dependent on the arc length instead of the number of intermedi-
ate output points. For differential correction applications, the computational cost of the
averaged orbit generation methods is often competitive with that of Brouwer theory and
offers considerably greater flexibility with respect to the perturbation model.

Computationally, the Brouwer solution is divided into secular, long-period, and short-
period terms. The solution consists of a secular motion, upon which is superimposed a
number of long-period terms. Superimposed on the sum of the secular and long-period
terms are a number of more rapid oscillations, or short-period terms. The periodic terms
of both long and short period are developed to order J,, while secular terms are devel-
oped to order (J;)2. The harmonic coefficients Js, Ja, and Js are considered to be of
order (J;)* in the derivations.
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The Delaunay elements are related to the classical elements in the following way:

- way”

= L(1-e})?

G cos i

= mean anomaly = M

= argument of pericenter = @

= longitude of the ascending node = Q

e o~ I Q
1]

However, the solution is written here in terms of classical elements (@ e i,4,g h =
(a, e, i, M, w, ). In the formulas that follow, double-primed variables refer to secular or
mean motion, single-primed variables refer to secular plus long-period terms, and un-
primed variables refer to secular plus long- and short-period terms. The unprimed vari-
ables are osculating elements.

Only the elements ¢, g, and h undergo secular motions. Mean elements at epoch are
denoted by a subscript 0 and the time elapsed from epoch by At. Mean elements are
usually obtained from osculating elements by the procedure outlined in Section 5.9.1. The
first-order solutions to the mean element equations of motion are

a” = ag + Aa (5-144a)
e” = ey + Ae (5-144b)
i" = iy + Al (5-144¢)

0 =npAt + £ At + 8 + Al + Abprac (0 < €7 < 2m)  (5-144d)

g At +g7 + Ag (0 =g < 27 (5-144¢)

oo
Il

h" = h At +hy + Ah (0 < h" < 27) (5-144f)
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where Aa, Ae, Ai, A/, Ag, and Ah are user-provided perturbations not accounted for in
the Brouwer-Lyddane model, and

19 3
Adprac = Z z Np.q (t - tq)p (5-145)
q=0 p=2

where N, 4 are the Brouwer drag coefficients and tq is the reference time of the q™ N, 4.

This model is based on the premise that drag is a minor component of the total perturba-
tion force.

The restricted perturbation model and first-order approximation, which are used in the
derivation of these equations, can lead to errors that increase with time. The element
rates of change are given by

{ = ngq(y’z{% (302 - 1) + % s [259% + 16m = 15 + (30 - 967 - 907%) &
(5-146)
+ (105 + 144n + 257%) 94]} + % vs (€7)*(3 - 3067 + 3594))
g = ng (y; 3 (502 - 1) + 3 vy [257% + 24n - 35
2 32
-+ (90 - 1927 - 1267%) 6% + (385 + 360y + 4577°) 94]} (5-147)
+ % vy [21 - 977 + (12677 - 270) 6% + (385 - 1897°) 94])
h = ng (y;{ % v, [(97% + 121 - 5) 0 - (35 + 36n + 57%) 0% - 39}
(5-148)

200 -6 79'0)
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The following substitutions have been made to abbreviate the preceding expressions:

ks

Y2

Y3

Ya

¥s

5-46

(5-149a)

(5-149b)

(5-149¢)

(5-149d)

(5-149€)

(5-149f)

(5-149g)

(5-149h)

(5-149i)

(5-149j)

(5-149k)

(5-14%)



Vs = —¢ 5-149m

7 ( )

ye = 1& (5-149n)
]

ys = 5”1% (5-1490)

The secular terms depend only on the even zonal harmonic coefficients J; and J4.

The mean value of the eccentric anomaly E  is obtained iteratively from Kepler’s equa-
tion

E' -¢ sinE =¢ (5-150)

The mean true anomaly f  and mean radial distance r" are given by

T _ (Y sin E”
£’ tan‘l[ 1-() S’“E] (5-151a)

cos E' - ¢

r" = a” (1 _ e” cos E”) (5_151b)

591 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO
BROUWER MEAN ELEMENTS

The iterative algorithm used for converting osculating Keplerian elements to Brouwer
mean elements is described here (see References 16 and 17). This algorithm is useful in
two situations. Since Brouwer or Brouwer-Lyddane theories require Brouwer mean ele-
ments as an initial state, the first application consists of converting osculating elements to
mean elements for use with the Brouwer and Brouwer-Lyddane orbit generators. Sec-
ondly, osculating elements can be converted to Brouwer mean elements for reporting
purposes. Such mean elements are also useful as initial data for the integration of orbits
by the Method of Averaging and for other purposes.
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Singular points for zero eccentricity, zero inclination, and at inclination 63 degrees,
26 minutes, do not permit calculation of mean elements there. Only Keplerian elliptic
motion can be treated, which requires 0 < e < 1. :

The iterative process is executed according to the equation

Xy = 6 4 [y - v =12 ..., 6) (5-152)

where
x;® = i™ mean classical Keplerian element obtained from the s™ iteration
¥i = initial osculating Keplerian element
yfs) = osculating Keplerian element estimated from the s jteration

Double primes denote mean elements at the time of conversion. This algorithm ignores
correlations between the elements of the order of 1073, which are of no practical impor-
tance in the calculations.

A convergence criteria limits the number of iterations. The sum of the squares of the
differences between the estimated and the initially given osculating elements are com-
pared with a prescribed tolerance. When the sum is less than the tolerance, the calcula-
tion is terminated.

The following method for obtaining the mean elements at a given time is more exact than
those methods that propagate the mean elements from some previous time using Equa-
tions (5-144) and (5-145), since the propagated mean elements deteriorate with time due
to perturbations not included in the solution. The values of the mean elements on
the s iteration are used to compute estimates of the osculating elements. As shown by
Equation (5-152), the difference between the s estimated value and the initial known
value of the osculating elements is used to correct the s estimate of the mean elements.
The starting approximation for the mean elements is the set of initially known osculating
¢lements.

5-48



5.9.2 TRANSFORMATION FROM BROUWER MEAN ELEMENTS TO
OSCULATING KEPLERIAN ELEMENTS

The osculating elements include the secular, long-period, and short-period terms. The
osculating elements are expressed by

a=a" {1 + V2 [(— 1 +36%) ((5;23 - 1]‘3)

(5-153)
+3(1 - 8 @y cos(2g’ + 2f’)]}
>
"3
e=¢e"+0,e+ Eﬂ;;;(yz{(— 1+ 392)[%%— - 1;'3]
+ 301 - 69 [-(a—)s - “‘] cos(2g’ + ?.f’)} (5-154)
o 7 y
- y(1 - 6% [3¢” cos(2g’ + ') + e cos(2g + 3f')])
i=1 + 641+ %y; 6(1 - 6912 |3 cos(2g’ + 2f")
(5-155)

+ 3¢ cos(2g’ + ) + e" cos(2g’ + 3f')]
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7 @) i - o
=1+ 6,2 - " ,yz(z(—1+392)[()2 17’+—,+1:|smf

+3(1 - 69 {[ Ea”))z -?-: + 1] sin(2g’ + f) (5-156)

, "
[((a ))2 P+ t_ + %] sin(2g’ + 3f') })

" qz , (ft)z "
g =g +61g+?y2(2(-1+397)[ +——-,—+1]sinf'

(r )2
e, 2 rr
+ 31 -~ 92){[- (g_—))sz - %— + 1] sin(2g' + )
@Y 5,8 1] oo L ap
()21] +—,+§ sin(2g’ + 3f)
(5-157)
+ -Z v {6(-1 + 580 (F - ¢ + ¢" sin f')
+ (3 - 567 [3 sin(2g’ + 2f') + 3¢ sin(2g’ + f')
+ ¢ sin(2g’ + 3]}
h=h"+6h- %yge[e(f' _ ¢+ ¢ sin f) - 3 sin@g’ + 2f)
(5-158)

- 3¢" sin(2g’ + ") - ¢ sin(2g’ + 3f)]
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where the long-period effects (denoted by 8,) affect the elements e, i, ¢, g, and h, but not
the semimajor axis a, and are given by the following equations:

r

be = {% e 1 - 116% - 400* (1 - 569)7"]

_ 2 Y - 367 - 8841 - 56971} cos 2¢”
12y
+{l Zi 7 sini o+ k2 ﬁ 7* sin 1[4 + 3(e")]
4 vz 64 1y, (5-159)
x [1 - 96 - 246%(1 - 597)'1]}sing"
- ﬁ €2 sin i [1 - 56° - 160%1 - 569" sin 3g"
384 Yz
8i= - ze_éwm (5-160)
n° tan i
0y ¢ ={% va® [1 - 1167 - 406* (1 - 56%7"]
5 'Y; 3 2 4 114 ¢ ”
- = 2 3 [1 - 36% - 80*(1 - 5697 }sin 2g
12 Y2
' 3 + 3
+{- 1B T gni - S ¥ gin i'[4 + 9 (5-161)
4 y, € 64 y, e

x [1 - 96% - 246%(1 - 592)-1]}cos g

s 2 Y5 56" sin i [1 - 56% ~ 166%1 - 5697 cos3g”
384 V2
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big = (-% y{[2 + (€7 - 11[2 + 3(e")?] 67 - 40[2 + 5(¢")?]) 0*(1 - 5677

5

- 400 (¢ 651 - 569 + = i“ 2+ € - 3[2 + 3(e)?) 62
b2

- 8[2 + S(e")?% 6*(1 - 5697 - 80 ()2 051 - 592)—2}) sin 2g"

1 ?’a(sin i e”92)+ 5 'ys

4 y\ e sini ) 64 v

x {("2 Zi,‘.’ T _ e 9?.)[4 + 3] + ¢ sin i'[26 + 9(c")2]}

sin i
x [1 - 96% - 240%(1 - 5697 (5-162)

15 YS 2 2 2 -1
- “92sin i'[4 + 3()[3 + 1602 (1 - 56

32 3’2
+ 40 0°(1 - 569 |cos g” + |- 35 ¥ —{e sin i"[3 + 2(e")3]

1152 y,
"3 g2

_L)e }[1 - 56% - 160*(1 - 5697

sin i

+ 53756 s (e") 6% sin i[5S + 326%(1 - 5697 + 80 6%(1 - 592)-2]) cos 3g"
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6 h = { -;- 5 ()2 0 [11 + 800%(1 - 56771 + 2000%(1 - 56977

Lo h ()2 O[3 + 160%1 - 56971 + 406*(1 - 592)-2]} sin 2g”

1y €6 5 ys € 0 "2 2 4 -
+{4 y2 sin i +64y2 sin 1 [4+ 3601 ? ( 56971

y == B " gsini[4 + 3N [3 + 166%1 - 5697 (5-163)
32 “Vz

+ 40041 - 592)-’-]} cos g

35 'ys (e"? 9 2 4 1
- -1 -
+{ 1152 5, sn¥ [1 - 56 60*(1 - 56571]

_ 3 ”5 €")? 0 sin i'[5 + 320°(1 - 5677 + 806%(1 - 56%)7°]} cos 3g”
576 ‘}’2

In these formulas, f' and r’ are computed from

E -¢ sinE = ¢ (5-164)
and
tan "fL = 1+ e" 1/2 tan E
=) =\ T > (5-165a)
a’ 1+¢ cosf
— = 7 5-165b
or
I sinf = [1 - )4V sin E' (5-166a)
a
L cosf = cosE -¢" (5-166b)
a
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’

T o 1-¢"cosE (5-166¢)
a

For the calculation of the coordinates at any time, the complete values of e and ¢ should
be used for the solution of Kepler’s equation

E-esinE = ¢ (5-167)

The conversion of osculating Keplerian elements to rectangular components of position
and velocity is discussed in Section 3.3.8.

5.10 BROUWER-LYDDANE THEORY

Lyddane modified Brouwer's formulation to obtain algorithms applicable for zero eccen-
tricity and zero inclination (Reference 18). He reformulated the orbital equations in terms
of Poincaré variables rather than the Delaunay variables used by Brouwer. The solution,
carried out by the Von Zeipel method, accounts for up to fifth-order zonal harmonics of
the gravitational potential. The results are written here in classical elements rather
than Poincaré elements.

The Brouwer formulas are suitable for the computation of the classical elements with one
‘exception. In computing short-period terms, Lyddane uses ¢” and g instead of ¢’ and g'.
Brouwer remarked that either is satisfactory, but in the Lyddane theory, ¢’ and g’ may be
ill defined. In addition, the relationships

wol($) -]

el g+ e+ )7
(5-168a)
+ 3cos f + 3¢ cos? £ + (e7)? cos® f)

and

o -]

are used in the computation of de to avoid roundoff problems, where % is defined in
Equation (5-149b).

76 [e" + 3 cos £ + 3" cos? f + (€)% cos® f] (5-168b)
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5.10.1 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO
BROUWER MEAN ELEMENTS

The mean motions due to secular terms are calculated by Equations (5-144) through
(5-148) of Section 3.9.

5.10.2 TRANSFORMATION FROM BROUWER MEAN ELEMENTS TO
OSCULATING KEPLERIAN ELEMENTS

The osculating elements are computed using Equations (5-169) through (5-185) (Refer-
ence 19). Since the periodic terms are somewhat lengthy, a number of substitutions have
been made in these equations. :

Semimaior Axi
a=a [1+7y1(30%~1) L e’ n+ e’ + cos £'(3 + 3¢" cos f
7’ 1+7
(5-169)
"3
+ (€2 cos? £7] + 31 - 69 (:—) cos(2f” + 2g")
B .
e = J (e + 6e)® + (e 687 (5-170)
where
2
de = 6, ¢ —% { %1 - 69 [3 cos(2g” + ') + cos(3f + 2g"]
- 3y, i(1 _ 0% cos(2g” + 2f") [3e” cos?
6 (5-171)

+3cos f + (e)2cos® f + ¢}

"

-7 is- (36% - 1) [c" N+ + 3¢ cos? f' + 3cos f + (e)* cos’ f]}
Ui

1+7
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e’ 6f = B, sin 2g" - Bs cosg  + Bg cos 3g"

”

1 . Y .,
- =Py [2036% - 1) | (a—,) +2 4+ 1] sin f
4 r r

r 2 X
+ 301 - 691 |- # (:—) - i— + 1| sin2g” + ) (5-172)

rr 2 r
+ ﬂz(a—) 2 1 sin(3f” + 2g")
r r 3
and
dye = Bys cos 2" + B sin g - Bys sin 3g” (5-173)
Inclinati
i=2 sin™! in i dh i ! di 3 n (LY 17 (5-174)
= S 2 +2lcos~é—+sm7
where

di

—;—9}/2 sin i"{e” cos(3f" + 2g")
+ 3[e” cos2g” +f") + cos(2f” +2g")]} (5-175)

A 1 . " . "
- %(B7cos2g + By sin g - By sin 3g )
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and

' L .1 . ' " 1
sin (.1?) 0h = —————— (Bw sin 2g + Bijjcosg + Bz cos 3g
2 cos (—1-—)
2

1 v, @ sin i {6(e” sin £ - £ + )
2 (5-176)

- 3[sin(2g" + 2f") + ¢" sin2g” + )]

- ¢" sin(3f" + 2g")})

Mean Anomaly 7, Argument of Perigee g, and Right Ascension of Ascending Node h

By
1l

L e 8cos £+ (e + de) sin T4 . 177
tan [(e" + 0e) cos £ — e Ofsin if e = 0) (5 )

t=0 Gf e = 0) (5-178)

sin (IE) 6h cos h" + sin h” [% 8i cos (%) + sin (12—)]

h = tan it i = 0) (5-179)
ol 1L, i i i ) i’ o
cos h [+2— 3 cos (E) + sin (—i—)] - sin (E) 6h sin h

h =20 Gfr i = 0) (5-180)

g=(+g+h -¢-h (5-181)
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where

!+g+h=(l’+g'+h’)+{%[q"

1
» —
E

r

rr 2 r
+ 2 sin £ (36% - 1) [1 + (%—r) 7+ -?——]

+

3

2

1
» —_
€

where

+ (a—r:)znz + a_"] + sin(2g” + )

2

+ 1

r

I

]c” V2 [3(1 - 6% {sin(3f” +2g)

r—- [L 2 L
-G
| r r

(5-182)

(567 - 20 = 1) (" sin £ + £ - )] + 3 + 26 - 569

vo{e” sin(3f" + 2g") + 3[sin(2g” + 2f) + e” sin(2g” + f")]})

@ +g +h) =@ +g +h") +B;cos 3g" + By sin'2g + B; cos g (5-183)

The quantity € is defined in Equation (5-149¢c). The following abbreviations are intro-
duced to shorten the written formulas:

!

A =

A;

1
(1 - 569

%‘y'z 7 (1 - 116% - 406%A))

302 + 86% A}
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S [
A= — & :
2 - 7(1 - Az)
(5-184d)

12 ’yz
s "
A; = EB(C)ZM] (
5-184¢e)
_ Y :
Ay = ?'2 (1""3A2) (51
-184f)
As = As(1 - 3A3) (5
-184¢g)
R
4 r
;i (5-184h)
A = Aﬁ ?]2 sin i”
(5-184i)
Ag = 5 'y
" €2 (1 - 50% - 160* A) (5-184j)
-164]
Ay = 9 sin i’ |
{(5-184k)
Ap =2 + (")*
(5-184f)
Anp = 3(3")2 + 2 (
5-184m)
A = An 6
(5-184n)
Az = [5(e)? + 2] 6° Aj (
5-1840)

5-59



Ajs

Aje

Ay

A

Az

Az

Aazs

Az

Azs

it

(e")? 6% (A7)
0% A,

Als

e’ sini

Aq7
1+7

(1 + 6) sini

e

ef! Azo

i"
Asp tan (—2‘)

7 A1z

A1]+2

16A15 + 40A46 + 3

1

3 Az1(11 + 200A56 + 80A,5)
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(5-184p)

(5-184q)

(5-184r)

(5-184s)

(5-184t)

(5-184u)

(5-184v)

(5-184w)

(5-184x)

(5-184y)

(5-184z)

(5-184aa)

(5-184bb)



and

1
= 7(A; - Ay) - [—lg (Ajo = 400A,4 — 40A;3 ~ 11A)

%A21(11 + 200A16 + 80A15)] ']fz

5
o 5[ - 80Ass - 8Ass - 3Ap + 2Ags Ay + Agol LF
24 72

r 5 15
B, = AsAl2 + - ()] + aAsAlaﬂ - "3'5A4A17’?

+ Ay tan (l?) [654 As + A{I + — A4A1-,- [9(e )2 + 26]

15
+ §A3A20A25 sin l (1 - 9)

..EE_ & e sin 1 (6 - l) Ag] [80A15 + 5+ 32A15]
576 }’2

1152 ¢ {A“ tan (2)+ [2(e)® + 301 - 7)] sml}

3

By, = ¢ (A1 - Ag)

By - v{ As A9 + 8] + A7}

1 5
By = 7 Ay Al [g vl - 150 - 5 & -”i - 79’)]
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(5-185a)

(5-185b)

(5-185¢)

(5-185d)

(5-185¢)

(5-185f)

(5-185g)



5

By = 7 As 721 - 96% - 246* A)) + 7* Aq (5-185h)
35
By = — 1* A 5-185i
9 384 ﬂg 3 ( 3i)
Byo = sin i’ > ﬁ Az Azs — Az ¥z (5-185§)
12y
By, = Ay |— A +A+-1-§AA sin? i : (5-185k)
11 2| q s 6 + 35 Hs s
Bz = - | (80A;6 + 32A55 + 5) 2 y—; e sin i Apj+ Ag Ay | (5-185f)
576 vy, 1152
B13 = e" (A] - Az) (S-185m)
5 - ot
B14 = a As?]z smi1 + A7 (5-18511)
35 T
B]s = m Ag ??2 smi (5'1850)

The mean value of the eccentric anomaly E" is obtained iteratively from Kepler’s equa-
tion

E'-¢ sinE ={ (5-186)

The mean true anomaly f', the mean radial distance t", and the ratio of the mean semi-
major axis and the mean radial distance are given by

P [ /1 - (¢")? sin E} (5-187)

cos E - ¢’
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' =a’(1-¢" cosE) (5-188)

a 1
- = 77 7 5'189
r (1 -¢ cosE) ( )

5.11 INTERMEDIATE ORBIT

The Intermediate Orbit methods used in GTDS (Reference 20) are semianalytic methods
which combine analytic theory and numerical integration. The solution to a simpler prob-
lem obtained by means of an analytic theory is used as a reference solution, and the
difference is the time rate of change between the true solution and this reference solution
is integrated to obtain the true solution. Either a Variation of Parameters or an Encke
approach can be used in the development of these methods. Using Intermediate Orbit
methods causes the quantities on the right-hand side of the resulting differential equations
to vary slowly and smoothly with time, making them more amenable to numerical integra-
tion methods (i.e., more numerically stable) than the original differential equations.

Intermediate Orbit methods can be developed for any analytical theory; however, only two
intermediate orbits have been considered for implementation in GTDS. The first is an
orbit in which short-period effects due to J; have been eliminated using the Brouwer
theory. The second is the orbit resulting from J; perturbations using the complete
Brouwer theory for secular, long-period, and short-period perturbations. The equations of
motion are better conditioned for numerical integration when they are smoothed by re-
moval of fast varying short-period J, effects or when made slower and smoother varying
by using the complete Brouwer theory to remove secular, long-period, and short-period
perturbations arising from J,. Orbits of small eccentricity and low inclination can be
considered by an option that uses the same intermediate orbits as above but which are
expressed in Poincaré rather than Delaunay variables.

Efficient numerical integration is achieved through minimizing local error by an appropri-

ate choice of a uniformization constant, n. This involves selection of a new independent
variable, s, related to the time t by

ds = -{g dt (5-190)



where

magnitude of the satellite’s position vector

"t
it

gravitational constant

=
[

uniformization constant

To a considerable extent, the optimum choice of n depends on the dominant perturbation
affecting the orbit under consideration. Thus, for the Intermediate Orbit method based on
short-period J, perturbations, the main portion of J; must be modeled, leading to a
choice of n = 2. However, the Intermediate Orbit method using the full Brouwer theory
may still require a selection of n = 2 (or higher for an elliptic orbit) if the orbit is signifi-
cantly perturbed by drag. If the intermediate orbit is out of the high-drag region, then the
choice of n depends upon the ellipticity of the orbit and whether or not third-body pertur-
bations are significant.

GTDS’s full Brouwer intermediary is an osculating Keplerian orbit that changes due to J;,
the coefficient of the second zonal harmonic. Perturbations due to J, dominate those
caused by other gravitational harmonics, third bodies, drag, etc., for many close-Earth
satellites. While other secular perturbations eventually cause the intermediate and true
orbit to become widely separated, the GTDS intermediary stays near the true orbit much
longer than the two-body solution.

5.12 VINTI THEORY

Vinti theory is a General Perturbation Method. In an approach similar to that of Brouwer,
the dependent variable set is chosen such that the Hamilton-Jacobi equations of motion
are separable. Of the 11 coordinate systems that have this property, oblate spheroidal
coordinates ©, %, 0 are chosen since they are most appropriate for describing motion
about an oblate Earth. These coordinates are related to the rectangular position coordi-
nates as follows:

X +iy = (@* + ) (A - ) 2e? (5-191a)

z=07 (5-191b)
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where

¢ = R, (1 - -;: J§J§3) (5-192a)
i= /-1 (5-192b)
and
R. = mean equatorial radius of the Earth
J,, J» = cocfficients of the zonal harmonics (see Section 4.3.1)

On the other hand, Brouwer theory was developed in terms of elliptic coordinates, which
are most appropriate for describing motion about a point-mass body.

Vinti obtains an analytic solution for perturbed satellite motion arising from a potential of
the form

Ve -upl®+En) @+ 10) (5-193)

where
1 -1

The above potential leads to a fit of the gravitational potential

1 - Z [(%)n Ja Pp(sin 9)] | (5-195)

n=2

<
n
1

- =

exactly for the second zonal harmonic and about two-thirds of the fourth zonal harmonic.

The resulting solution gives the periodic terms correctly to order J2 and the secular terms
for the intermediate orbit to arbitrarily high order. The mathematical details are given in
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Reference 21. This method for treating the effects of J; eliminates singularities for small
eccentricities and for small or 180-degree inclinations, which usually occur in perturbation
theories. Thus, Vinti theory is particularly appropriate for computation of polar and circu-
lar equatorial orbits.
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CHAPTER 6—~NUMERICAL INTEGRATION OF
THE EQUATIONS OF MOTION AND
VARIATIONAL EQUATIONS

This chapter describes the Stormer-Cowell/Adams integration processes available in
GTDS for the integration of the Cowell and various VOP (Chapter 5) formulations of the
equations of motion. These processes were selected on the basis of several efficiency
studies (References 1 and 2) comparing various classes of popular integration algorithms
as applied to special perturbation techniques. This chapter also describes several single-
step Runge-Kutta integration methods, which are used in GTDS for reentry predictions
and as a starter for certain multistep processes.

6.1 MULTISTEP NUMERICAL INTEGRATION METHODS

Multistep methods of the type described below were found to minimize the number of
derivative evaluations required to produce a given accuracy at the end of the requested
interval of integration. Since, in general, the major cost in computing an orbit is the
evaluation of the complex force function (Chapter 4), this implies that multistep algo-
rithms are most efficient.

Within the class of multistep methods, options such as the following must still be selected:

1. Type of Formulation—Methods can be used that solve second-order systems
directly (Class 1), such as Stormer's method; or that normalize the second-
order system into a higher dimensional first-order system and use a Class I
formula, such as Adams-Bashforth.

2. Type of Algorithm—Several algorithms can be selected within the multistep
predictor-corrector schemes, ranging from PE (prediction only) to P(EC)",
PE(CE)", and PECE®, where P = predict, E = evaluate derivative, C = correct,
and E* = pseudoevaluate, i.e., correct or recorrect only part of the total deriva-
tive.

3. Order or Process—Various order formulas can be selected to use in the algo-
rithm, recognizing the fact that higher order formulas are more accurate but’
less stable.

4. Stepsize Control—Since the orbit dynamics can undergo large variations during
a revolution (e.g., high-eccentricity orbits), an algorithm must be selected to
allow stepsize variations. This can be done either by numerical monitoring of
local errors or by analytic transformations of the independent variable (time
regularization).

6-1



Most of the above-mentioned degrees of freedom are available in GTDS and have been
studied for various problems (References 3 and 4). Some general conclusions reached are
as follows:

1. For formulations involving second-order equations, Class II integrators should
be used to solve the system directly, utilizing a Class I method to obtain first
derivatives if required.

2. The highest possible order formula, subject only to the constraints of numerical
stability, should be used.

3. Pseudoevaluate algorithms significantly increase the stability regions of
predictor-corrector schemes at little or no cost in efficiency.

4. [Efficiency dictates the use of stepsize control for moderate- and high-
eccentricity orbits. Analytic stepsize control is more efficient and reliable than
numerical stepsize control.

5. The choice of the best integrator and independent variable is highly dependent
on the choice of formulation of the equations of motion. Formulation character-
istics such as the regularity, or smoothness, of the dependent variables and
dynamic stability influence parameters such as the numerical stability regions,
choice of order, etc. As new formulations are introduced, careful matching of
appropriate numerical schemes is required.

In the following sections, the multistep methods based on Newton’s interpolating polyno-
mial are derived and the basic algorithms for iteration, starting, interpolation, and step-
size contro!l are discussed.

6.1.1 ADAMS-COWELL ORDINATE SECOND SUM FORMULAS

The formulas for the integration and interpolation of the equations of motion and the
variational equations are basically of the Newtonian type derivable from standard differ-
ence operator techniques. For the integration, these formulas define the well-known
predictor-corrector Adams method for first-order equations and the Cowell method for
second-order systems. Formulas of the same class can be used to perform the required
interpolations to determine values not given in the integration process and to form the
starting set of solution values required by the predictor-corrector process.

In the following discussion, an outline of the derivations of the required formulas is given.
In addition, a detailed description of the computational algorithms necessary to perform
the integration is presented.
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The quantities s and h denote real numbers, and the linear operators Vv, E, D, and I are

defined as

Backward
Vi{) = f(t) - f(t - h) Difference
Operator

[ Shiftin
E* f(t) = f(t + sh) ‘ Operat%r}

d . [ Differentiation
D f(t) = E{f(t) = f (t) '__ Operator }

[ Identi
L{(t) = f(t) 1 oggr:tyor}

Two well-known relations among these operators are
B - - V)
and

hD = -in{ -~ V)

Utilizing Equations (6-5), the following operator identities can be derived:
_ -3
E'=h L_L]D
~In(l - V)

. a-vs
B= hz[{ma - V)}z] b’

6-3

(6-1)

(6-2)

(6-3)

(6-4)

(6-5a)

(6-5b)

(6-6a)

(6-6b)



Expanding the bracketed terms in a V series yields

B = hI:v-l + Z 741(8) V| D (6-7)

i=0

-]

ES = Vi (s-1V!s 2 ie2(s) Vi| D? (6-8)

i=0

where %(s) and ¥ (s) are given by the following recursive formulas in s (see Refer-

ence 5):

Yo(s) = yo(s) = yo(s) = 1 (6-9)
7(s) = z % (0) yii(s) (i=0,1,2 ...,k (6-10)
j=0
i
¥ (s) = Z v @y (=0,12 ..K (6-11)
i=0
where
7o) = S ) (6-12)
and
i-1
7)) = - z TT]1+_1 7(0) (6-13)

1=0
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i

y(0) = Z 7/0) 715(0) (6-14)

j=0

Applying the operators in Equations (6-7) and (6-8) to the functions x (t) and x(t), respec-
tively, and truncating after k terms, gives

x
%(t + sh) = h|V (@) + z Yin(s) V' %(0) (6-15)
i=0
K
x(t + sh) = 2| V2% + (s - DPVIX@® + z Yir2(8) VI X(t) (6-16)
i=0

The quantities V! %(t) and V-2 X(t) are called the first and second sums of X(t) and
satisfy the relationships

V() - VIt - h) = X() (6-17)

and

V2@ - V2E({ - h) = V(@) (6-18)

By varying the value for s, Equations (6-15) and (6-16) define the Adams-Cowell predic-
tor-corrector formulas, as well as the Newtonian interpolation and starting formulas. For
example, the Adams-Cowell predictor formulas are obtained by setting s = 1 and
X, = X(tz) = x(tp + nh) to give

k

inﬂ = h|V? Xn + z ‘}’;1‘1(1) \% Xn (6‘19)

i=0



and

k

Xnn1 = h2| V2%, + 2 ?;-;-2(1) V! Xy (6-20)

i=0

The preceding equations can be expressed in ordinate form as

[ k
in+1 = h ISn + E ﬁi x.n-i (6'21)
— i=0

B k

Xae1 = hZ[US, + E a; Xpi (6-22)

— =0

where

I, = V1%, (6-23)

lISn = V2 Xn (6-24)

The coefficients a; and §; can be expressed as functions of 7; and y{'frorn the recursive
relations given by Equations (6-9) through (6-14); for example,

k

a = (-1) Z(’f‘) Vo) (G =01,2 ..K (6-25)

m=i

The Adams-Cowell corrector formulas are obtained from Equations {6-15) and (6-16) by
setting s = 0 and t = tq,, yielding

k
).(n+l =h lSn + 2 ﬁ: Xn1-i (6‘26)
i=0



and

k

Xnt1 = h? nsn + E a; Xn+1-i (6'27)

i=0

where a; and g; are computed analogously to ¢, and §; but using %(0) and %:(0). The
quantities 8, and g are called the summed ordinate Adams-Moulton predictor-corrector
coefficients, and a; and a; are the corresponding Stormer-Cowell coefficients. These
coefficients are tabulated in rational form in Reference 5 for formulas of order 4 through
15.

6.1.2 PREDICT-PSEUDOCORRECT ALGORITHM FOR THE EQUATIONS OF
MOTION

The concept of pseudoevaluation is introduced as a device that helps stabilize the numeri-
cal integration at little or no cost in computation. In a predictor-corrector scheme, the
numerical stability region is proportional to the number of derivative evaluations within a
given step (Reference 6). For systems of the form

x = f(x) + €g(x) (6-28)

where € is a small parameter, the stability region is mainly influenced by the f(x) term.

The idea, then, is to introduce into a predictor-corrector algorithm designed to solve the
above system a pseudoevaluation, i.¢., a partial evaluation of X, where f(x) is recomputed
using the latest corrected value of x and g(x) is reused based on a previous value of x.
For example, if the equations to be integrated have the form

K- EX LR B (6:29)

where the first term represents the primary attracting body acting on the satellite, the
perturbing acceleration P(t, R, R) is comparatively small, and given the accelerations
R(t,.) and the sums

15, = V- R, i=0,1,2, ..k (6-30a)

v2R, (=012 ..K (6-30b)
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then the iterative algorithm to advance to time t.,; is as follows:

1. Predict. Using Equations (6-21) and (6-22), predict values (denoted by super-

script p)
R® (1) = [X&, Y&, 23] (6-31a)
B (6r) = | X9, Y2, '0:31] (6:31b)

2. Evaluyate. Using Equation (6-29), evaluate
. _ ., Be
Rito) - h5e" + P[tm, R2, R%] (632
+1

3. Correct. Using Equations (6 26) and (6-27) obtain the improved values (de-

noted by the superscript ¢) R, and R

4. Test. Compare the magnitude of the vector [RP(ty.1) -~ R(ta1)] against a
prescribed tolerance. If this quantity is sufficiently small, proceed to step 5;
otherwise, replace the values R® and R® with R® and R and repeat
steps 2 through 4.

5. Pseudocorrect. Compute the acceleration
.. e .
R(tml) _ERW + P [tnﬂs _(l:»)l» na)l:l (6'33)

where the P term is obtained from step 2.

6. Update Sums. Compute the updated sums

1S, + Rltae) (6-34)

I
Sn+1

S, + 'S (6-35)

IISn+l
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The computational cycle (steps 1 through 6) can then be repeated with n =n + 1.

In n-body or Earth-Moon trajectory computations, the equations of motion will frequently
be independent of the velocity term, R; i.e., the acceleration is of the form

- R pm (636

3

=

For trajectory segments possessing this characteristic, the preceding computational cycle
can be simplified: in step 1, the predicted R® need not be computed; and in step 3, the

provisional corrected values R R are not required. After the test in step 4 is satisfied, R
can be obtained by one application of the corrector formula in Equation (6-26).

For the case of the integration of VOP type formulations, the concept of pseudoevaluation
should be extended to include the major perturbation beyond the central force, in particu-
lar, J, for near-Earth satellites. This is due to the fact that in these formulations the
stability is governed by the principal perturbations. The central force contribution is ana-
lytically integrated and, hence, does not influence numerical stability.

6.1.3 CORRECTOR-ONLY COWELL INTEGRATION FOR LINEAR SYSTEMS

From the Adams-Cowell corrector equations, the following closed-form equations can be
derived when the equation being integrated is linear:

k

Yoe1 = h? IISn + E a; Yo+1-i (6'37)

i=0
k
3.'Yn+1 = h lSn + 2 ﬁi‘ Ynﬂ—i (6"38)
Such a linear equation is
§=a(t)y + bt) y + f(¥) (6-39)

where a(t), b(t), and f(t) are known time-varying functions.



Equations (6-37) and (6-38) can be written as

k

Yo+l = h? IISn + aa Vns1 + E ai‘ Vne1-i (6-40)
i=1
and
k
5’n+1 =h ISn + ﬁa ¥ne1 + E ﬁi‘ Vae1-1 (6'41)
i=1

By expanding the derivative ¥, the following are obtained:

B k
Yarr = h?[ 'Sy + 00 8+l Yne1 + o bnsy 3"n+1 + @ fann + E @] ¥nr1-1 (6-42)
L i=1
™ K
j"nn = h ISn + ﬁ{.) p+1 ¥nr1 + ﬁa bo+1 }-’n+1 + ‘36 foer + E ﬁl‘ Vnt1-i (6'43)
L j=1
Defining the known quantities
k
Xp = h? IISn + al; foer + E ai. Yo+1-i (6'44)
i=1
k
Va = h lSn + ﬁa foer + E ﬁ; Yor1-i (6'45)
i=1
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and the matrix

H =

then Equations (6-42) and (6-43) can be written as

¥n+1 Yo Xn
. v

n
o
+

yn+1 ym-l

The solution to Equation (6-47) is

Yr+1 _ [I _ H]_l Xn

Yan Vo

2 " 2 .-
h® ag @ns1 h* ag ban

h ﬁS Ant+1 h ﬁl; bns

(6-46)

(6-47)

(6-48)

It should be noted that the inverse in the preceding equation will always exist if h is
sufficiently small. The inverse depends only on the coefficients a and b and need be
computed only once when solving equations of the form of Equation (6-39) with different

nonhomogeneous terms f(t).

6.1.4 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS

In the Cowell formulation, the position and velocity partial derivatives of the satellite
motion with respect to any parameter appearing in the acceleration model in Equa-
tion (6-29) or state (dynamic parameters) can be obtained by the numerical integration of

the variational equations

Y=ABDY+BOY + CH

6-11
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from initial conditions

where
A(t)
B
C@
Y(®
and
Y(®

at ty given by

[aR() |

__OR

3R |

_ 0P _

¥eo = T
Y(to) = aﬁal(;O)

ﬂaﬁ(ti]
R 3x3

3x3

(3 x ¢ matrix of

acceleration partial derivative

IR(t 3 x ¢ matrix of
op position partial derivative

AR () 3 X ¢ matrix of
a5 velocity partial derivatives

|

)

(6-50a)

(6-50b)

(6-51)

(6-52)

(6-53)

(6-54)

(6-55)

The vector P contains the parameters in the acceleration model that are being estimated.

The components of the matrices A, B, and C were developed in Chapter 4.

Optionally, the components of § correspond to the spacecraft’s position and velocity at

epoch and can be expressed in mean of B1950.

0 or J2000.0 Cartesian coordinates, true of

date Cartesian coordinates, classical Keplerian orbital elements, spherical coordinates, or
DODS variables. The initial conditions for the variational equations, Equation (6-49), are
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dependent upon the coordinate systems selected. The partial derivatives of R and R with
respect to Keplerian elements and spherical coordinates can be obtained from Sec-
tions 3.3.8 and 3.3.4, respectively. Since the first six elements of P are the state vector,
the first six columns of C are zero. Most model parameters such as thrust, drag, har-

monic coefficients, etc., enter into P(t, R, R) of Equation (6-29) linearly, so that the
computation of C(t) can be simplified by retaining many of the quantities used in the

computation of R(t).

The integration of system Equation (6-49) can be performed by the utilization of the
corrector-only formula Equation (6-48) as described below.

Assuming that the satellite position and velocity, R(t,-;) and f_l(tn-i), the matrices Y .1
(i=1,2, ..k), and the summation matrices 'P, and I'p (3 x #) are known, then the
algorithm to advance Y to time t,,; is as follows:

1. Compute the matrices A(ty1), B(ty1), and C(tyy;), which depend only on

tn.'.]g Rn+1, and Rn+1.

2. Compute the 6 x 6 matrix [I - H]™', where

2 " 2 .
H = h aO An+1 h ao Bn+1 (6'56)
h ﬁa An+1 h ﬁE Bn+1

and a; and B are the corrector coefficients of Equations (6-26) and (6-27) and
h is the stepsize.

3. Form the 3 x ¢ matrices, X, and Vj, as

k

Xn = h? P, + E a; Yne1-i + ao Cast (6-57)
i=1
k

Vn = h IPn + E ﬁ; Yn+1_1 + ﬂ(‘) Cn+] (6'58)
i=1
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4. Compute the required position and velocity partial derivatives, Yy, and Yas1,
by the matrix equation

n+l X
. = [I - H]Elxﬁ Vn
Yn+1 6x?¢ n 6x{

(6-59)

5. Complete the cycle by updating the acceleration partial derivatives and sums by

Yn+1 = Apt1 Ype1 + Bon -an-] + Co1 (6“60)
lPn+1 = an + 1:l}m»l (6_61)
HPm-l = III:,n + II:'m+1 (6'62)

After R,,, and ﬁmz are computed, steps 1 through 5 can be repeated withn =n + 1.

For cases where the perturbing acceleration P in Equation (6-29) is independent of the
velocity, the matrix B in Equation (6-49) is zero, so that the variational equations reduce
to

Y = ADY + Ct) (6-63)

As in the case of the equations of motion, the computational algorithm can then be sim-
plified. Specifically, in step 1 only the matrices A and C are required, and in step 2 the
matrix H becomes the 3 x 3 matrix

H = h? af Apn (6-64)

The required partial derivatives are then given by

Yo = [I - H7' Xa (6-65)

‘.,n+1 = hﬁ(-l Anyi Yne + Vi (6-66)
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The order and stepsize used in the integration of the variational equations can differ from
that used in the integration of the equations of motion without any significant difficulty.

6.1.5 MULTISTEP INTERPOLATION

The multistep interpolator uses the first and second ordinate sums and the backpoints
(accelerations) computed during multistep integration to compute the spacecraft position
and velocity and the associated partial derivatives (if desired) at a request time.

For the most efficient use of the multistep integration techniques, the values at the re-
quest time, t, of the integrated position and velocity of the variational equations are pro-
duced by interpolation from the stored accelerations (backpoints) and the first and second
ordinate sums. When the time-regularized equations of motion (Section 5.3) are inte-
grated, an additional interpolation is required to determine the time-regularized independ-
ent variable, s, at the request time.

6.1.5.1 Multistep Interpolation With Fixed-Step Integration

The general summed form of the Adams predictor/corrector equation at a point (t + sh) is

k k
%(c + sh) = 1S, + z -1y Z yir(s) ( J )x‘(t S (667)
j=0 i=j

and the Cowell predictor/corrector at (t + sh) is

k

X
x(t + sh) = h2[1S, + (s - 1) '8y + Z (- 1) z ) ( ; )X(t — jh)| (6-68)

j=0 i=j

where
s = 1andt = t, for the Adams-Bashforth and Stormer-Cowell predictor
equations (Equations (6-21) and (6-22))
s = 0and t = ty, for the Adams-Moulton and Cowell corrector equations

(Equations (6-26) and (6-27))
-1 < s<0and t =, for interpolation
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The quantities ¥'(s) and ¥ (s) are parameters used in computing the coefficients of X.

When s is equal to 0 or 1 and the order of the integration method has been chosen, then
the coefficients of the accelerations (%) can be precomputed. When interpolation is being
performed, however, the coefficients must be recomputed for each requested time, t,,
where

= S0 (6-69)

The multistep interpolation algorithm is as follows:

1. Compute constants 7 (0) and v (0), to be utilized in later calculations, using
Equations (6-13) and (6-14) with

Yo(0) = 1 (6-70)

fori=1, 2, ..., k, where

k+1 = order of Adams Class I integrator

k+2 = order of Cowell Class II integrator

t -t . .
2. Lets = in the following steps, where
t, = time associated with the most recent entry in the backpoints
table, X,
t = request time
h = step size

3. Compute % (s) (where i = 0, 1, ..., k+2) using Equations (6-9) and (6-12).
4. Compute ¥ (s) (where i =0, 1, ..., k+1) using Equations (6-9) and (6-10).
S. Compute ' (s) (wherei=0,1, ..., k)

k+1

suls) - z v(s) (6-71)

j=1
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6.

7.
8.

k+1

60 - €0 a0+ > (177)50 672

j=it2

m!

The quantity (r?) is computed as m , and
6x(s) = Yin(s) (6-73)
In the above expressions, i = 1, 2, ..., k-1.
Compute the velocity as follows:
k
X(t) = X(t, + sh) = h{'S, + z 8:(8) Xny (6-74)
i=0

where
15, = first ordinate sums
¥ = accelerations in the backpoints table
n = number of accelerations in the backpoints table

and s, h, and §;(s) have been defined previously.

Compute ¥ (s) (where i = 0, 1, ..., k+2) using Equations (6-9) and (6-11).

Compute &, (s) (wherei=0,1, .., k)

12

5(s) - Z ') (675)

i=2
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k+2

5(9) = 1'% + Z (j . 2) % (5) (6-76)

j=1+3

wherei=1, 2, ..., k-1, and
5k (s) = Yenals) (6-77)

9. Compute the position

x

x(t) = x(ty + sh) = W?[US, + (s - 1) S, + Z 0; (5) ¥n-1 (6-78)

i=0

where

IS, and US, = first and second ordinate sums

i

accelerations in the backpoints table
number of accelerations in the backpoints table

= B
1 1l

and s, h, and §;(s) have been defined previously.

6.1.5.2 Multistep Interpolation With Time-Regularized Integration

When the integration is performed with regularized time as the independent variable, an
additional interpolation is required to determine the value of the independent variable, s,
that corresponds to the requested time, t,. Reference 7 discusses the precision of the
interpolation when precomputed files of the accelerations and first and second sums are

used.

When first and second sums are available for each backpoint (i.e., during the integration),
a technique similar to that described for the fixed-step integration, but requiring addi-
tional steps for convergence of s;, is used. If the sums are not available at each step (such
as when accelerations are retrieved from precomputed data files), then this technique is
not sufficiently precise (see Reference 7).

»
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6.1.6 THE STARTING PROCEDURE

Two starting procedures are available in GTDS, an iterative method and a Runge-Kutta
method. The iterative starter is generally used; however, the Runge-Kutta method can
optionally be used as a starter for multistep integration methods.

6.1.6.1 Iterative Starter

The starting arrays R, Yoi (=0, 1,2, ... k) and the associated first and second sums
required by the integration process can be computed by an iterative procedure based on
Equations (6-15) and (6-16) using varying values for s. If m = [(k + 1)/2], where the
brackets indicate the greatest integer function, and Ry, Ry, and E] are the given initial
values at t = to_of Equation (6-29) (the process is analogous for Equation (6-49)), then
the values Ry, Ry, and R, (i = 1, £2, « - - £ m) can be computed by succes-
sive approximations, yielding the required starting values.

Let 6(s) and & (s) be the coefficients of the ordinate forms of Equations (6-15) and
(6-16), with k = 2m; then,

Zm
X (ty + sh) = h{!S, + Z 3i(s) ¥ni (6-79)
i=0
2m
x(ty + sh) = h?|18; + (s - 1) 'S, + Z O; (5) Xn-i (6-80)

i=0

If K9 denotes the jth approximation, the (j + 1)* approximation is given by the follow-
ing procedure:

1. Compute the sums 'S, and S, using

. 2m
S = %—"» - z &i(-m) RY, (6-81)
i=0
_ 2m
ng = %21 +(m+ 1S, - 2 8; (- m) RY, (6-82)
i=0

6-19



2. Compute the corrected position and velocity vectors using Equations (6-80) and
(6-79), with n = m and s = (i - m), as follows:

[ 2m

RO = h2|US, + (- m - 1)18y + E o, (i - m) RY, (6-83)
- £=0
— om

RO = h{'Sy + E & - m)RY, (6-84)
L =0

wherei=+1, £2, ... £m
3. Compute the acceleration, ﬁj(jﬂ)' using the force model. This completes the

iteration.
Steps 1 through 3 are repeated until the successive values of R; and E converge.

As in the process described in Section 6.2, if the accelerations are velocity free, simplifi-
cations in tl'}e computational algorithm can be made. Specifically, in step 2 the computa-
tion of Ef'“ ) can be omitted until convergence on the positions R;.

The first approximation (j = 1) can be obtained by a variety of methods. Near a primary,
two-body analysis can be used effectively, either in the form of orbital elements or f and
g series. Between two primaries, either a single-step, low-order method or a prestored
ephemeris should be used.

6.1.6.2 Runge-Kutta Starter

The multistep methods avoid the multiple function evaluations at each integration step
that are characteristic of the Runge-Kutta method, but they are not self-starting. Starting
from an initial position and velocity, the Runge-Kutta method presented in Section 6.2.1
can be used to build the required starting array for the Cowell and Time Regularized
Cowell equations of motion and variational equations.

6.1.7 LOCAL ERROR CONTROL

Local error control for the multistep integrator can be performed by changing the integra-
tion stepsize to minimize the local truncation error. The stepsizes can be set by distance
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from the central body or can be changed on a step-by-step basis to minimize a function
approximating the local error. Since each change of the stepsize requires rebuilding the
difference tables, a variation is to change the step only by halving or doubling. For highly
eccentric orbits, these controls may not be sufficient. In those cases, use of time
regularization (described in Section 6.4) is more satisfactory.

For automatic control of the error, stepsizes are selected based on the magnitude of the
local error, €,, computed on a step-by-step basis by the Milne formula

. & R - R (6-85)

IR

n

where C is a constant depending on the order of Equations (6-22) and (6-27). The vec-
tors R® and R are the predicted and finally accepted position vectors, respectively,
computed at time t = t,. The stepsizes are selected so that €, at each step satisfies the
constraint equation

T, < &< Ty (6-86)

where T; and T, are specified upper and lower bounds on the local error.

The variable stepsize integration algorithm is as follows. At each step n, the test in Equa-
tion (6-86) is performed. Depending on the result of this test, one of the three following
cases applies:

1. €n >T]

The stepsize is decreased, and the nth computed point is rejected and recom-
puted with the new stepsize, where the required back values are obtained by
interpolation.

2. € > Tz

The stepsize is increased, the nth computed point is accepted, and the integra-
tion proceeds with the new stepsize, where the required back values are ob-
tained by using every other point from a saved array of points if hg.w = 2h Or
by interpolation if h < hpew < 2h. A maximum increase of 2h is allowed.

3. ¢, satisfies Equation (6-95) (given in Section 6.2)

The integration proceeds uninterrupted.
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In either case 1 or 2, h,., is computed by the formula

heew = h [—T—a]lﬂ‘ (6:87)

€n

where T, is a specified allowable local error satisfying T, <= Ts = T;.

When stepsizes are specified as a function of radial distances from the primary, the
required stepsizes and radial distances can be determined by an integration calibration
process, computing the stepsize based on the local truncation error. Since the stepsize
distribution over the orbit generally depends on the orbital elements, particularly the
semimajor axis and the eccentricity, such a calibration would be repeated only if these
elements changed considerably. This model of integration is generally less sensitive to the
numerical difficulties associated with variable stepsize integration.

The same stepsizes are used for integration of the variational equations and the equations
of motion.

6.2 THE RUNGE-KUTTA INTEGRATION METHOD

The Runge-Kutta method is a numerical integration technique by which the value of the
dependent variable at some future time can be calculated from a weighted summation
formula, similar to a numerical quadrature. This method is equivalent to a Taylor series
solution of the equations of motion up to a certain power of the integration stepsize in the
independent variable. Taylor series solutions require differentiation of a given function a
number of times, followed by evaluation of these derivatives at the point of interest. The
Runge-Kutta method requires evaluation of the derivative at a number of selected points
within the integration time step. For example, in the spacecraft equations of motion the
acceleration is evaluated a number of times within each integration step to obtain the
position and velocity at the end of the integration step.

Runge-Kutta methods have the advantage that the interval of integration can be readily
changed. The formulas are single step; thus, they do not require any past history of
values. In common with other special perturbation methods, the Runge-Kutta method is
extremely flexible.

The three Runge-Kutta methods available in GTDS are the Shanks eighth-order Runge-
Kutta formulation, the Hull Runge-Kutta 3(4+) integrator, and the fourth-order Runge-
Kutta integrator with Gill’s coefficients. These are described in the following subsections.
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6.2.1 SHANKS EIGHTH-ORDER RUNGE-KUTTA FORMULAS

The Shanks Runge-Kutta formula used in GTDS is an eighth-order formulation requiring
10 function evaluations (Reference 8). The expression f(x, y) is the derivative on the
right-hand side of the first-order differential equation dx/dy = f(x, y) that is to be evalu-
ated. This function arises from the equations of motion or from the variational equations.
The Shanks eighth-order Runge-Kutta algorithm is computed as described below.

The following formulas apply to a single component of the vector of the quantities being
integrated, where the vector of dependent variables is denoted by X and the independent
variable is denoted by y:

fo = (%o, ¥0) (6-982)
fi = f(Xo + ki, Yo + a;h) i=2 .., 9) (6-88b)
where
k1 = alh bl‘g fo (6*898)
ki = ajh Z bz fj G=2 ..,9 (6-89b)
j=0

The next value of the component x is computed from the present value Xo and the Shanks
coefficients a;, by, c;, as follows:

In these formulas, the Runge-Kutta stepsize in the independent variable is denoted by h
and the subscript 0 designates current vaiues. Table 6-1 contains the coefficients for the
eighth-order Runge-Kutta scheme. The coefficients are presented in a form convenient for
calculating the summations required to determine the k; values.

6-23



Table 6-1. Coefficients for the Eighth-Order Runge-Kutta Scheme

1-1
noex | vALE o e e or 3 3 by

1 4/27 4127

2 2/9 118 (1+3)

3 113 1112 ({1+0+3)

4 1/2 1B {(1+0+0+3)

5 2/3 1/54 (13+0-27+ 42+ 8)

] 1/6 174320 ( 389 + 0 - 54 + 966 - 824 + 243 )

7 1 1720 [ =234 + 0 + 81 ~ 1164 + 666 - 122 + BOO )

8 5/6 1/288 [ -127 + 0D + 1B -678+ 456 -9 + 576+ 4 )

9 1 17820 { 1481 + 0 - B1 + 7104 ~ 3376 + 72 - 5040 - 60+ 720)
{(Cod €y +Cy # 0yt Gyt Cyt Cat Cr+ Cyt+ Gy )= 1/840 (N +0+0+27 4272427 +216+0+216+41)

6.2.2 HULL RUNGE-KUTTA FORMULAS

The Hull Runge-Kutta 3(4+) integrator (Reference 9) is used in GTDS to perform impact
computations. This Runge-Kutta method is a self-starting, single-step integration scheme
that computes the value X{t,) for some tz = t; + 7 (where 7 is the Runge-Kutta stepsize,
z > 0), given a first-order differential equation

dx
= - i(t, %) (6-91)

with initial condition

X)) =% (6-92)
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where

f = function arising from the equations of motion or the variational
equations
t = independent variable (usually time)

¥ = vector of the dependent variables
x; = value of X at time t,

This is accomplished by evaluating the function f at N values of t(t; = t < t) and
using the weighted averages of these values to compute the correction to the initial value,
X1.

i
f; = f(t;, X1) (6-93a)
fi = f(ty + a7, X1 + k) (6-93b)
where
M
kj =1 Z biefe [forallj(2 = j =< N)] (6-94)
t=1

then the dependent variable x(t;) is as follows:

N

x(t)) = x(t; +7) = X3 + 7 z ¢ f (6-95)

i=1

Table 6-2 gives the coefficients aj, bjs ¢; for the Hull Runge-Kutta 3(4+) method (N =5,
M; = j - 1) for integration of first-order differential equations. This method is of order p,
where 4 < p < 5. An estimate of the truncation error, computed by differencing the values
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of x(t; + 7) obtained using this integration method and a similar method of order 3, is
given by

5

Et; + 1) =7 Z d; f; (6-96)

1=1

where the values of §; are error coefficients given in Table 6-2 and f; is evaluated ac-
cording to the Runge-Kutta 3(4+) method. If En,x is a predetermined maximum that the
relative truncation error

By = SO0 (6-97)

N [x(t; + 7)

is allowed to reach, then the optimum stepsize, given the initial Runge-Kutta stepsize 7, IS

fopt = I(EE':'“)’/ ) (6:98)
el

The optimum stepsize (fop) can be used in the Hull Runge-Kutta 3(4+) method to vary
the stepsizes.

6.2.3 FOURTH-ORDER RUNGE-KUTTA FORMULAS WITH GILL'S
COEFFICIENTS

The fourth-order Runge-Kutta integrator with Gill's coefficients (RKG) (Reference 10) is
provided for propagation of the spacecraft state vector and the state partial derivatives.
The RKG method computes the integration stepsize as a function of the eccentricity.

The equations of motion or variational equations are expressed as a set of first-order
differential equations

dx
il £(X, t) (6-99)

with the initial condition

X(to) = %o (6-100)
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Table 6-2. Coefficients for the Runge-Kutta 3(4+) Integrator (N=25)

INDEX COEFFICIENTS
J ay Cj 0;
1 0 0.10888304916410344 | _0.49939143641338931 x 1072
2 2/7 0.24547988676401333 0.68461187539313607 x 101
3 715 0.93907286031851855 | - 0.10922264375986756
4 35/38 0.44251397222216452 0.18170514205348768
5 1 —0.13594977146879983 | - 0.13594977146679983
INDEX COEFFICIENTS b (M; = j - 1)
™~ 1 2 3 4
1 - - -
2 0.28571428571428571 -
3 | -0.93777509730408418 x 10-1| 0.56044417639707508 - -
4 0.60836163032357864 - 1.2040651668504905 | 1.5167561682145592 -
5 1.4613130509525770 - 3.8111651280355121 | 3.6068242907277299 | -0.26607221274479485

where
f = function arising from the equations of motion or variational equations
t = independent variabie
¥ = vector of dependent variables

The procedure to advance X from tp to time tg is as follows. The Runge-Kutta stepsize
hour, h,, is computed from

R2
h, = 6-101
9T7oM (6-101)
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where

0= {0 e < 02 6102
and
R = magnitude of the position vector
GM = gravitational constant of the central body
If
hy > tg - tp (6-103)
then
hy = tR ~ 1o (6-104)
where ty is the desired output time.
The parameters ¥ are then advanced to time t4 = to + h, as follows:
K; = b f(%o, to) (6-105)
d 1
X = Xp + 3 K, (6-106)
o =K (6-107)
K, = h, f(%;, to + %-h,) (6-108)

X; = X + (1 - ‘/% )(Kz - T (6-109)
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n=02-2)K+ (3 ‘/g - 2)1?1 (6-110)

Ry = bl to+ o h) (6-111)

Xa = X2 + (1 + ‘/—g' )(K3 - qz) (6*112)
q3=(2+ﬁ)ﬁ3—(3@+2)q2 (6-113)

Kd = hy f()r3, t + hr) (6'114)
R’=X+1K4—l" (6-115)
4 3 6 3 ds3

6.3 MAPPING OF POSITION PARTIAL DERIVATIVES

It is well known from the theory of linear differential equations that the solution of the
n-dimensional linear system

% = D) X | (6-116)
satisfying the initial condition
X(to) = %o (6-117)
is given by
X(®) = @ to) Ko (6-118)
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where ® is a fundamental matrix solution of Equation (6-67), i.e., an n X n matrix
satisfying

® = D) P (6-119)

with initial condition

O(to, to) = 1 (6-120)

In this context, ®(t, to) is called the state transition matrix. The properties of @ can be
used to enhance the computational algorithm for position and velocity partial derivatives
as follows. During the integration of a trajectory, a column of C(t) corresponding to a
dynamic parameter can become zero. For example, when leaving the sphere of influence
of the Earth, the acceleration partial derivative with respect to a geopotential coefficient
of the Earth becomes effectively zero. If this time is denoted by T, then the position
partial derivative with respect to this parameter, denoted by x;(t), satisfies an equation of
the form of Equation (6-67) for t > T, where

0 I
A B(t) (6-121)

BX6

D(t) =

with an initial condition X(T).

If ®(t, T) denotes the state transition matrix satisfying @®(T, T) = 1, then the required
position partial derivative can be obtained for any t > T by

1) = o, T) x(T) (6-122)

The overall state transition matrix, ®(t, to) for t > T can be computed by

(D(t; tﬂ) = (I)(t: T) (D(Ts tD) (6'123)
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where the elements of the matrix ®(T, tp) are given by

(R 9RO
R, iR
O, to) = | . ) .
(T o) oR dR (T) (61249
| R IR, _

The components of (T, ty) are contained in the Y and Y matrices defined in Equa-
tions (6-54) and (6-55) when t = T (assuming P contains the state).

The computational strategy for computing the partial derivative of x(t) is to integrate the
variational equations up to t = T using the method described in Section 6.1.4 or the
method described in Section 6.2. At that point, the matrix ®(T, to) is stored; @®(T, T) is
initialized: and, for any t > T, X(t) is computed using Equation (6-73) and d(t, to) s
computed using Equation (6-123). A similar process can be used for multiple event times
(Ty, Ty, ... T,) at which various columns of C(t) become zero. Assuming
T, < T, < .. < T, s t, Equation (6-123) becomes

(I)(ts tﬁ) = (D(t’ Tl') (D(Tr, Tr—l) .- q)(Tll TU) (6'125)

6.4 TIME REGULARIZATION

For orbits that are highly eccentric or that connect regions with significantly different
gravitational force magnitudes, accurate direct integration of Equation (6-29) or (6-49},
with time as the independent variable, usually requires either a very small fixed stepsize
or many stepsize changes in a variable stepsize scheme. Frequent stepsize changes are
costly and result in errors propagating due to the interpolation procedure used to restart.

To improve this situation, the classical approach is to transform the independent variable
to a new variable, denoted by s, defined by the relation (Reference 11)

dt R®
- = 1 = = 2 -12
IS 7; ( n ) (6-126)

For n = 1 or 2, this variable corresponds to the use of eccentric anomaly or true anomaly
as the independent variable in the integration of elliptic motion. The use of regularization
in the computation of free-flight Earth-Moon trajectories is investigated in Reference 12.
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This study indicates increased computational accuracy and a significant reduction in com-
putation time due to regularization.

To express Equation (6-29) or (6-49) in terms of the new independent variable s, the
following notation is employed:

dg R® .
D = — = 6-
g ds 7; g (6-127)
dg R ... - o
Dg = = —ﬂ—[nR 'R g + R ] (6-128)
where
. _R-R (6-129)
R="x

and g(t) is any arbitrary vector-valued function in the t system. Similarly,

Ju

-1 = N Yl (6-130)
DVg=135 =18

_ . . DR
D 2 g =g-= —:;;[R g - W g ] (6-131)

where the prime indicates differentiation with respect to s, and

R S 6-132
R=JE(Rﬁ) (6-132)

The transformed Equation (6-29) can then be expressed as

R’ = D*R(®) (6-133)
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2n-1 1
;o AR R (6-134)
/]

The integration of Equation (6-134) is required to compute the time, t, as a function of
the new independent variable, s. :

The integration of Equations (6-133) and (6-134) can be carried out with essentially the
same procedures outlined in the previous sections. The additional remarks required are as
follows:

1. Given t(s), R(s), and R'(s), a corresponding R'(s) is determined by first com-
puting the time derivatives

u

R(9) = DR = s RO (6-135)
and
Ko = £ + P, RO, RO (6-136)
yielding
R'(s) = "RI;E' - R"3R + 5;1 P(t, K, -{i—‘gﬁ') (6-137)

2. The value of the independent variable, s, corresponding to an output request
time or measurement time, t,, can be obtained by inverse interpolation in the
t; array obtained by the integration of Equation (6-134). This value of s can
then be used to compute the required R and R by the interpolation procedure
indicated in Section 6.1.5.

Analogous regularization procedures can be used for Equation (6-49). The regularized
variational equations are of the form

Y' = [R:n A(t)]Y + %[B(t) + “;{ I] Y + R;n C(1) (6-138)
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An additional advantage of using regularized time is that the initial (fixed) stepsize can be
conveniently selected as a fraction of the regularized period S, where, if T is the satellite
period,

T
s- | g (6139
o R

The integral can be evaluated by quadrature for the two-body problem by a change of
variable from t to true anomaly, f, resulting in the formula

1 2n
S = W J'O (1 + e cos f)*2df (6-140)

where p is the semilatus rectum of the ellipse. Frequently, a fraction of this period (of the
order 1/100) will serve as an adequate stepsize for the integration of Equations (6-131)
and (6-132).

A drawback of the method is that the equations of motion in the t system (Equa-
tion (6-133)) always contain explicit first derivatives, regardiess of the situation in the
t system, (see Equation (6-131)). Thus, the computational simplifications possible for
velocity-free accelerations do not apply. Hence, the trade-off between the advantages and
disadvantages of the regularized time integration depend upon the stepsize, length of arc,
efficiency requirements, and eccentricity magnitude.

Experience has shown that regularized time integration considerably improves the effi-
ciency of variable stepsize integration for moderate to high eccentricities (e = 0.2). For
the Cowell formulation, the value n = 3/2 seems to give best results, whereas, for orbital
element formulations, the optimum value of n appears to be 2 (Reference 13). Improve-
ments in the accuracy of the integration of the time equation (Equation (6-1 34)) can also
be obtained through use of a time element (see Appendix B).
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CHAPTER 7—MEASUREMENT MODELS

Spacecraft tracking measurement modeling involves the measurement of some physical
property of electromagnetic wave propagation between the tracking station and the space-
eraft and analytically relating the measured quantities to the spacecraft state vector. This
chapter presents the models and associated equations for measurement modeling in
GTDS. The models consist of kinematic equations that yield the ideal values of the meas-
urements in trajectory-related units (e.g., range, range rate, azimuth, and elevation).
Therefore, the modeled measurements are functions of the spacecraft’s best estimated
position and velocity, as well as specified model parameters (e.g., tracking station loca-
tion and timing errors). Preprocessing of the actual data, which is usually done separately,
includes calibration, time-correction, smoothing, and compacting and converting the raw
tracking data into units compatible with the calculated measurements. However, the
preprocessor program does not correct for the effects of atmospheric refraction and may
not correct for propagation times, transponder delays, or antenna mount errors. As a
result, corrections for these systematic errors are computed in GTDS and applied to the
actual data. Systematic errors may still be present.

The procedures and formulations presented in this chapter describe all data types that are
implemented in GTDS. Section 7.1 presents a general description of the forms of the
computed measurements and their partial derivatives. Section 7.2 gives the equations and
transformations for modeling ideal measurements and their partial derivatives for ground-
based tracking systems. Sections 7.3, 7.4, and 7.5 discuss TDRSS tracking, radar altime-
ter tracking, and very long baseline interferometer tracking, respectively. Atmospheric
effects are discussed in Section 7.6, and other corrections (light-time delay, transponder
delay, and antenna mount errors) are presented in Section 7.7. Finally, the interrelation-
ship between the measurement models and the estimation process is summarized in Sec-
tion 7.8.

7.1 GENERAL DESCRIPTION

The basic orbit determination process consists of differentially correcting estimates for a
set of parameters to minimize the sum of squares of the weighted differences between the
actual measurements and the corresponding quantities computed from the measurement
model. In GTDS, this model is assumed to be of the form

0. = fo[R(t + o, P), R(t+ ot P). T + b+ RF (7-1)

7-1



where

ot

R,

= time tag of the measurement
= timing bias
= computed measurement at the corrected time t + 4t

R = vehicle position and velocity at an appropriate time related to
t = t + 0t (For many measurements modeled in GTDS, the posi-
tion and velocity are expressed in local tangent coordinates with
respect to a station position, 7. Other measurements are modeled
in terms of the vehicle inertial state vector. In either case, the state
vector is dependent on the dynamic parameter vector, P. For
TDRSS tracking, the TDRS position and velocity are also included
in the measurement model.)

= measurement bias or offset

= geometric relationship defined by the measurement type at time
t + Ot

RF, = correction to the measurement due to atmospheric refraction, light-

time delay, transponder delay, antenna mount errors, etc.

The measurement model parameters that can be estimated are the following:

§ = dynamic parameters in the equations of motion that can be estimated;
these include variables related to the position and velocity, gravitational
harmonic coefficients, drag parameters, etc.

f, = location in Earth-fixed coordinates of the transmitting and receiving sta-
tions, as well as the Bilateration Ranging Transponder (BRT) locations
in the case of TDRSS Bilateration Ranging Transponder System (BRTS)
tracking

b = measurement bias, which depends on the measurement type and the
tracking station

&t = timing bias, which is both station and pass dependent

The measurement models simulate the following tracking system data types, for the data
types listed:
e Goddard Range and Range-Rate (GRARR) System, Applications Technology

Satellites Ranging (ATSR) System, STDN Ranging Equipment (SRE) Very High
Frequency (VHF) System, SRE Unified S-band (USB) System, and Space
Ground Link System (SGLS)

— Range or propagation time delay

— Range rate, range difference, or Doppler shift



— X gimbal angle or azimuth
— Y gimbal angle or elevation

e C-band Radar System and Smithsonian Astrophysical Observatory (SAQ) Laser
Systems
— Range
— Azimuth
— Elevation
® Minitrack Interferometer System

— Direction cosine ¢
— Direction cosine m

e Tracking and Data Relay Satellite System (TDRSS)
— Range
— Doppler shift
— Azimuth
— Elevation
e Radar Altimeter (RA) System (not currently available)
- Altitude
e Very Long Baseline Interferometer (VLBI) System (not currently available)

— Time difference
— Time-rate difference

After preprocessing, some measurements are converted to metric form while others are in
the form of time intervals. In general, the time tag on each measurement is converted to
coordinated universal time (UTC), which is derived from Atomic Time (A.1) so asto be a
close approximation to UT2 (see Chapter 3).

The differential correction process requires the calculation of the computed measure-
ments and the systematic error corrections that are applied to the actual measurement
data. The process also requires computation of the partial derivatives of the measure-
ments with respect to the model parameters p, T, b, and 6t. These partial derivatives
can be expressed as follows:

0. _

= 7-2
op op (23)
0. _ o (7-26)
of of;



00,

o (7-2¢)

aOc afo

200 - ey - M (7-29)

It is assumed that the partial derivatives of the systematic error correction terms, RF,
with respect to P, f;, b, and ét, are either zero or negligible.

7.2 GROUND-BASED TRACKER MODELS

This section presents the transformations and equations for computing the ideal measure-
ments (i.e., no systematic errors b, RF,, or 4t present). The measurements correspond to
those from the GRARR, ATSR, USB, SRE, SGLS, C-band, laser, and Minitrack systems.
The tracking process is described in Section 7.2.1, with a discussion of the local tangent
plane coordinates given in Section 7.2.2. The measurement equations and partial deriva-
tives are given in Section 7.2.3. Since many of the measurements are common to more
than one of these systems (e.g., the range rate, o, is common to GRARR, ATSR, and
USB), the discussion is organized by measurement type rather than by measurement sys-
tem.

7.2.1 TRACKING PROCESS

For all systems except the Minitrack System, the electromagnetic signal is transmitted
from the ground station at time t and is received at the satellite at time t, . The signal is
retransmitted by the satellite transponder (except for the laser systems, where a
retroreflector is used) at time t, + Ar, where Ar is the transponder delay. The return
signal is received at the ground station at time tg. Thus, precise modeling requires that
the tracking system be treated as a dynamic process, since both the satellite and the
tracking station are moving relative to inertial space during the time it takes the signal to
traverse the round trip from the ground station to the satellite and back.

The tracking instruments measure three basic quantities: the time interval required for the
signal to traverse the path from the ground transmitter to the satellite and back to the
ground receiver, the direction of the received signal at the ground station as measured by
the receiver antenna gimbal angles, and the Doppler frequency shift of the received signal
compared with the transmitted signal. Preprocessor programs multiply the round-trip time
interval by the signal propagation speed, thereby converting it to the geometric distance.
The GTDS measurement model then relates the station-to-spacecraft range vector to the
geometric distance and its direction angles at the receiver. The Doppler frequency shift
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data are related to the station-to-spacecraft range rate as described in Appendix A (Sec-
tions A.1.2.3 and A.3.2) and in Appendix C.

7.2.2 LOCAL TANGENT PLANE COORDINATES

The ground-based tracking measurement models are most conveniently expressed in
station-centered local tangent plane coordinates, except for the USB and ATSR range and
range-rate measurements. At the time of the measurement computation, the spacecraft
state vector is available in either B1950.0, J2000.0, or true of reference date inertial
coordinates. ‘The inertial state vector must first be transformed to body-fixed coordinates
using the appropriate transformation matrices from Section 3.3. The transformation from
mean of B1950.0 or J2000.0 coordinates to body-fixed coordinates is expressed as

f(t) = B(H) Ct) R() (7-3a)

£ = B CE RE) + B C©O RO (7-3b)

where C and B are the transformation matrices from B1950.0 or J2000.0 coordinates to
true of date coordinates (Section 3.3.1) and from true of date to body-fixed coordinates
(Section 3.3.2), respectively; R and T are the spacecraft position vectors in B1950.0 or
J2000.0 coordinates and body-fixed coordinates, respectively; and R and f, are the
spacecraft velocity vectors in B1950.0 or J2000.0 coordinates and body-fixed coordinates,
respectively. The tracking station position vector, T, expressed in body-fixed coordinates,
is given in Section 3.3.7 as

_—(Ns + hg) cos ¢ cos is |
(7-4)
f. = | (Ng + hy) cos ¢ sin As
[Ns(l - e2) + hs] sin ¢’s
where e = 2f - f2, f is the flattening coefficient of the Earth, and
i (7-5)

N, =
J1 - (2f - £2) sin® ¢,
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The spacecraft position and velocity vectors, expressed in local tangent plane coordinates,
are given in Section 3.3.7 as

fiu(®)

My[fu(® - ] (7-62)

fut) = My m(t) (7-6b)

Substituting Equations (7-3) into Equations (7-6) relates the local tangent coordinates to
the inertial coordinates

i = My[B() C(t) R(t) - F] (7-7a)

f. = My[B(® C(®) R(t) + B C(® R®)] (7-7b)

The vectors Ty, and f; are used to model the tracking measurements.

The partial derivatives of the computed measurement are calculated using local tangent

coordinates as the intermediate system (except for the USB and ATSR ranges and range
rates) as follows:

90, _ ofy _ o o OR M o R o oR|  gg
ap 3 o OR O 95, (R P g P
From Equations (7-7),

M _ My B(t) CO) (7-92)
aR
3f, : (7-9b)
— = My B@®) C{t
= n B(t) C(t)
ST _ M, B CQ) (7-9¢)
oR
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Substituting Equations (7-9) into Equation (7-8) yields

30, _ af R of [ : )y aﬁ]
= ZCMBEOCH — + — | My B@t) CH) — M, B(t) C(t) == | (7-10)
3 o 1 B(t) C(®) 5 ey 1 B C@® o5 + My B(t) C(t) P

The matrices oR/8p and 9 ﬁ/ 9P are obtained from the variational equations described in
Chapter 4. The partial derivatives of the vacuum measurements, dfy/of, and ofo/d 1y,
are presented in Section 7.2.3.

7.2.3 MEASUREMENT EQUATIONS AND PARTIAL DERIVATIVES

In the absence of an atmosphere, electromagnetic signals follow a straight line path be-
tween the station and the spacecraft, traveling at the vacuum speed of light. Equations
describing vacuum signal propagation are presented below, along with the pertinent par-
tial derivatives required for the orbit determination and error analysis processes. Correc-
tions for atmospheric effects are given in Section 7.6. A functional description of each
trajectory sensor system, as well as a description of the data preprocessing, can be found
in Appendix A.

7.2.3.1 Gimbal Angles

The gimbal angles provide the direction of the received downlink signal at the ground
station. For rotatable dish antennas, the direction angles are measured from the antenna
gimbaling system. For the fixed antennas in the Minitrack System, however, the signal
direction is determined from principles of interferometry.

Assuming no atmospheric refraction, the signal direction at the ground receiver is deter-
mined from the straight-line propagation path from the spacecraft at time t, to the
receiving station antenna at time tg. GTDS approximates this direction by the instantane-
ous straight-line path from the spacecraft to the station at time t, . This approximation
introduces negligible error in the signal direction angles because of the relatively small
distance (relative to inertial space) traversed by the station during the downlink propaga-
tion time interval.

The following subsections describe the various gimbal angle models included in GTDS.

7.2.3.1.1 Gimbal Angles X3, and Y;, (GRARR, ATSR, USB, and Laser Systems)

The gimbal angles for the 30-foot antennas in the GRARR, ATSR, USB, and laser systems
are denoted Xsp and Yso. The Xjp-axis is aligned north-south in the local horizon



(tangent) plane at the tracking station. The reference plane for the angular measurements
is the vertical plane, which is aligned east-west and includes the tracking station zenith.
The angle X», is measured from the vertical axis (zenith) to the projection of the station-
to-spacecraft vector onto the reference plane. This angle is positive when the spacecraft is
east of the station, i.e.,

b4 J
-— =€ X3 = — 7-11
(-2 < xu = 3) (1)

The angle Y;, is measured from the projection of the station-to-spacecraft vector onto the
reference plane to the vector itself. This angle is positive when the spacecraft is north of
the station, i.e.,

- ¥ 7 ki
Y3 = tan™? ( ) (—— < Yy = —) (7-12)
;xﬁ + Z3 2 2

The partial derivatives of X3, and Yjp with respect to the local tangent plane coordinates
are

aX30 1

= Zis 0, - X 7-138
ar—_h (Xﬁ + zlz [ I lt] ( )
i), 4

2 -0 (7-13b)
9 Iy

and

Y 1 -X 1 -V Z
30 ___2_[ nyn ’ Jm’ 2}’1 112] (7-13¢)
; ;Xla + Zy

o o“LVxi +
Y.

2 =0 (7-13d)
9y
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where

0= yxk+yi+ 2 (7-14)

7.2.3.1.2 Gimbal Angles Xgs and Ygs (USB System)

The gimbal angles associated with the USB 85-foot antennas are denoted Xgs and Ygs-
The Xgs-axis is aligned east-west in the local horizon (tangent) plane at the tracking
station. The reference plane for the angular measurements is the vertical plane, which is
aligned north-south and includes the tracking station zenith. The angle X35 is measured
from the vertical axis (zenith) to the projection of the station-to-spacecraft vector onto the
reference plane. This angle is positive when the spacecraft is south of the station, i.e.,

Xgs = tan’! (-%) (-“ < Xgs <= E) (7-15)
It

2 2
The angle Ygs is measured from the projection of the station-to-spacecraft vector onto the
reference plane to the vector itself. This angle is positive when the spacecraft is east of
the station, i.e.,

- X 7 7T
Ygs = tan 1 ( - 1t 2) (-E < Ygs = -5) (7-16)
Yit + 2

The partial derivatives of Xgs and Ygs with respect to the local tangent plane coordinates
are

0Xgs : 1

= 0, —zy, 7-17a
a'i'_lt (ylz‘ + zlzl)[ It YIt] ( )

X
s _ g (7-17b)
0 fh
and
0Ygs 1 [ {3 2 ~Xn ¥t = Xn Zy ]
— = —=|V¥¥i + Zit, , (7-18a)
0T 0? Vv + Z} vi + zf
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-0 (7-18b)

7.2.3.1.3 Gimbal Angles A and E (ATSR, C-Band, and Laser Systems)

The azimuth angle, A, is measured in the local tangent (horizon) plane, clockwise from
north to the projection of the station-to-spacecraft vector onto the local tangent plane. This
angle is positive when measured eastward (clockwise) from north, i.e.,

A = sin'l( zx“ 2) 0 = A = 2m) (7-19a)
;xll + Yit

A = cos“( zy“ 2) 0 = A < 2n) (7-19b)
;xlt + ¥n

The elevation angle, E, is measured from the projection of the station-to-spacecraft vector
onto the local tangent plane to the vector itself. This angle is positive whenever the space-
craft is above the horizon, i.e.,

E = tan™ (7=2:"‘.“_=7) (7-20)
X + Vit

The partial derivatives of A and E with respect to the local tangent plane coordinates are

dA 1
afy, (xﬁ + Yﬁ)

[ yu» —Xu O] (7-21a)

LN

| (7-21b)
3ty

and

dE 1 -Xn Z -y, Z
- _7[ n Zie , Y Zy ' m:l (7_223)

e ) 2 2 2
ot @ \/;11 + Yit \/ Xit + Yit
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£ o | (7-22b)

3y

7.2.3.1.4 Direction Cosines / and m (Minitrack System)

The direction cosine ¢ is the cosine of the angle between the station-to-spacecraft vector
and the axis pointing toward the east in the local tangent system (the ﬁh axis). This
direction cosine is positive when the spacecraft is east of the station, i.e.,

Xn
{ = — 7-23
e (7-23)

The direction cosine m is the cosine of the angle between the station-to-spacecraft vector
and the axis pointing toward the north in the local tangent system (the 9“ axis). This
direction cosine is positive when the spacecraft is north of the station, i.e.,

m= 2 (7-24)

The partial derivatives of £ and m with respect to the local tangent plane coordinates are

ol 1

— = —5[Gh + 28), -Xu¥n, -XuZnl (7-25a)
ar]‘ Q

14
— =0 (7-25b)
9 fiy

and

om 1
— = —5[-Xu ¥ (x% + 28, ~¥nZn (7-26a)
arh [

L) (7-26b)

0 I
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7.2.3.2 Range (GRARR, ATSR, USB, SRE VHF, Laser, SGLS, and C-Band Systems)

From the description of the tracking process in Section 7.2.1, it is seen that all trackers
provide the user with the round-trip light-time delay from the transmitter through the
spacecraft to the ground receiver, along with an associated time tag. The round-trip range
is seen to be

orr = IRt - Frtp)] + R - Bty + A7) (727

where

ort = round-trip range

F, = spacecraft position vector in inertial Cartesian coordinates

fr = ground transmitter position vector in inertial Cartesian coordinates
fa = ground receiver position vector in inertial Cartesian coordinates

Ar = spacecraft transponder delay
ty = time the signal is transmitted from the ground station

t, = time the signal is received at the satellite
tg = time the signal is received at the ground station

In the case of the USB and C-band systems, the time tag on the raw data corresponds to
the time tz at which the measured signal arrives at the ground receiver; for the GRARR
and ATSR systems, the time tag on the raw data corresponds to the ground receive time,
tg, less the measured value of the round-trip light-time delay. For all systems, the pre-
processor provides GTDS with o(t), the average of the uplink and downlink propagation
distances (pr1/2). The value of(tr) is generated by multiplying the measured round-trip
propagation delay by ¢/2. The preprocessor also provides tg by making the appropriate
modifications to the raw time tag for the GRARR and ATSR data.

For the greatest accuracy, the expected value of the range should be calculated by deter-
mining the uplink and downlink path of the signal as defined in Equation (7-27). This
method requires an iterative process to determine the uplink and downlink light-time de-
lays. A second, less accurate, method is to approximate the range by calculating the
instantaneous range at the spacecraft turnaround time. The iterative method is used to
calculate the expected range for the USB, SRE VHF, laser, SGLS, C-band, and ATSR
systems, while the instantaneous method is used for the GRARR VHF system.
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7.2.3.2.1 Iterative Method for the Expected Range

The expected value of the range o(tr) is computed from ephemeris information and sta-
tion coordinates using the following equation:

o) = STIRE - Fao)] + () - @l (28)

For simplicity, this equation is presented in an inertial reference frame, where

Fy
fr

Fr

tr
t,

- tr

spacecraft inertial position vector

transmitting site inertial position vector

receiving site inertial position vector

time at which the measured signal left the ground transmitter

time at which the measured signal was received and retransmitted by
the spacecraft (The assumption of instantancous turnaround is used;
the constant bias in the measured range caused by the spacecraft elec-
tronic delay is accounted for as a measurement error elsewhere in
GTDS.)

time tag of the reduced measured range (i.c., the time at which the
measured signal arrived at the ground receiver)

The algorithm used in GTDS to compute o(ty) proceeds as follows:

1.

2.

Calculate Fr(tp)

Calculate iteratively the downlink propagation distance, pa(ty), using the fol-
lowing equations:

0a(tr) = [Fv(t) = Tr(tR)] (7-29a)
bolte) = Eég;") (7-29b)
ty = tg - Sa(ty) (7-29¢)

7-13



The iteration process is initiated by assuming that t, = tg and is terminated
when successive values of d4(ts) agree to within 107® second.

3. Calculate iteratively the uplink propagation distance, ou(tr), using the following

equations:
oult) = [R(t) - Frltol (7-30a)
b) = & (7-30b)
tr =ty - an(t]{) (7-300)

The iteration is initiated by assuming that u(te) = Oa(ts) and is terminated
when successive values of 8.(tg) agree to within 10™® second.

4. The following geometrically exact equation is used to compute the expected
value of the range, o(ts), for the USB, SRE VHF, C-band, ATSR, laser, and
SGLS systems:

ot = 28+ 0alts) | (7-31)

7.2.3.2.2 Instantaneous Method for the Expected Range

Range data produced by the GRARR VHF system is less accurate than that produced by
the other tracking systems; therefore, it does not warrant the application of the iterative
solution described above. Instead, the following more efficient algorithm is used to deter-
mine an instantaneous approximation for g(tR) using GRARR range data:

olt) = IR(t) - Frt)l = [Pl

(7-32)
- Jx2+ vE o+ 2
where
' ty = tg - Q_(t_p;)_ (7-33)

c

and fy, is the spacecraft position vector in local tangent plane coordinates.
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7.2.3.2.3 Range Partial Derivatives

The partial derivatives of the expected range (Equation (7-28)) in inertial coordinates
(USB System) are

dp(tr) . 1
of(ty) 204 04

{oalfT(t) - D]+ oulfT(t) - ] (7-34a)

deta) _ o :
o 0 (7-34b)

I it is assumed that Qu = Qa = o(t), Equation (7-34a) reduces to

do(tn) 1
) | 2ot Q@) - [FFen) + ) (7-35)

The partial derivatives of the expected range in local tangent plane coordinates (for the
remaining systems) are

do(tn) _ Fhilt) :
) - R (7-36)
20t _ (7-37)
o fu(ty)

7.2.3.3 Range Rate (GRARR, ATSR, USB, VHF, and SGLS Systems)

The range rate of a spacecraft is determined by measuring the Doppler shift of a signal
resulting from the relative motion between the station and the spacecraft. This can be
done either by measuring the time required to count a fixed number of Doppler-plus-bias
cycles, as with GRARR, ATSR, and SGLS, or by counting the Doppler-plus-bias cycles
over a fixed time interval, as with USB and VHF. For all tracking systems, the preproces-
sor converts the raw Doppler information transmitted from the stations to range rate and
a time tag.

There are three modes of calculating the expected value of the range rate for each of
these tracking systems. In the first method, the range rate is obtained by computing the
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time difference quotient of ranges calculated at the beginning and at the end of the
Doppler count interval, iteratively correcting for the light-time delays. The second method
uses the instantaneous ranges at the beginning and at the end of the count interval, with
no corrections for the light-time delays. The third, and least accurate, method is to calcu-
late an instantaneous range rate at the midpoint of the Doppler count interval as seen at
the spacecraft. The first method is used to compute the expected value of the range rate
for the USB and VHF systems, while the other two methods are used (optionally) for the
GRARR, ATSR, and SGLS systems.

7.2.3.3.1 Iterative Range Difference Method

The modeling of the expected value of the range rate that is most precise is to difference
the average range at the beginning and end of the count interval as shown below (Refer-
ence 1):

o) = foult) + 0altr)] - [pu(;:t;n Atg) + Qaltr - Atgg)] (7:38)

where

ou(ta) = uplink propagation path of a signal arriving at the receiver at tg
palts) = downlink propagation path of a signal arriving at the receiver at tg
Atgr = Doppler count time interval

The calculations for these uplink and downlink ranges are iteratively corrected for the
light-time delay in exactly the same manner as the expected ranges modeled in Sec-
tion 7.2.3.2.1. This method is used for USB and SRE VHF measurements where the time
tag on the measured data is ty (corresponding to the end of the count interval) and the
count interval, Atgg, corresponds to the sample interval. This method is accurate for both
two-way and three-way Doppler measurements. Two-way Doppler measurements are ob-
tained when the transmitting and receiving antennas are the same, while three-way
Doppler measurements are obtained when the transmitting and receiving antennas are

| different.
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The range-rate partial derivatives with respect to the epoch state elements, R and ﬁ. are
computed most efficiently by using the following algorithms for the range partial deriva-

tives:

, do(tn) _ do(ts - Atra)
20(t)) _ “oR oK (7-39)
R Atpr

do(tr) _ do(tr - Atrr)

30(tn) _ _oK ok (7-40)
ok Atrr

7.2.3.3.2 Instantaneous Range Difference

A less accurate but more efficient range difference formulation is available in GTDS for
GRARR, ATSR, and SGLS. It is assumed in this model that propagation delays are negli-
gible compared with the Doppler count time interval. The resulting equation is

oty + Atgg) - o(ty) _ |Fu(ty + Atrr)| - Fis(ts)| (7-41)
Atgr Atgr

0 =

The two range vectors fi,(t. + Atgr) and fu(t,) are computed in the same manner as
those for the range computations (Section 7.2.3.2.2). In order to use this method in
GTDS, the preprocessor must provide tg, the time of the received signal at the beginning
of the Doppler count interval, and Atgg, the count interval. In the case of the SGLS
range-rate measurement, the preprocessor provides tg + 1 second. The partial derivatives
of ¢ with respect to local tangent coordinates are

90 1 {ﬁl;(tv + Atgg) ﬁ'l;(tv)} (7-42)
oy Atgr | [Fulte + Atrg)] |Fie(to)]

20 (7-43)

——go

3ty

7.2.3.3.3 Average Range Rate

A third method, which is the least accurate but most efficient, calculates the instantane-
ous range rate at the midpoint of the Doppler count interval as seen at the spacecraft.
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This value is used to approximate the average range rate over the uplink and downlink
paths and is therefore denoted 0,,,. It is computed as

Tult) - fu) (7-44)
[Tt |

Qn\rg =

The position and velocity vectors are expressed in station-centered local tangent plane
coordinates evaluated at the vehicle turnaround time, t,.

This method is used for the GRARR and ATSR range-rate models. When this method is
used, the preprocessor modifies the time tag on the GRARR data according to the rela-

tionship

Atgr _ [Fis(t)] (7-45)
2 c

ty =1, +

The partial derivatives of ém with respect to local tangent plane coordinates are

20 . '
= -l-[r?{ -2 fﬁ] (7-46)
ofy 0 Q

" T
o M (7-47)
ar, ©

7.3 TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS)
MODELS

In this section, the modeling of measurements from TDRSS is discussed (Reference 2).
Following an overview of the different types of tracking configurations, the details of the
modeling of range and Doppler measurements and their partial derivatives with respect to
solve-for parameters are given. Models for the TDRS beam angles are also presented.

7.3.1 TARGET TRACKING CONFIGURATION OF TDRSS

The three basic tracking-configuration categories in TDRSS are as follows:

e Hybrid tracking
e Two-way tracking
e One-way tracking
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For descriptive purposes, the path of the tracking signal is defined as a chain of nodes
and legs. A node is either a station or a spacecraft that can transmit and/or receive the
tracking signal. A leg is the signal path between two nodes. The measurements related to
these configurations are discussed below. Although the two-way tracking configuration is
the one that will be most frequently used, the hybrid tracking configuration measurements
are discussed first because of the generality of this configuration. The two-way and one-
way configuration measurements are described next, followed by a discussion of dif-
ferenced one-way relay Doppler measurements.

7.3.1.1 Hybrid Relay Range and Doppler Measurements

Using the definitions for nodes and legs, the signal path of a hybrid relay range measure-
ment is depicted schematically in Figure 7-1. The tracking signal originates and is trans-
mitted from a transmitting antenna at the White Sands station (node 1), propagates
through the forward-link TDRS (node 2), arrives at the receiver on the target (node 3), is
relayed to the return-link TDRS (node 4), and is finally received at a receiving antenna at
the White Sands, New Mexico, station (node 5). The target tracked by TDRSS can be
either an orbiting user spacecraft or a ground transponder.

For a hybrid relay Doppler measurement, the signal path is similar to that of a range
measurement, except that there is an extra node and an extra ieg. The coherent Doppier
signal is transmitted from the receiving antenna (node 6) and is mixed at the return-link
TDRS (node 4) to maintain the phase coherency with the Doppler signal transmitted from
the transmitting antenna (node 1). The mixed Doppler signal is finally received at the
receiving antenna (node 5). The coherent Doppler signal propagation (leg 5) is shown as
a dashed line in Figure 7-1. Node 6 and node 5 are physically the same antenna but are
located at different positions in the inertial coordinate system because of the Earth’s

rotation.
7.3.1.2 Two-Way Relay Range and Doppler Measurements

For a two-way relay range or Doppler measurement, the tracking signal also originates
from a transmitting antenna, propagates via a TDRS to a target, is retransmitted by the
_ target back to the same TDRS, and is received by the same ground antenna. Figure 7-2
shows the two-way tracking configuration in which nodes 1, 5, and 6 are physically associ-
ated with the same antenna but are located at different positions in the inertial coordinate
system because of the Earth’s rotation. Nodes 2 and 4 are associated with the same TDRS
but are located at different positions in the inertial coordinate system because of the

orbital motion of the TDRS.
7.3.1.3 One-Way Relay Doppler Measurements

For a one-way relay Doppler measurement, a wide-beam tracking signal originates from
the target (node 3), proceeds to the return-link TDRS (node 4), mixes with the coherent
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Doppler signal transmitted from the ground receiving antenna (node 6), and is finally
received by the ground receiving antenna (node 5). Figure 7-3 shows a schematic dia-
gram of the one-way tracking configuration. There is no one-way relay range measure-

ment.

NODE 2 NODE 4
(FORWARD-LINK ' (RETURN-LINK
TDRS) TDRS)

ol

S T

NODE 3
o Ve
8 C R
GROUND LEQ S fl LEG 4
TRANSPONDER)

DIRECTION OF
EARTH'S
ROTATION

NOTE: NODE 6§ AND NODE 8 REPRESENT THE SAME PHYSICAL ANTENNA AT DIFFERENT TIMES.

Figure 7-1. Hybrid Relay Range and Doppler Tracking Configuration
Using Two TDRSs as Relays

7.3.1.4 Differenced One-Way Relay Doppler Measurements

Another type of measurement is feasible with the one-way tracking configuration. With a
wide-beam antenna system, the one-way tracking signal generated from the user space-
craft can be received by all three TDRSs. By differencing two streams of one-way Doppler
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measurements, most of the oscillator frequency bias is cancelled. This is called a dif-
ferenced one-way relay Doppler measurement. With the multiple-access (MA) antenna
system on TDRS, this type of measurement allows near-simultaneous tracking of up to
five user spacecraft (see Reference 3).

FOHWAHD-A-PSHEETURN-UNK

NODE 3
(TARGET USER
SPACECRAFT OR
GROUND
TRANSPONDER)

DIRECTION OF
EARTH'S
ROTATION

ANT
RECEIVE TIME)

NOTES: NODE 2 AND NODE 4 REPRESENT THE SAME TORS AT DIFFERENT TIMES.

NODE 1, NODE 5, AND NODE 8 REPRESENT THE SAME PHYSICAL ANTENNA
AT DIFFERENT TIMES.

Figure 7-2. Two-Way Relay Range and Doppler Tracking
Configuration Using One TDRS as the Relay

432 MODELING OF TDRSS RANGE MEASUREMENTS

The time tag associated with a measurement is the receive time of the tracking signal at
the receiving station. Therefore, the backward signal-trace method is used in determining
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when the signal was transmitted at each node and the position of the node at the moment
of transmittal. During the course of signal tracing, the signal travel time is iteratively
corrected for each leg. After the actual transmit time at node 1 is determined (see
Figure 7-4), the distances (legs) between nodes are summed, and the result is halved to
give the computed range measurement, which is compared with the measured ambiguous
range to resolve the range ambiguity. In the modeling, transponder delay, atmospheric
refraction (Section 7.6), measurement bias, timing bias, and user spacecraft antenna off-

set (Section 7.7.4) can be optionally invoked.

NODE 4
(RETURN-LINK
TORS)

(TARGET USER f

R /

SPACECRAFT OR LEGS, y LEa4
GROUND /

TRANSPONDER) /

|

|

r

|
i

|

|

l

|

r

DIRECTION OF
EARTH'S
ROTATION

NOTE: NODE 5 AND NODE 8 REPRESENT THE SAME PHYSICAL ANTENNA AT DIFFERENT TIMES.

Figure 7-3. One-Way Relay Doppler Tracking Configuration
Using One TDRS as the Relay
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The iterative method for range computation, the transponder delay correction computa-
tions, and the range ambiguity computations specific to TDRSS are described below in

Sections 7.3.2.1, 7.3.2.2, and 7.3.2.3, respectively.

Zz
FORWARD-LINK
TDRS

RETURN-LINK
TDRS

X

Figure 7-4. Position Vectors for All TDRSS Nodes in Inertial Coordinates
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7.3.2.1 Iterative Method for Range Computation

If the tracking signal is transmitted from node j at time t and received at node j + 1 at
time t;,4 (see Figure 7-4), then the distance g; traversed by the signal between these two

nodes is

g = ¢ (4 - ) = ) - HH) (7-48)

where

c = speed of light
f5(y) = position of node j at time t,
F+1(tsy) = position of node j + 1 at time t;,,

The tracking node positions, fj(t;), correspond exactly to the position of the phase center
of the associated TDRSS tracking antenna. In general, for spacelinks the difference be-
tween this position and that of the center of mass of the TDRS or user spacecraft is
neglected. The option is available in GTDS (see Section 7.7.4) to account for this antenna

offset for the user spacecraft.

The Newton-Raphson iterative scheme (Reference 4) is adopted to solve the actual signal
transmit time, t;, so that

c - (tjnﬂ - fjn) - |rj+1(tj+l)_"_f:i(tf)[
c - [ﬁ}‘,,+, . v,(tj’)]

g =g (7-49)

where
! = (n+1)™ approximation for t
tf = n'® approximation for
ﬁ?-m = ntt approximation for the unit vector along the vector [Fe1(tier) - BCE]
st = velocity of node j at ¢
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This iterative scheme is continued until the condition |tj‘*‘ - tj‘| < € is satisfied, where
¢ is a small tolerance {(e.g., € = 107 second). Once the signal transmit time, t;, at

node j is found, the distance between the two nodes can then be calculated.

The process is repeated progressively backward for the leg between nodes j - 1 and j.
Without any transponder delay at node j, the signal reception time, t; , is the same as the
retransmission time, t;, which was just computed. With transponder delay, the signal
reception time at node j must be corrected by subtracting the transponder delay to give
the actual reception time, t;,

f =t - D (7-50)

where Dy is the transponder delay at node j. This correction is discussed further in Sec-
tion 7.3.2.2.

After the signal reception time at node j is determined, the distance between node j - 1
and node j can be computed. This process is continued until the node where the signal
originated is reached. For two-way and hybrid data, this backward signal tracing starts at
node 5 and ends at node 1. For one-way data, it starts at node 5 but ends at node 3.

Finally, the range, summed over all the legs, is computed as

4

o(T) = % Z ¢ (for two-way and hybrid data) (7-51)
i=1
4
o(T) = z 0; (for one-way data) (7-52)
j=3

where o (T) is the computed range measurement in kilometers at time tag T. The atmos-
pheric refraction corrections discussed in Section 7.6 are applied to this computed range.

The sum in Equation (7-51) is multiplied by a factor of one-half to be consistent with the
definition of the measured range discussed in Appendix A.

In solving Equation (7-49), the number of iterations can be reduced by proper selection of

f;(f). The process could be started by setting fi(t) = Fj(t+1) . In the case of TDRSS, the
magnitude of the radius vector for all the relay spacecraft is about 36,000 kilometers,

which corresponds to a light time of about 0.12 second.
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The iterative process is started in one of two ways. If the measurement is the same type as
another recent measurement, the results of the light-time solution of the previous meas-
urement (plus an offset) are used to start the iteration procedure for the new measure-
ment. In the absence of prior information, the iterative process can be started by setting

fitf) = fijltr ~ 0-12 second).

Using this simplification, the total number of iterations can be reduced from three or four
for each leg to one or two. Considerable computer resources can be saved in a typical
computer run of a few thousand measurements of two-way data, for instance, that have
four legs to be iteratively computed.

Further computer resource savings can be gained by evaluating ¥(t) only once at tf for
the first iteration and keeping it as a constant in later iterations for light time. This is
justified by looking at the denominator of Equation (7-49), since the velocity of any Earth
spacecraft is on the order of 10 kilometers per second, which is much less than the speed
of light. In addition, the difference in ¥j(y;) from iteration to iteration is inherently very
small and is even more insignificant when compared with the speed of light.

7.3.2.2 TDRSS Transponder Delay Correction

A transponder does not retransmit a received signal instantaneously but does so after a
delay of a fraction of a second. The relationship between the reception time and the

retransmission time is

t =ty - Dy (7-53)
where
t, = signal reception time at node j
t; = signal retransmission time from node j
-D; = transponder delay at node j

This transponder delay has two profound effects on range modeling. One is a range cor-
rection due to the spacecraft displacement during this small period of time. The other,
which is predominant, is the distance that would have been traversed by the tracking
signal that is held by the transponder. These effects will be discussed separately.

In the discussion of the range computation in Section 7.3.2.1, the backward signal tracing
follows nodes 5-4-3-2-1, as shown in Figures 7-4 and 7-5, when there is no transponder
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delay associated with any of the spacecraft. The computed range is simply the sum of the
distances between all the nodes, i.e., 04 + 03 + 02 + €1.

FORWARD-LINK
TDRS
TRAJECTORY

RETURN-LINK
TORS
TRAJECTORY

04 = Q4

e
- /
TARGET
TRAJECTORY

EARTH'S
__SURFACE

1 1 5

Figure 7-5. Configuration of All Nodes Because of Transponder Delays

If both the TDRS transponder and the target transponder have delays, the backward signal
tracing follows the nodes 5-4-4'-3'-3%2- 2"1’, as shown in Figure 7-5. In this case, the
distance between the receive station and the return-link TDRS, gl. is evaluated, as be-
fore, by using their positions at nodes 5 and 4, respectively. However, the distance be-
tween the return-link TDRS and the target, 03, is computed when they are at locations 4’
and 3’, respectively; the distance between the target and the forward-link TDRS, g';, is
computed when they are at locations 3" and 2', respectively; and the distance between the
forward-link TDRS and the transmit station, 01, is calculated when they are located at 2"
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and 1/, respectively. Location 4’ of the return-link TDRS is determined using
t¢ = ty = Dy, where D, is the transponder delay of the return-link TDRS. Likewise,
target position 3’ is computed by the iterative light-time procedure, and position 3"is
determined by using ty = (t - D3).

Since all the transponder delays are very small (on the order of 10”7 seconds), a target
spacecraft with a velocity of 10 kilometers per second would move 10~¢ kilometer along
its trajectory. This movement will make @1, @z, 03, and Q4 different from 01, 02, 03,
and p4, respectively, but only by a small amount. If the target is a ground transponder,
the difference between the sums of @, and 0, is even smaller. However, the bias in-
curred because of transponder delay (equal to the delay multiplied by the speed of light)
can be much more significant. Therefore, the computed range measurement, after consid-
ering transponder delays and light-time corrections, can be rewritten in terms of the posi-
tion vectors of all the nodes

4

4
1
o = 3( > -5+ D oDy (7-54)
j=1 |

k=2

where f; is the position vector of node j shown in Figure 7-4.

7.3.2.3 Range Ambiguity

As discussed in Appendix A, the range measurement is ambiguous by a multiple of PN
code periods. This ambiguity must be resolved before evaluating the (observed-minus-
computed (O-C)) residual between the measured range and the computed range in the
estimation process.

In general, the PN code period is a function of frequency. For TDRSS range data, the PN
code period is computed as follows (References 5 and 6):

L
P= — 7-55a
= (7-55a)
L = (21° - 1) x 2°chips (7-55b)
R = Fpe X %6 xS chips per second (7-55¢)
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where

= PN code period (seconds)

= length of pseudorandom code (chips)

rate of pseudorandom code (chips per second)

= frequency received at the return-link TDRS from a target (hertz)

= 1600 for single-access return-link service at K-band frequency; other-
wise, S = 240

-
[
o

720 I~ B e~
1

Although the PN code period is a function of the receive frequency, which may drift, it is
treated as a constant for a continuous pass of tracking data. Once the PN code period is
evaluated, the range ambiguity interval is computed as follows:

0a = C—ZP- (7-56)

where

o = range ambiguity interval (kilometers) (the range measurement in
Appendix A is one-half the round-trip range)

¢ = speed of light
P = PN code period (seconds)

The number of ambiguity intervals for a measured range at time tag T is then determined
by satisfying the following test:

InCT) oa + 0o(T) - oD} S 5 0a C(257)

n(T) = integer number of ambiguity intervals for a measured range at time
tag T

o(T) = computed range at time tag T (kilometers)

0o(T) = measured range at time tag T (kilometers)

oa = range ambiguity interval (kilometers)
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The measured range is then restored, i.e.,

eo(T) = n(T) ea + €o(T) (7-58)

and the residual between the measured and computed ranges is evaluated by

© - C) = go(T) - (D) (7-59)

When estimation is done by differential correction, the number of ambiguity intervals, n,
needs to be computed only once in a computer run for each range measurement and can
be used in every differential correction iteration.

73.3 PARTIAL DERIVATIVES FOR RANGE MEASUREMENTS WITH RESPECT
TO SOLVE-FOR PARAMETERS

Table 7-1 lists the available solve-for parameters when TDRSS tracking measurements
are processed. When a parameter is chosen to be a solve-for parameter, the partial deriva-
tive of the measurements with respect to this solve-for parameter is required for the
estimation process.

7.3.3.1 Range Measurement Partial Derivatives With Respect to the Position
Vectors

The partial derivatives of the range with respect to the position vectors depend on the
identity of each node and on the type of range measurement. The position vectors can
include the spacecraft state vector, TDRS state vectors, and tracking station and ground
transponder locations.

Generally, the partial derivative of a range measurement with respect to the epoch state of
a node can be expressed as

do(T) _ 3o(T) . 8%Y) )
G - %M 0% (7-602)

or

so(T) _ (D) .
o % O (7o
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Table 7-1. TDRSS Solve-For Parameters

TYPE

SOLVE-FOR PARAMETERS

Dynamio solve-for paramsters
for user spacsoraft

Stats vector

Aerodynamic drag parameter

Solar radiation reflectivity coeffiolent
Gravitational model parametera

Powsred flight parameters (thrust)

Dynamio solve-for parameters
for TDRS spacecraft

State vactor of the firet TDRS

Solar radiation reflsctivity coefficlent of the first TDRS
State vector of the second TDRS

Solar radiation reflectivity coefficient of the asoond TCRS
State vector of the third TDRS

Solar radiation reflectivity coefficlent of the third TDRS

Statio solve-for parameters

Transponder delays

Measurement biases

Timing blases

Tracking station and groeund transponder gecdstics

where

o(T) = computed range measurements at time tag T
Xito) = state vector (position and velocity) of node j at epoch, tg

%i(y) = instantaneous state vector of node j at time

#i(t, to) = 0%(t)/9%)(to), the state transition matrix of node j from time

10t

The time to is the epoch of the estimated solution. For a differential correction estimator,
to can be set equal to any time that is in or near
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73.3.2 Partial Derivatives of Hybrid Relay Range Measurement With Respect to
the Position Vectors

For a hybrid relay range measurement, all five associated nodes are different. Using
Equations (7-54) and (7-60), the partial derivatives with respect to the instantaneous posi-
tion, F, and velocity, T, of each node are computed as follows: |

de(T) 1 . .

_oodl) _ 1 . g

afsts = T) ) t, (for receive station) (7-61a)
seM _ 1 .a _ ¢ .

(for targe't, either

af)(T) « 18, - ) user spacecraft or (7-61c)
ats) 2 ground transponder)

%D _ 14, - 8, (for forward-link TDRS) (7-61d)
otz (t2) 2

do(T) 1 A _ . .
—_— = = £ t 7-
() 5 U,y (for transmit station) (7-61e)
do(T) G=1,234,5)

- =0 y &y Th 7-61
a7 (1) (for all nodes) (7-61f)

where ﬁj, the unit vector along the leg between nodes j and j + 1, is given by

4 = Tn -0 (7-62)
1 — Tl

73.3.3 Partial Derivatives of Two-Way Relay Range Measurement With Respect to
the Position Vectors

Essentially, Equations (7-61) can be used to evaluate the partial derivatives of two-
way relay range measurements with respect to the position vectors. However, certain
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simplifications can be made because nodes 1 and 5 (transmit and receive stations) are
identical and nodes 2 and 4 (forward-link and return-link TDRS) are the same. In caicu-
lating partial derivatives, r; is replaced by rs, whose variations closely approximate those
of ry. Similarly, r, is replaced by rs. The velocity vectors r, and r; are similarly re-
placed by s and r,, respectively.

Equations (7-61) can be simplified to evaluate the derivatives of a two-way relay range
measurement with respect to the instantaneous position, I, and velocity, f, of each node
as follows:

:;;8 = % b, - Gy (for station) (7-63a)
o e G- by e 8- 8 (for TORS) (7-63b)
%:%' = % (b, - 8y (for target) (7-63¢)
ie G b acdesy (1639

7.3.3.4 Partial Derivatives of OneQWay Relay Range Measurement With Respect to
the Position Vectors

A one-way relay range measurement actually does not exist in TDRSS. 1t is included here
mainly to lay a foundation for modeling the one-way relay Doppler measurement and the
differenced one-way relay Doppler measurement (described in Section 7.3.4). For a one-
way relay measurement, there is no node 1 or node 2. The computed range will be

4
1
oM = 5 Zlﬁu-m*‘c'm (7-64)
I=3
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The transponder delay of node 3 is not relevant. The partial derivatives of one-way relay
range with respect to the instantaneous position and velocity of each node are

do(T)

1 A ' . .
F) =3 1, (for receive station) (7-65a)

:gg;)) - 28y - 8)  (for remmdlink TDRS) (7-65b)
;%(ta% - --;- G, (for target) (7-65¢)
de(M) _ j=1,23475

) 0 ?for all nodes) ) (7-65d)

7.3.3.5 Partial Derivatives of Short Range (Coherent Range) Measurement With
Respect to the Position Vectors

As described in Section 7.3.1.1, the phase relationship of all the Doppler measurements
in TDRSS is maintained by transmitting a coherent Doppler signal from the receive sta-
tion to the return-link TDRS and mixing it with the Doppler signal retransmitted by the
target. Modeling of the Doppler measurement will be described in Section 7.3.4. The
computation of the partial derivatives of the short range (coherent range) that will be used
later in modeling the Doppler measurement is included here for completeness, although
the short-range measurement does not exist in TDRSS. The computed short range is

1
Q(T) = ‘i(lfs - f4| + Iﬁ; - fg' +C D4) (7-66)

Since node 6 is identical to node 5, the partial derivatives of the short range with respect
to the instantaneous position and velocity of each node are

ap(T) 1 .4 2 : .
= = (Uy - U for rec statio 7-67a
xS 5 (U, 5) ( eive n) ( )
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de(T) _ % (fis - §,)  (for return-link TDRS) (7-67b)

AN

(=1, 2, 3)
de\l) 0 (for target, forward-link (7-67¢)
arj(y) TDRS, and transmit station)
de(T) G=1,2 3479)
—_— = 0 y Ay Ty Th -67
8t (t) (for all nodes) (7-67d)

where the unit vector, ﬁ,, of the fifth leg (see Figure 7-1) is given by

A fa — T
= — 7-68
o IFs - Tl (68)

7.3.3.6 Range Measurement Partial Derivatives With Respect to Transponder Delay

From Equations (7-53) and (7-54), the partial derivative of the range measurement with
respect to transponder delay is

k-1

M _ 1., K
D, | 2 aD,
j=1
(7-69a)
k-1
1 dgy . O
2 i¢7 5, oDy
i=1
or
k-1
oo(T) 1 90
e\ L — e - -2} 7-
D, - 2\° Z at, (7-69)
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where

o ( - _.B_*a_) 7.
T c|1l Ta) (7-70a)
oy o= (- 5 (7-70b)

7.3.3.6.1 Partial Derivative for Transponder Delay at the Forward-Link TDRS

Since this delay only affects the positions of node 2 and node 1 from a backward tracing
(see Figure 7-5), using Equations (7-69b) and (7-54) gives the partial derivative of the
~ half-range measurement with respect to the transponder delay at the forward-link TDRS,
as follows:

do(T) 1 301
3 2(" atz) (712
where
) ] b, - -7
- = g B -fl - e (7-71b)
2 2 1- =y - 1)

and {, is the unit vector of T1.

73.3.6.2 Partial Derivative for Transponder Delay at the Target (User Spacecraft or
Ground Transponder) _

Transponder delay at the target is associated with node 3, thereby affecting the positions
of node 3, node 2, and node 1 by backward tracing. Using Equations (7-69b) and (7-54),
the partial derivative of the range measurement with respect to the target transponder

delay is given by
[c - (—‘?& + m):I (7-72)
ots ats
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where

3 9 _ 0, « (/; - F
'% v Ifs - o = —2 i ( : 2 (7-73a)
3 * 1- "E(uz f2)
A - -
901 0 u, - (/R - ) 1 902
— = —IRh-Hfl= —[1- — —= (7-73b)
ats ota 1 - _(1_:_({\11 . ) c dts
The last equation was derived using the chain rule and the identity
8 _ 4, _ 1% (7-74)
ots c ots

which is deduced from the range equation (Equation (7-48)).

7.3.3.6.3 Partial Derivatives for Transponder Delay at the Return-Link TDRS

Since this delay is associated with node 4, it will affect the position of nodes 4, 3, 2, and
1. The partial derivative of the range measurement with respect to the transponder delay
of the return-link TDRS is

de(M _ l[ _ (393 3¢z "’91)] | 7.75
D, 25 e T T (7-73)
where
dp Oy * (fs = T3)
3 3 s — I3
= - (7-76a)
ORI V(R
¢
. A - [
002 u, - (fs - ) ( 1 393)
= : 1 -_——m— (7-76b)
o 1- %(ﬁz © ) c
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(7-76¢)

For all practical cases, 9¢,/dt; is negligible when compared with the speed of light in
Equations (7-71a), (7-72), and (7-75). Therefore, the following formula is used for each
node:

ao(T) c
= — 7-7
oDy 2 (7-77)

7.3.3.7 Range Measurement Partial Derivatives With Respect to Other Systematic
Biases and Uncertainties

The partial derivatives of range measurements with respect to measurement biases, tim-
ing biases, and nonstate dynamic solve-for parameters are discussed in this section.

7.3.3.7.1 Measurement Biases

Measurement biases, B, that are specific to a given type of measurement, O, and to a
given receive station, can be applied and solved for. As is true for all these biases, the
partial derivative with respect to a TDRSS measurement bias is unity:

30.(T) 7.78
B 1 (7-78)

7.3.3.7.2 Timing Bias (Time Tag Error)

The actual receive time, ts, of a signal at the receive station (node 5) can differ from the
measured receive time (i.c., the time tag T of the measurement) due to a clock bias, tp,

as follows:

ts =T + tp '(7-79)

The partial derivative of the measurement with respect to the timing bias (time tag error)
is

80 _ 30 (7-80)
otp ats
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For a range measurement,

4 4
0. = oM = ZochDx (7.81)
k=2

j=1

Since
0 = cltyy - ) = [fa ~ il (7-82)
then
=cjl - — 7-83
3tj+1 atdﬂ. ,( )
where
A .
atj - c- (uj ) fj"'l) (7-84)
aq"'l c - (ﬁj . %i)

Therefore, the partial derivative of a range measurement with respect to the timing bias is

4

o _ d(M _ 1 Z L]
olp ots 2 ots

1=1

SOV

j=1

c oty
“E("E)

where the subscript i indicates the initial node of the measurement (i = 3 for one-way and
i = 1 for two-way or hybrid).
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7.3.3.7.3 Nonstate Dynamic Solve-For Parameters

The partial derivative of the measurement O, with respect to a dynamic solve-for pa-
rameter, s, is calculated by the equation

.a& = a_.o-g- L] ﬁ
as 9%y 9s (7-86)

!

where the sum is over all spacecraft involved in the measurement, in principle. Because a
solve-for parameter, such as the coefficient of solar reflectivity, may be specific to an
individual spacecraft, only one term of the sum may be nonvanishing, and only one dot
product needs to be calculated.

Some of the solve-for parameters listed in Table 7-1, such as the coefficients of solar
reflectivity for the TDRSs, do not involve the target spacecraft. Other solve-for parame-
ters are treated as being specific to the target spacecraft. That is, in updating the estimate
of such solve-for parameters, only the effect of these parameters on the target spacecraft
is considered, and the partial derivative calculated is simply

00, a0, 0% iarget
- : 7.87

Thus, only one term of the sum is calculated for any of the nonstate dynamic solve-for
parameters.

7.3.4 MODELING OF DOPPLER AND DIFFERENCED DOPPLER
MEASUREMENTS

In this section, TDRSS Doppler measurement modeling in the nondestruct mode is dis-

cussed. The basic derivation and its application to two-way Doppler measurement model-
ing can be found in Reference 7.
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The Doppler-shifted carrier frequency via the long-trip path (i.e., from node 1 though
nodes 2, 3, and 4 to node 5) is

reoafo- (- 8- 22

_ (91 + éz + és + 94)] (7-88)

(vode| 1

o
= |1 - ﬂ)
\,

where

vy Doppler-shifted carrier frequency via the long-trip path
(vo)y = unshifted radiated carrier frequency via the long-trip path

()

time rate of change of long-trip full range

Equation (7-88) is also valid for one-way Doppler measurements, except that in this case,
Ot = 03 + 04 (7-89)

The phase of the Doppler signal is maintained by transmitting a coherent pilot-tone fre-
quency to the return-link TDRS. The frequency is also Doppler-shifted, as follows:

V, = ("0)3 (1 - &) (1 - Eﬁ‘)
c c

= |1 - (&%"ﬁ] (7-90)

= (Vo)s rl = .91)
\

c
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where

Doppler-shifted pilot-tone frequency for the short-trip path (i.e., from

v =
’ node 6, through node 4, to node 5)
(v,), = unshifted pilot-tone frequency
@, = time rate of change of the short-trip full range

These two Doppler-shifted frequencies are mixed according to a certain ratio in the
transponder of the return-link TDRS to produce the observed Doppler shift

va = [ave + bv,) - [a (vo)e + b (¥o)s] (7-91)

where a and b are hardware-related constants.

Substituting Equations (7-88) and (7-90) into Equation (7-91) and rewriting in terms of
range differences, Ags and Ag,, over the Doppler counting interval, AT, the measured
Doppler shift can be expressed as

v(D) = -S(A& +B&) = - —[AlT) + BAGM] (792

where

vs,(T) = computed average Doppler shift tagged at time T

A = a (vok
= effective transmit frequency from the user

B = b (o)

= pilot-tone frequency translation from the return-link TDRS
Ag(T) = ofT) - odT - AT)

= difference between the full long-path range at times T and T - AT
Ags(T) = os(T) ~ 0s(T - AT)

= difference between the full short-path range at times T and T ~ AT

The effective transmit frequency from the user must be retrieved from the tracking data.
The values of the pilot-tone frequency translation, which are listed in Table 7-2, depend
on both the return-link access-service type and the frequency band of the link.
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The previously calculated long- and short-path ranges for a configuration can be saved.
This provides substantial savings in computation time whenever the Doppler counting
interval is equal to the time between measurements, in which case the previously saved
ranges at T - AT and the currently computed ranges at T are used directly to model a
Doppler measurement according to Equation (7-92).

Table 7-2. Value of Pilot Tone Frequency Translation, B, Applicable
to Determination of TDRSS Average Doppler Shift

RETURN-LINK SERVICE ID FREQUENCY BAND B (MHz) h *, 9

SA1 (single acoess) K-band (14 GHz) -1475.0

SA2 K-band -1075.0

SA1 §-band (1.5 GHz) 13877.5 - INT[2A + 0.51/2.0

SA2 s-band 18697.5 - INT[2A + 0.5]/2.0

MA (muitiple acoess) S-band -2127.5 '
NOTES:

1. Values of B may be subject to change
2. The parameter A Is the sffactive traramit frequenoy from the target spacecraft
5. INT[ | mezne truncate to closest integer

Units: GHz = gigahertz
MHz = magahartz

7.3.5 PARTIAL DERIVATIVES OF DOPPLER MEASUREMENTS WITH RESPECT
TO SOLVE-FOR PARAMETERS

If the Doppler measurements are o be used for the estimation of any solve-for parameter,

the partial derivatives of the Doppler measurements with respect to the solve-for parame-
ters must be computed. '
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7.3.5.1 Doppler Measurement Partial Derivatives With Respect to the Position
Vectors .

Although the partial derivatives of Doppler measurements with respect to the position
vectors depend on the identity of each node and on the type of Doppler measurement,
they can be expressed in the general form

ava(T) 3va(T)
= Py(t;, tp (7-93
where
va(T) = computed full Doppler measurement at time tag T
%i(to) = state vector (position and velocity) of node j at epoch, to
5t = instantaneous state vectors of node j at time tag

4y (1, to) = state transition matrix of node j from ;10 o

where to is equal to any time that is in or near the data span for a batch differentiat
corrector.

Substituting Equation (7-92) into Equation (7-93) produces

ava(T) - - 1 3p/(T) 39,(’[')]
3% (%) cAT[A w T C oo

1 9o(T - AT) 90s(T - AT) _ (7-94)
i cAT[A X - AT) T o%(g - M)]'I’(tj AT, )

All the range partial derivatives in brackets are described in Section 7.3.3 for all nodes,
except that they should be multiplied by a factor of 2 because o and g, are the full
round-trip ranges (not the half-trip ranges used in the range measurement modeling).
These derivatives are evaluated at the current time tag, T, and at the time T - AT, where
AT is the counting interval for the nondestruct Doppler frequency.

The range partial derivatives at the previous time tag can be saved and then used in the
computation of the Doppler partial derivatives if the previous time tag is equal to
T - AT, which is the start time of a Doppler count. Otherwise, all the partial derivatives

must be evaluated at both T and T - AT.
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7.3.5.2 Doppler Measurement Partial Derivatives With Respect to Transponder
Delay

Using Equation (7-92), the partial derivative of the Doppler measurement with respect to
the transponder delay can be expressed as

va(T) _ 1 [A dAglT) g aAe,m]

aD, ¢ AT oD, aD,

1 do¢(T) dos(T)
SR S i N LI R L L2
¢ AT { [ D, ' oD

[A 80T - AT) o 80i(T - AT)] } (7-95)
3Dj 3Dj R

1 [ [ 0D | g 30D
= cAT{( 1)[A n + B ra

+[A dodT — AT) +Baos(T-AD'}
at oY -

where (3g,/dt) and (3p,/8t) can be evaluated for both the current time tag, T, and the
previous time tag, T - AT, by Equations (7-71b), (7-73), and (7-76) for transponder
delays associated with the forward-link TDRS, the target, and the return-link TDRS, re-
spectively. If the transponder delay is associated with the forward-link TDRS or the target,
dp,/dy Wwill be zero because the short-path full range is only associated with the return-

link TDRS.

7.3.5.3 Doppler Measurement Partial Derivatives With Respect to Other Solve-For
Parameters

The partial derivatives of Doppler measurements with respect to a measurement bias are
unity, as shown in Equation (7-78). For a timing bias, the partial derivatives of both the
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long-path and the short-path (coherent mode) ranges must be evaluated at two points in
time, as follows:

8A0¢(T) 9Ag,(T)
31’4(’[‘) = B [A otp +B dtp ]
. Oip c AT
1 f dodT)  doT - AT)
Y T CAT {A[ otp - otp ] (7-96)
+ B[BQ.(T) _ 69,('1" - AT)]}
oty otp

where 9g,/dts and dp,/ats can be evaluated by Equations (7-83) and (7-85) with a multi-
plication factor of 2, since g and g, are full ranges.

For other nonstate dynamic solve-for parameters, the general form of the partial deriva-
tives of the Doppler measurements'is similar to Equation (7-86).

7.3.6 FORMULATION OF DIFFERENCED ONE-WAY DOPPLER
MEASUREMENT AND ITS PARTIAL DERIVATIVES

The differenced one-way Doppler measurement is defined as

Avd(T) = ‘vd(T) %og&lﬂson - vd(T) r.Tgi%nce (7-97)

The partial derivative of a differenced one-way Doppler measurement with respect to any
solve-for parameter, s, can be generalized and written as

B ova(T)

%_oﬁn arison as I ¥§ﬁ'§n“ . (7'98)

dAva(T) _ dva(T)
as 08

where the values of 3v4(T)/8s for both comparison and reference TDRSs can be evalu-
ated by utilizing Equations (7-94) through (7-96).

737 TDRS RADIO FREQUENCY (RF) BEAM ANGLES MEASUREMENT
MODEL

The TDRS radio frequency (RF) beam angles are the azimuth and elevation of the TDRS
return Jink to either the multiple-access (MA) antenna or a single-access (SA) antenna,
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measured in a TDRS vehicle-fixed coordinate system. The TDRS spacecraft vehicle-fixed
coordinate system is a right-handed, orthogonal coordinate system centered at the TDRS
center of mass, such that the position components are the following:

X, = along the north-south slew axis of the SA antennas, positive east
when the TDRS is on station

Y, = along the solar array panel rotation axis, positive south when on
station

7, = perpendicular to X, and Yy, positive towards the Earth subsatellite
point

The beam angles are the following:

AZ = azimuth, measured in the X, - Z;, plane, from the Z, axis to the
projection of the P unit vector (defined below) in the X,-Z, plane

EL = elevation, measured as the elevation of the TDRS return link
above (positive in the - Yy direction) the X, - Zy plane

A
In addition, the unit vector along the TDRS return link, P, is known as the spatial beam
vector when rotated to TDRS track-oriented coordinate frame.

The TDRS vehicle-fixed coordinate system and the beam angles are illustrated in Fig-
ure 7-6.

To obtain the measured spatial beam vector, the computational steps described below are
followed.

1. The unit vector (Xy, Yy, Zp) for RF beam pointing in TDRS vehicle-fixed coordi-
nates is computed as foliows:

X, = cos (EL) sin (AZ) (7-99a)
Y, = -sin (EL) (7-99b)
Zv = cos (EL) cos (AZ) (7-99¢)
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Figure 7-6. Definition of the TDRS Vehicle-Fixed Coordinates
and RF Beam Angles

The measured spatial beam vector, f’o, is computed in the track-oriented frame by
rotating the unit vector for the RF beam pointing through the roll, pitch, and yaw
angles (¢, 6, ¥) to the TDRS track-oriented system as follows:

A Ty iz ris] | Xo
P, =[ra1 rzz T2 Yy (7-100)
r3;y I3 Ta3 Zy
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where

ry = cos & cos ¥ - sin 6 sin ¢ sin ¢ (7-101a)
fy = =-CO0S ¢ sin ¢ (7-101b)
;3 = sin @ cos ¥ + cos @ sin ¢ sin Y (7-101c)
r,; = cos @ sin ¢ + sin 8 sin ¢ cos ¥ (7-101d)
ry; = COS ¢ COS ¥ (7-101e)
fz3 = sin @ sin ¥ - cos @ sin ¢ cos Y (7-101f)
r3; = - sin @ cos ¢ (7-101g)
rs; = sin ¢ (7-101h)
ra3 = cos @ cos ¢ | (7-101i)

The computed spatial beam vector, f’c, and the computed AZ and EL angles, are ob-
tained using the computation steps described below.

1. The unit vector from the return-link TDRS to the user spacecraft or transponder is
computed in inertial coordinates as

' fs - I
p o= ST T (7-102
¢ |rs - Fal )

where

Fr = position vector of the return-link TDRS at the measurement time

f; = position vector of the user spacecraft or transponder at the
measurement time

2. The unit vector ﬁ; is rotated to the TDRS track-oriented coordinates to obtain the
computed spatial beam vector, F.
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The TDRS track-oriented coordinate axes (&y, §., 21) are defined as follows:

A fr .
. (7-103a)
T ||
| fr X ¥
E - —— 7-103b
9T IPr % ¥ ( )
B = §r x 2 (7-103¢)

The transformation of the unit vector ﬁ , expressed in inertial coordinates, to the
TDRS track-oriented frame is then given by

f,c = Ry f,e (7-104)
where
’QT : k ﬂ‘r * Q ﬁ'1:‘ ' 2
Re={f. - & 9% 9:-% (7-105)
QT - ﬁ 2'1‘ . Q Q']:' * 2

A
where X, 'Q’, and Z are unit vectors along the inertial coordinate axes.

The (X, Yo, Zo) components of the unit vector for RF beam pointing are computed

by rotating f’c through the measured yaw, pitch, and roll angles. This is the inverse
of the rotation given in Equation (7-100).

The measured AZ and EL angles are computed by inverting Equations (7-99) using
the values of (ﬁb, ‘Q,,, 2.,) from step 3.

The spatial beam angle observed-minus-computed (O-C) value, [O-C], is deter-

mined from

[0-C] = arccos (B, * P.) (7-106)
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where

P, = measured spatial beam vector
P. = computed spatial beam vector

7.4 RADAR ALTIMETER MODEL (Not Currently Available in GTDS)

GTDS models the satellite’s orbital state vector in inertial coordinates. However, the radar
altimeter measures the height of the satellite relative to the actual sea surface at the
subsatellite point. Thus, the measurement modeling must relate the inertial coordinates to
the actual sea surface height. This is accomplished by expressing both the satellite’s posi-
tion and the sea surface in body-fixed coordinates, Xv, ¥, and zy. The following subsec-
tions discuss the surface model, the measurement equation, and the associated partial
derivatives.

7.4.1 SURFACE MODEL

The sea surface is primarily determined by the Earth’s gravity potential, which is the sum
of the gravitational potential and the potential of the centrifugal force resulting from the
Earth’s rotation. A particular equipotential surface of the Earth’s geopotential field, called
a geoid, passes through the mean sea level surface and is nearly spherical, with flattening
at the poles and a pear-shaped bulge in the southern hemisphere. The geoid approximates
very closely (within a meter or two) the real sea surface in ocean areas. Small static and
dynamic differences between the instantaneous sea surface and the geoid are caused by
currents, tides, and weather phenomena. Typical magnitudes of these deviations (Refer-
ences 8 and 9) are presented in Table 7-3. Since complete information is unavailable for
modeling these small effects, they are neglected in the radar altimeter model.

A reference surface is utilized that is conveniently chosen to be a rotationally symmetric
ellipsoid that best fits the geoid in a least-squares sense. The maximum distance between
this ellipsoid and the geoid is approximately 100 meters. This ellipsoidal surface also
represents an equipotential surface of the normal geopotential, which includes (in addi-
tion to the point-mass term) even zonal harmonic coefficients, of which only C2 and (o1
are significant. As a result, the sum of the additional terms needed to fully describe the
geopotential (i.e., the disturbing potential) is small (Reference 10).
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Table 7-3. Sea Surface—Geoid Deviation Sources

SOURCE TYPICAL MAGNITUDE
Sea swel 1 meter
Wind waves 1 meter
Storm surges 10 centimetere
Barotroplo dspregsions 10 centimaters
Currents 1 meter
Tides 1 meter

Figure 7-7 shows an exaggerated cross section of the geoid and the reference ellipsoid.
The distance measured along the normal to the reference ellipsoid from point Q to thc
point P on the geoid is called the geoidal undulation and is desi nated by U. The vector A
is the unit vector perpendicular to the reference ellipsoid, and n ‘is the unit vector perpen-
dicular to the geoid.

UNDULATION
GEOQID

REFERENCE ELUPSOID

EQUATORIAL
RADIUS

Figure 7-7. Geoid Undulation

Expressing the geopotential function, ¥, as the sum of the normal geopotential, yy, and
the disturbing potential, ¥p, yields

1,0(1', ¢'| )') = 'PN(l's ¢'! ;") + wD(rn ¢‘$ j‘) (7'107)
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where, from Section 4.3,

N 9.0 = £+ -‘ri[cg (-i"i)z Pi(sin ¢) + C3 (-f‘;:)" PA(sin ¢')] (7-108)

r

and
oote ¢, = & [aca (%) phin 69 » a2 (3] rism
+ % Z 3 (%)n Po(sin ¢) (7-109)
nn-zz.tt
+ % Z (—1%'4)“ P2(sin ¢) [S® sin mA + CF cos mi]

n=x2 m=1

In these equations,

= geocentric radius
geocentric latitude
longitude

R, = Earth's equatorial radius

P ™
It

The geopotential function (the sum of the normal geopotential and the disturbing poten-
tial) differs from the gravitational potential in that it includes a term that represents the
centrifugal potential due to the Earth’s rotation. This term is included in the second zonal
harmonic coefficient. Furthermore, the CY term in the normal geopotential is a function
of C3, whereas C3 and Cj are not functionally related in the gravitational potential. Con-
sequently, ACJ and ACY are included in Equation (7-109) to account for these differ-

ences.
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To evaluate the magnitude of the geoidal undulations, the geoid of potential ¥o is com-
pared with the reference ellipsoid of the same potential ¥N(Q) = %¥o. The normal poten-
tial Yn(P) at P can be approximated by the linear relationship

W) = V(@) + (Z‘*ﬁ") U = 9@ - #Q U (7-110)
. |

n

- where $(Q) is normal gravity, i.e., the magnitude of the gradient of the normal geopoten-
tial on the reference ellipsoid at the point Q, where the algebraic sign is consistent with
geodetic convention.

By definition,
(@) = ynP) + ¥p(P) (7-111)
and

Y@ = yo = ¥n(Q) (7-112)

Substituting Equations (7-111) and (7-112) into Equation (7-110) yields Brun's Formula
(Reference 10) for the geoidal undulation _

¥o®) _
U Q) (7-113)

The geoidal undulation U is a function of the disturbing potential at the point P and
normal gravity y at the point Q. However, frequently the coordinates of the point Q are
_ known but not those of point P. In this case, evaluation of the disturbing potential yp at
Q instead of P will cause only a small error in the calculation of U.

A better approximation for the disturbing potential, ¥p(P), can be obtained by correcting

the geocentric rgdius. r, by the undulation U, calculated as described above. This value
can then be used in Equation (7-113) to obtain a better value of U. Standard (normal)
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gravity, which is the gradient of the normal potential y, is derived as a function of
geodetic latitude and equatorial gravity in Reference 8, yielding

y = 11 - fz sin ¢ + f, sin® @) (7-114)
where
5 1 26 15
f = -f+ ome+ o - = ~m? 7-1154
2 f+2m+2f2 7fm+ 7 m ( )
fy = - %fz + -‘;l_fm (7-115b)
2 .
ms Smt e L5 (7-115¢)
2 Ye
and

¥, = normal equatorial gravity, which is 978.049 centimeters/second® for the
International Ellipsoid

o = Earth's rotation rate = 0.72921151 x 107 4 radians/second
¢ = geodetic latitude

f = flattening of the reference ellipsoid; f = (a - b)/c, where a and b are the
semimajor and semiminor axes, respectively, of the reference ellipsoid

The value of m is obtained iteratively from the expression

m, = —— = =Mz, (7-116)

starting from m, = 0.00344986.
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The normal geopotential field and the normal gravity field of the reference ellipsoid are
determined by four constants, usually chosen to be the following:

a = semimajor axis of the reference ellipsoid
f = flattening of the reference ellipsoid
ye = equatorial gravity

@ = RBarth’s angular speed of rotation

The flattening f of the reference ellipsoid of revolution and the values of C3 for the
spherical harmonic expansion of the normal potential are directly related. Thus, C8 can
be used instead of f as one of the four constants.

7.42 MEASUREMENT EQUATION

Ideally, the radar altimeter measures the minimum distance from the spacecraft to the sea
surface, which is equivalent to the distance from the sea surface to the spacecraft meas-
ured normal to the sea surface. Since the sea surface is closely approximated by the
geoid, the geoid is a convenient reference surface for altimetry. However, the present
global mathematical models of the geoid are not accurate in fine detail. In the remainder
of this section, the term geoid will denote the mathematical model of the geoid repre-
sented by means of a spherical harmonic expansion.

The minimum distance from the geoid to the spacecraft is indicated by the line segment
OP in Figure 7-8. Solving for this distance is difficult because of the complicated form of
the equations for the geopotential. Therefore, an approximation to the distance H is made
by using the length H'of the line segment OP' along the normal to the reference ellipsoid
passing through the spacecraft. '

The spacecraft position is assumed to be known in Earth-fixed Cartesian coordinates,
Xy, Vb, and zy, by transforming from inertial to body-fixed coordinates using the meth-
ods of Section 3.3.1. The ge-centric latitude, ¢, the longitude, A, and the magnitude,
r,, Of the position vector to the spacecraft are given by

¢' = tan’! [ﬁ] (7-117)

A = tan [—’-"l] (7-118)

Xp
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Figure 7-8. Geoid Geometry

fy = VXb + Y + 2%

(7-119)

and the altitude h’ to the subsatellite point S’ on the reference
ellipsoid are obtained from Section 3.3.6 as

N fﬂ)]'1 (7-120)

(N + h)
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where

R, .
N - -
1 - @f - ) sin® ¢ (7-121)
and
hll = M —_ N (7-122)
cos ¢

Equations (7-120), (7-121), and (7-122) must be solved iteratively.

The geoidal undulation U at S is obtained from Brun’s Equation, Equation (7-113),
(where yp(P) is given in Equation (7-109) and ¥(S’) is given in Equation (7-114)) and, if
necessary, using the procedure described in Section 7.4.1 to obtain the required precision.

Then, the resulting approximation for H is

Hs Hah-U (7-123}

7.4.3 PARTIAL DERIVATIVES

Partial derivatives of the measurement are determined by transforming the measurement
partial derivatives with respect to body-fixed coordinates to partial derivatives with re-
spect to inertial Cartesian coordinates as described in Section 7.2.2. The partial derivative
of H with respect to T, is transformed to a partial derivative with respect to R as fol-

lows:

oH dH ofy aH
R o, oR ot ( )

The partial derivative of H in Equation (7-124) involves numercus higher order terms
because of the dependence of the location of P’ (Figure 7-8) on the undulation U'and the
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coordinates X, ¥, and z,. However, these effects can be neglected to first order. The
partial derivative of H with respect to T is therefore approximated as

oH oh' hT
of, ofy —hr ( )
where
_ Xp = X
h=|yw- y' (7-126)
Iy — ZlI

Equation (7-125) is exact for a spherical geoid.

7.5 VERY LONG BASELINE INTERFEROMETER (VLBI) MODEL
(Not Currently Available in GTDS) _

The Very Long Baseline Interferometer (VLBI) System records signals transmitted by a
satellite, along with timing signals from a local atomic clock, at two or more ground
stations. The presence at each station of accurate atomic clocks, which can be coordinated
by comparison with portable clocks dispatched between stations, means that the signals
from the satellite recorded at each station can be time correlated with great precision. The
ground stations measure phase differences between simultaneously received signals trans-
mitted by the spacecraft. The measurable data are a phase difference time interval, T,
and its time derivative, 7. The time difference, 7, is the difference in the spacecraft
range as measured from each of the ground stations on a given baseline, divided by the
speed of light, ¢c. Neglecting atmospheric effects, the time difference between reception of
the same wavefront or phase at the first and second stations is

fe L= e = IR0l - e+ 9] (7127

where g; and g, are the ranges from the first and second stations to the satellite, respec-
tively. The range vectors fi and fy,, are evaluated in the local tangent plane system
centered at the first and second stations, respectively. An iterative procedure is required
to determine 7, since the actual light time between the satellite and the station is not
known initially. The iteration is initiated by assuming that 7 is zero on the right-hand side
of Equation (7-127).
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The time-rate (Doppler) difference, 7, is the difference in the spacecraft range rate as
measured from each station, divided by ¢, i.e.,

. % @, - b = % {[i’m(t) ;;1 f"u,(t)] } [f'u,(t + 1) ‘;2 fint * f)]} (7-128)

The partial derivatives of 7 and T with respect to the epoch state vector components and
dynamic model parameters are given by

o _ 1 {aol(t) oFu(t) OR()

9  cloaru®) oR® op
(7-129)
302(t) aTu(t) 8R'(t’)}
otu(t) OR(t) op
& _ 1 {aélct) ofu(®) B8R
o5 clam() OR(Y) oF
, i) [_a_f"_lh(t) oREW , ow® aim)]
ayt) LOR® P of P
(7-130)

30,(t) aru(t) oR(t)
af,(t) aR(t) op
30,(t) [oF, () ORE)  oFw() 3R()
i oy, (t) [ oR(t) op * aR() op ]}

where t =t + 1

The partial derivatives oR(t)/3p and oR(D)/0P are obtained from solutions to the varia-
tional equations; the partial derivatives 8F1(t) JaR(), oFy(t)/oR(D), and 8Fy,(t)/0R(t) are
presented in Section 7.2.2; and the partial derivatives of ¢ and @ with respect to their
respective station-centered local tangent plane coordinates are given in Sections 7.2.3.2
and 7.2.3.3.

7.6 ATMOSPHERIC EFFECTS

All satellite radar tracking measurements from ground tracking stations are affected
by the propagation characteristics of electromagnetic radiation through the Earth’s
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atmosphere. The bending, or refraction, of the rays means that a measurement of the
direction of the signal propagation at the ground does not correspond to the direction of
the relative position vector between the spacecraft and the tracking station. This ray bend-
ing also requires that the interpretation of the Doppler-shift measurement must be based
on the projection of the appropriate velocity along the local propagation path direction,
not along the relative position vector. Since the local propagation speed in the atmosphere
is different from the vacuum speed, the interpretation of time-delay measurements must
account for this effect. |

In principle, the refraction effects can be characterized in terms of the variable local
index of refraction, n, of the medium through which the signal is propagated. It is as-
sumed in the correction algorithms that locally the atmosphere is spherically symmetric
with respect to the center of the Earth; therefore, n varies only with the altitude, h (meas-
ured radially), at each tracking station. However, the n-versus-h profile is determined as a
function of the station location and the variations in solar flux. The nature of these de-
pendencies is discussed in the following sections, which present the mathematical algo-
rithms characterizing the three basic refraction effects considered.

7.6.1 TROPOSPHERE MODEL (References 11 and 12)

The troposphere is the familiar gaseous atmosphere, which extends from the Earth’s sur-
face upward to a sensible limit of about 30 kilometers. For the microwave frequencies of
interest in spacecraft tracking, the troposphere is essentially a nondispersive medium, i.e.,
the index of refraction, n, is independent of the frequency of the signal transmitted

through it. Within this region, n is expressed as

n:= 1 + NT (7-131)

where the tropospheric refractivity, Nr, depends only on the thermodynamic properties of
the air. Since temperature and pressure data are not readily available at altitude, surface
data are used to compute the surface refractivity, N,, and an exponential decay with
altitude is assumed, as follows:

Nt = N, e'(h'hl)m'l' (7-132)

where h, and N, are the altitude and refractivity at the tracking site, respectively, and
Hr is the tropospheric scale height, i.c.,

Hy = .1:11.. j: Nq(h) dh (7-133)
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The National Bureau of Standards Central Radio Propagation Laboratory (NBS CRPL)
gives values of the scale height for different values of the surface refractivity. Refer-
ence 11 stresses the importance of using corresponding values of Hr and N,. (Some
formulations have fixed Hr at a standard value, allowing only N, to vary.) Computation
of the tropospheric corrections is discussed in detail in Sections 7.6.3 and 7.6.4.

7.6.2 IONOSPHERE MODELS (References 13 through 17)

Above the troposphere is another atmospheric region called the ionosphere, consisting of
ionized particles and extending from about 80 kilometers to beyond 1000 kilometers. The
index of refraction, n, is less than 1 in this dispersive medium, and it is expressed rigor-
ously in terms of the ionospheric refractivity, Ni. For the sign convention chosen, the
ionospheric refractivity N; is greater than 0 and

n? = 1-2N; (7-134)

The difference from unity is small; and to first order in the refractivity Ni, n can be
written in a form analogous to that for the troposphere as follows:

n=1- N[ (7'135)

The refractivity depends on the electron density, N, (in electrons/meter®), and the signal
frequency, v (in hertz), according to

Ny = 507.:’& (7-136)

The electron density profile for the ionosphere reaches a maximum value, Np,, at altitude
hn, decaying to zero very rapidly below and very slowly above this altitude (Figure 7-9).
The exact shape of the profile and the values of N, and hy, are highly variable functions
of geographical location, time of day, season, and sunspot activity. If sufficient
jonospheric sounding data are measured (with an ionosonde or a backscattering radar) at
a given location and time, a reasonably accurate construction can be made of the electron
density profile. From these data, interpolated to the time and geographic location of inter-
est, the values of Ny, and hy, can be estimated.
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7.6.2.1 Modified Chapman Profile

The quantities Ny and hy, define only one point on the electron-density-versus-altitude
profile. The other points can be assumed to lie on a modified Chapman profile in the

form (Reference 13)

N, = Ng e (7-137)
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h ol hm
= _ 7-138
z o, (7-138)

where h is the altitude and H; is the ionospheric scale height.

Substituting the modified Chapman profile (Equation (7-1 37)) into Equation (7-136) gives

N = ﬂf’?—m e(""‘-l)l (7-139)

as the altitude variation of the ionospheric refractivity.

It is generally conceded that the modified Chapman profile does not represent the best
possible normaltized profile. The fixed ratio of the total electron content above the maxi-
mum point to that below tends to be too large, on the average, compared with the ob-
served diurnal variation. However, the theoretical foundation upon which Chapman based
the derivation (Reference 14) and the susceptibility of the function to treatment of refrac-
tion effects in a closed analytical form argue for its continued use.

In GTDS, the maximum electron density, Nm, and its associated altitude, hy, are deter-
mined as functions of the tracking station location and the variations in solar flux. The
method of characterizing and determining these variables is described in Section 7.6.2.3.
The ionospheric scale height is given in Reference 13 as

H, = -;- (30 + 0.2(hm - 200)] (kilometers) (7-140)

7.6.2.2 Empirical Worldwide Profile

The electron density profile is modeled as consisting of a biparabolic bottomside layer, a
parabolic topside layer, and a five-sectioned topside exponential layer, as shown in Fig-
ure 7-9. This profile is defined by the following equations:

Bottomside:

¥m

2
N; = Np (1 - -sz) {Segment A-B) (7-141)
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1
a =
{1 + 0.1333 (fo F; - 10.5)

b=h-hp
a; = h-h
a; = h - hy
ag = h - hy
a¢ =h-hy
.a5=h—h5

(Segment B-C)

(Segment C-D)
(Segment D-E)
(Segment E-F)
(Segment F-G)
(Segment G-H)

(7-142a)

(7-142b)
(7-142¢)
(7-1424)
(7-142¢)
(7-142f)

(7-143a)

(for fo F; < 10.5 megahertz)
(for fo F2» > 10.5 megahertz)

(7-143b)

(7-143c)
(7-143d)
(7-143¢)
(7-143f)
(7-143g)
(7-143h)

The empirical profile is completely defined by the parameters hm, Np, and ym for the
N2v N3v Nh NS: kl' k2| k;"u k4s k” hh th th h4! and hS

bottomside segment and Ny,

for the topside segment. The maximum electron density point (hm,
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a function of the location and the variations of the solar flux, as described in Sec-
tion 7.6.2.3. The parameters h, through hs are defined as follows:

hy = hy + % (1.0 x 10° - hy) (7-144b)
hs = hy + % (1.0 X 10° = hy) (7-144c)
hy = 1000  (kilometers) (7-144d)
hs = 2000  (kilometers) (7-144e)

and d can be determined from

g JLr iyl -1 (7-145)

ky

The values of Nj through Ns are determined sequentially for the adjacent lower profile
segments $o as to maintain continuity of N; at the segment interfaces, i.e.,

N, = (1 - %‘2) Np (7-146a)
N, = Ny ghlbz-hn) (7-146b)
N3 = Nj g"ke(bs-ba) (7-146¢)
N¢ = Nj g ksha-bs) (7-146d)
N5 = N, g kebsho) (7-146¢)

The final independent variables for the segmented Nj-versus-h profile are the maximum
electron density, Np, its associated altitude, hp, the half-thickness of the bottomside
layer, ym, and the decay constants, k; through ks, for the five topside exponential lay-
ers, respectively. The method for determining these variables in GTDS is described in
Section 7.6.2.3.
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7.6.2.3 Electron Density Profile Parameters

Both the Chapman and the empirical profiles require the maximum electron density, Np,
and its associated altitude, hy,. These variables are determined (References 15 and 17)
as functions of the critical frequency of the F, layer, foF;, and the M-factor, which is
the ratio of MUF(3000) F, (the highest frequency usable for a 3000-kilometer single-hop
propagation via the F, layer) to the critical frequency, foF,, i.c.,

hy = [1346.92 - 526.40 x (M- factor) + 59.825 x (M- factor)’] (7-1478)
Ny = 124 % 1072 x (foFs)? (7-147b)

where Ny is in electrons per meter’, hy is in kilometers, and f,F, is in hertz. The
critical frequency and the M-factor are functions of the location and the solar flux vari-
ations. ' :

The critical frequency, foFs, and the M-factor (also denoted M(3000)F;), required for
the profile calculation, are computed from monthly U,y coefficient sets using equations
based on Fourier series expansions and spherical harmonic analysis, which were devel-
oped by the Institute for Telecommunication Sciences (ITS) in Boulder, Colorado (now
National Oceanic and Atmospheric Administration ~ Boulder).

The values of f,F, and M(3000)F,) are functions (g, 4, T) of the geodetic latitude, ¢,
longitude, A, and time, T. The function Q(¢, 4, T) can be expressed by a series of
products of time-dependent functions D(T) and position-dependent geodetic functions

G(g, 4) as follows:

K
Q@ 4 T) = QDT), G, D] = Z DD Gu(y B (1-148)

k=0

where K is the cutoff point for the approximate representation of Q (K = 75 when
Q = f,F, and K = 48 when Q = M(3000) F;). These cutoff points were originally deter-
mined using a Student’s t test. :

The time-dependent functions can be expanded in their Fourier series representation with
the coefficients A’ and B as follows:

H
Dy(T) = AP + z [A® cos jT + B sin jT] (7-149)

j=1
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The number of harmonics retained in the series is H. Higher harmonics are not consid-
ered since they are produced more by noise than by real physical variation, It is sufficient
to use H = 6 for the f;F, computation and H = 4 for the M(3000)F; computation.

The Fourier coefficients A,(") and B,(k) are numerically mapped as predicted, or final,
coefficients U, x, which are the fGF; or M(3000)F, coefficient sets used for the
f,F, and M(3000)F; computations, respectively, i.e.,

Aj(k) = UZj.k (i = 0, 1,.,,H) (7-150&)
Bj(k) = U2j-l.k (] = 1, 2, ... H) (7'150b)
Thus,
K H K
Qg 4 T) = Z Uo.x Gx(@, 4) + z [003 jiT Z Uy x Gi(¢, 4)
k=0 j=1 k=0
(7-151)
K
+ sin jT - Z Usj-1,x Gx(@, 1)]
x=0

The geodetic functions Gy(g, 4) are linear combinations of the surface spherical harmon-
ics. Extensive investigations to find the best arguments for the harmonic functions re-
sulted in the use of the modified magnetic dip, x = x(¢, 4), since smaller residuals
between the measured and computed test data values for foF, were obtained for this
case than for any other case. Thus, Gy(¢, A) is both an explicit and an implicit function
of latitude, ¢, and longitude, 4, ie.,

Go(g, ) = sin® x . (7-152a)
Gi(@ ) = sintx - cos*¢ + sinki (k=1 2..K) (7-152b)

where g, denotes the highest power of sin x for the khorder harmonic in longitude.
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The modified magnetic dip, X, is an explicit function of the latitude and the magnetic dip,
¢, where ¢ is computed from the magnetic field components X(g, 4), Y(@, 4),

Z(9, 4, ie.,

sin x = 1 (7-153)

& + cos ¢

¢ = tan™ [ﬁ] (7-154)

where X, Y, and Z are the north, east, and vertical components of the magnetic field
vector. They are computed following the spherical harmonic analysis of the magnetic field
by Chapman and Bartels, as discussed in detail in Reference 16.

Defining
0= 90° - ¢ (7-155a)
and
R,
= 7-155b
R R, + hp ( )
where

R, = equatorial radius of the Barth
hy = | height of the F, layer

the following expressions for X, Y, and Z result:

6 n
X = Z Z ?l% Py m(cos 6) [gF cos mi + hy' sin mi] R**2 (7-156a)

n=1 m=0
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[ o
Y - Z z mP“S';(?S 6 [gm sin mi - b cos mA] R*? (7-156b)
nesl m=0

[ n
Z= Z — (0 + 1) Py p(cos 6) [gF cos md + hY sin mi] R*2  (7-156¢)

nxl m=0

Values tabulated from the analysis of the magnetic field for epoch 1960 are used for the
coefficients g@ and h®. The quantity P, (cos 6)is a multiple of the associated Legendre
function. _

In addition to the maximum electron density, the empirical electron density profile also
requires the half-thickness of the bottomside layer, ym, and the five topside decay con-
stants, k, through ks. The bottomside layer half-thickness is interpolated from tables in
which y, is modeled as a function of foF, and the local time. The five topside decay
constants are interpolated from tables as functions of foF;, the magnetic latitude, and the .
daily solar flux. Adjustments for seasonal effects are then made for y, and the lower
three exponential decay constants. The magnetic latitude is given by

¢m = sin”! [sin ¢ sin ¢, + cos ¢ cos ¢ cosd - )] (7-157)

where (¢, 4,) are the geodetic latitude and longitude of the magnetic north pole.

7.6.3 CHAPMAN PROFILE REFRACTION CORRECTIONS

The refraction correction formulas described in this section assume a sphericaily symmet-
ric atmosphere. The tropospheric correction terms utilize an exponential refractivity pro-
file, and the ionospheric correction terms utilize a modified Chapman electron density
profile. Approximations in the derivation limit the application at very small elevation
angles. The values for N and hy used in the following equations are determined as
functions of the location of the tracking station and the time as described in Sec-
tion 7.6.2.3. The scale height, Hj, is calculated from Equation (7-140).

7.6.3.1 Range Correction

There are two speeds associated with electromagnetic signal propagation through a me-
dium of index of refraction n, as follows:

¢, = phase speed = % (7-158a)
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C
cg = group speed = ——g " (7-158b)

n+v—
dv

where c is the vacuum speed of light.

The phase speed, ¢, is the speed associated with a phenomenon sensed by a phase
. measurement. The group speed, ¢,, is the speed associated with a measurement of the
transmission time of an energy pulse. In a nondispersive medium, such as the tropo-
sphere, dn/dy = 0 by definition. Therefore, the phase and group speeds are the same, in
terms of the refractivity given by Equation (7-131), i.e.,

c

c
=% 1" 1T+Ng

(7-159)

The ionosphere, however, is dispersive and the two speeds are different. Appropriate
differentiations and substitutions of Equations (7-134), (7-135), and (7-136) into Equa-
tions (7-158) show that, to first order in Nj,

¢ ¢
&= T ® 7w (7-160a)
¢
¢g = he = (1-Npc = TN (7-160b)

The phase speed is greater than the vacuum speed of light. The time associated with the
transmission of a signal over a path from the tracking station to the spacecraft is written

as

A« | dsic,= = | (1+Npds+ 1] a-Npas (7-1618)
“1otal path c troposphere ¢ lonosphers

Aty = ds/c; = 1 (1 + Ny)ds + 1 (1 + Npds (7-161b)
“total path ¢ troposphere c J lonosphere

depending on whether or not the measurement is of a phase or a group transmission
property. In these expressions, ds is the increment of length along the signal propagation

path.
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The first terms in Equations (7-161) (unity in the integrands) represent the vacuum trans-
mission times, and the second terms (the refractivities) represent the time corrections,
At,, caused by the atmosphere. The evaluation of Equations (7-161), by substituting for
the refractivities from Equations (7-132) and (7-139), yields the total atmospheric range
correction in the form

Ap = cAt; = csc E[Q + U - (P + V) cot? E] (7-162)

The ionospheric terms are

Q= % ﬂ‘}_l:;meﬂ [e-f’ -t {@a - hL)/Hl}] (7-163a)

Pa & 40.3 Ny e H; {h [e"-‘ g {(bn - hr)/HD}

V1,
(7-163b)

- - b - B SE@) - sa}

where the positive sign denotes the range increment due to a group delay and the negative
sign corresponds to the phase range decrement. The tropospheric delay terms are

U = Hr N, (7-1643)
V= H"ers (7-164b)
]

In Equations (7-162) through (7-164),

E = elevation of the straight line relative position vector from the tracking
station to the spacecraft

h = spacecraft altitude
r, = tracking station radius from the center of the Earth

vy = frequency of the signal transmission

h, = lower altitude limit for the ionosphere (set at 80 kilometers in GTDS)
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and

where

S( 2 g2z e-s: P . (7.165)
=€ - =57t 331" %-4a1"
S, = 0.5772156649 + (T) (7-166)
1
z= & ;Ihm (7-167)
1

The expression Sy is used as the evaluation of the series S(z) at the lower limit because
of convergence difficulties with the expression given by Equation (7-165).

The approximations made in the evaluation of the integrals in Equations (7-161) limit the
validity of the form of the solution given by Equation (7-162). In particular, the error
increases as the elevation angle decreases. Hence, the algorithm that is implemented in
GTDS modifies this basic form (Equation (7-162)) to minimize the erroneous excursions
at low elevation angles.

Typically, the true range refraction correction increases monotonically as the elevation
angle decreases. Equation (7-162), however, can exhibit a maximum value at some angle
and then decrease (even to negative values) for smaller angles. The maximum value is
found by setting the following derivative to zero

%‘Eg = - (cotE) Ag + 2(P + V) cot E csc® E (7-168)

and solving for E = Ey

Q+U=2P+V)
3@+ V) (7-169)

cot? Em =

In an example computed for typical troposphere and ionosphere profiles and for a VHF
frequency of 136 megahertz, the maximum value given by Equation (7-169) occurred at
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roughly Ey = 22 degrees. Thus, it would not be a good approximation to truncate the
range corrections to this same maximum value for all elevations E less than 22 degrees.
Accordingly, the algorithm in GTDS simply replaces the true cot? E term in Equation
(7-162) with the limiting value given by Equation (7-169) when cot® E is greater than
cot? By The (csc E) factor in Equation (7-162) causes the range correction to continue to
increase as B decreases below Ey. In fact, it is necessary to truncate this factor (and
hence the range correction) at a small elevation angle to prevent the values from becom-
ing unrealistically large. On the basis of comparisons with ray traces computed through a
typical ionospheric profile, it was determined that the (esc B) cutoff should be made for
sin E less than 0.225. The comparison of the ray trace results with the GTDS algorithm is
shown in Figure 7-10. The ionosphere was represented as a modified Chapman profile
given by Equation (7-137), with

1.0 x 102 electrons/meter®

N, =

h, = 300 kilometers
H; = 65 kilometers
v = 136 megahertz

For E = 35 degrees, the corrections given by Equation (7-162) are essentially the same
as the exact ray trace results. Below this angle the errors are less than 20 percent. Since
uncertainties in the knowledge of the ionospheric characteristics can exceed 50 percent, it
is not worthwhile from a practical standpoint to insist on greater accuracy in the algorithm
at lower elevation angles.

7.6.3.2 Elevation-Angle-Dependent Corrections

Bouguer’s Formula, the analogue to Snell’s Law for a spherically stratified medium, gives
nr sin i = constant (7-170)

along any ray through the medium. Here i is the local incidence angle between the ray
and the radius vector of magnitude r. Substituting r, + h for r in this formula and evalu-
ating at two points on a ray yields the following relationship for the two incidence angles
as functions of the altitudes and indices of refraction:

sinip _ 1 (r, + h) (7-171)

sin i ng \r; + hy
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If the initial point is taken at the tracking station, the apparent elevation angle of the ray is
E,. The initial point yields

hy = 0 ' (7-172a)
np =1+ N, (7-172b)
sin ip = cos E, (7-172¢)

Substituting Equations (7-172) into Equation (7-171) yields

n(r; + h)

d+Nym sin i (7-173)

cos E, =

If i were known a priori at the spacecraft position, Equation (7-173) could be used to
compute the apparent elevation angle at the ground station. However, i is not known and
Equation (7-173) must be modified to reformulate the desired solution in terms of quanti-
ties that are known. An approximation is made to an integration along the ray, resulting
in

cos B
E, = 7-174
cos 1+N)(Q+D ( )

where

- ‘ftaE Q-U-®-V)@ + cof? B)] (7-175)
é = cos™ (—I:&-S—E) - E (7-176)
rs + h

Equation (7-174) is used as given for the correction of Minitrack data, since the direction
cosines with respect to the station horizontal baseline both involve the factor E,. The
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correction for the elevation angle is determined (via the tangent of the difference of two
angles) to give

cos E [,/(1 + N)?(1 + I)® - cos? E - sin E] '
-E= -1 = 7-17
B wn {cosz E+ sin EJ(1 + N2 (1 + D% - cos? E (-177)

The refraction corrections to the X and Y gimbal angles (for both the 30-foot and 85-foot
antennas) enter through the dependence of these angles on the elevation angle of the
propagation path. The appropriate corrections are

(Xa = X)ao
sin E,/(T+ N)? (1 + I)* - cos® E + sin® A cos® E

- {sin A cos E [sin E- J+N)?(1+D?=- cosE ]} (7-1783)

. cos A cos E
(Ya = Y)g = sin™ {(1 TN e D [ﬁ- cos? A cos? E

(7-178b)

- J(T"' N)2 (1 + )? - cos® A cos? E]}

(Xa = X)as

ant] A cos E J(l + N)?* (1 + D)? cos? E - sin E (7-178¢)
sin E,/(l + N)? (1 + )* - cos® E + cos® A cos® E

(Ya = Y)gs = sin™! {(lsi:'n h?.)c(ois f ) [ﬁ - sin® A cos* E
(7-178d)

- S+ Ny (1 + D? - sin? A cos? E]}

where A is the azimuth angle.

7.6.3.3 Doppler Corrections

The effects of atmospheric refraction on USB DopplerAmeasurements are expressed in
Appendix C in terms of difference vectors All and Ad between unit vectors along the
actual (uplink and downlink) propagation paths and the straight lines characterizing the
hypothetical vacuum propagation paths. Figure C-1 depicts the geometry of the two- or
three-way Doppler signal transmission. From this figure, the four equations that define
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the conditions at each end of the uplink and downlink paths are (Equations (C-12) and
(C-14))

d; = & + Al (7-1792)
4, = O + af, (7-179b)
d, = d +Ad, (7-179¢)
dp = d + Adg (7-179d)
where
A r, - I
i = ———r 7-180a
va - lTTl ( )
and
R Salk (X (7-180b)
|Fr -

are unit vectors pointing up along the uplink path and down along the downlink path (both
paths are characterized as straight line relative position vectors), and

sateliite position vector
- ground transmitter position vector

by
]

"y
~3
1

3 ground receiver position vector

"
b
L

An equation was derived in Appendix C for the Doppler-plus-bias cycle count N for the
two-way or three-way measurement made by the USB system. The atmospheric refraction

effect is the term Aé,_,,s /2 (Equation (C-34)).

The quantity

: AQ(t + Atgr) + AQ(t .
Ady, = 2 R;) ® (7-181)
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is the average of the quantities obtained by evaluating

A = Abr - F o+ AQ, - 7 - ab, ¢ Adg ¢ (7-182)

at the beginning and at the end of the Doppler-plus-bias counting interval.

The computation of the USB Doppler refraction effect, therefore, requires a means for
computing the correction vectors AﬁT, Aﬁ,,, Ad,, and Aag at the appropriate times.
The correction vector AﬁT for the uplink path at an instant when the ground station
transmits a signal to the spacecraft is the difference between the unit vectors ﬁT and 4
along the actual and the hypothetical vacuum propagation paths. It must lie in the plane
defined by {i and the local vertical {\'T at the station, if it is assumed that the refractive
medium is a spherically layered atmosphere. Therefore, AﬁT is expressed as a linear combi-
nation* of {i and ¢

Alp = Al +B 9 (7-183)

In terms of the apparent elevation angle, E,, of the actual propagation path and the
straight-line relative position vector elevation angle, E,

d; - 8 = cos B, - B) (7-184a)

A

d; - ¢, = sinE, (7-184b)

Substituting from Equations (7-179) and (7-183) into Equations (7-184) and solving ex-
plicitly for A and B yields

Ae 5By (7-1853)
cos E
B = sin E, - tan E cos Ea (7-185b)

*The vectors 4 and ¢ coincide in the exceptional case of 2 direct overhead alignment. However, this
case works out correctly, since A = -B, glving Auy = 0.
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Equation (7-174) can then be used to eliminate E,, giving finally

1
A= TTTOATT -1 (7-186a)

B = i N,l)(l 7D [f(l + N2 (1 +1)?- cos? E - sin E:| (7-186b)

where I is as defined in Equation (7-175) and N; is the tropospheric surface refractivity at
the transmitter.
Similar considerations apply in the determination of the correction vector Aﬁ, for the

uplink path at the instant when the signal is received at the spacecraft. The geometry and
notation are presented in Figure 7-11. Here again, the correction vector is expressed as a

linear combination

Al, = C 0 +D 9, (7'187).
The following relationships are obtained from Figure 7-11:
f - 9, =coso (7-1882)
4, - 0 = cosa (7-188b)
i, - ¢, = cosi (7-188c)
cos a = cos g cos i + sin ¢ sin i (7-188d)

Straightforward manipulation of these relationships, using Equations (7-187) and (7-179),
yields a system of two simultaneous equations in the unknown coefficients C and D. The

solutions for C and D in terms of i and ¢ are

LU (7-189a)
sin ¢
D = cosi~- cotosini (7-189b)
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Figure 7-11. Uplink Path Geometry at Spacecraft Signal Reception

Equating the right-hand sides of Equations (7-173) and (7-174), making use of Equa-
tion (7-118), and solving explicitly for sin i yields

. s I cos B
ni= — 7-190

Examination of the triangle in Figure 7-11 shows that

E+%+6+a=x (7-191a)
or

E+d= -’zi -0 (7-191b)
Therefore,

sin 0 = cos (E + 0) (7-192)
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From Equation (7-176), this can be reduced to

sin ¢ = cos (E + &) = :_—T cos E (7-193)

¥

Substituting Equations (7-190) and (7-192) into Equations (7-189) finally yields

1

C = a-Na+D -1 (7-194a)
: 1 r¢ cos’? B
P T Na D \/(1_N’)2(1+D2'"T"r_3"_
(7-194b)

If the same procfdure is repeated for the downlink path to solve for the correction vec-
tors Ad, and Adg, the result is

C’ a + D Gv (7-195a)

Ad,

Adg = A" 4 + B $ (7-195b)

The solutions for C’ and A’ are identical with those for C and A, whereas the solutions
for D' and B’ are the negatives of those for D and B (Equations (7-194) and (7-186)).

The quantities I and N appear in the expressions for the primed and unprimed values of
A, B, C, and D. Equations (7-139), (7-163), and (7-175) show the dependence of these
quantities on the signal transmission frequency. The uplink carrier frequency should be
used to compute the unprimed quantities, while the downlink carrier frequency shouild be
used for the primed quantities.

The Doppler refraction correction for GRARR VHF and for sidetone ATSR data is shown
in Appendix C (Equation (C-42)) to be of the form (- All, - &), where the spacecraft
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velocity, ¥,, is taken at the signal turnaround time corresponding to the midpoint of the
Doppler count interval. This time is the measurement time tag (the preprocessor-
determined midpoint of the Doppler count interval) corrected in the orbit determination
processing for the light time from the spacecraft to the station. The light-path bending
term, Afl,, is computed according to Equations (7-187), (7-189), and (7-194). The vec-
tor {i is defined (Equation (C-12)) as the unit vector directed along the instantaneous
relative position vector from the station to the spacecraft. All other parameters in Equa-
tions (7-189) and (7-194) are defined in terms of this instantaneous relative geometry.

7.6.4 SEGMENTED PROFILE REFRACTION CORRECTIONS

The refraction correction formulas, described in Reference 15, assume that the total re-
fraction correction is the sum of the tropospheric and ionospheric corrections as follows:

Ag = Agr + Ag (7-196a)
AE = AB; + AE (7-196b)
AG = Adp + AQ (7-196¢)

where Agr, AEr, and Al are due to the troposphere, and Ay, AE;, and AQ, are due to
the ionosphere. These individual cotrections are presented below.

7.6.4.1 Tropospheric Correction

The tropospheric corrections are obtained from Reference 12 and assume that the atmos-
phere has spherical symmetry and an exponential refractivity function as described by
Equation (7-132). The equations are applicable over the entire range of elevation angles
(0 degrees to 90 degrees).

Using monthly mean values of the refractivity, N;, and the scale height, Hry, the following
parameters are calculated:

2Hr

" (7-197a)

p=
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q = (7-197b)

where r, = 6369.96

The range and elevation angle corrections are

1078 N, r2 L2 cos? E,
¢ Hr

Apr = 108N, Hr (m - -;— ) (kilometers) (7-198a)

AEr = 1078 N; cos E, (i - _r_,_,g%) (radians) (7-198b)

where

E, = apparent elevation angle of the received signal

o
n

slant range to the satellite

The quantity L is given by

L=1-isinE, + % 1076 N, 2 (7-199)

and the quantities i (bending integral) and m are complex integral functions of the refrac-
tivity function and the elevation angle. Reference 12 presents the following approxima-
tions for i and m which are accurate over the entire range of elevation angles:

i = F(sin By, I, L, io, iz, P) (7-200a)

m = F(Sin Bs.» M$ MZ: mg, My, p) (7'200b)
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where the function F is given by

1
F(a! Fls F2v fO! fli P) =
g1
a+
g; x 1.08885 (7-201)
a+
g+ B x 1.320903
a + g4 % 121313
with
g1 = p*Fr- (7-202a)
p*F;
g =|—]-8 (7-202b)
£1
Bs = 3 (7-202¢)
f%F1(1+§l)—(1+f1F1) )
g2
g4 = fo 81 (7-202d)
P3
The variables I, I, ip, and i, are
1 1
= -11-= . 7-203a
I > ( 2 Q) ( )
3 3 1,
= —|1-= - 7-203b
L = 3 (1 7 q) + 29 ( )
ip = @ (1 - 0.9206 q) 04468 (7-203¢)
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iy = (7-203d)

1 3
= =11- = -20
M; 5 (1 2 q) (7-204a)
3 25 11
M, = —[1 - = — g 7-204b
2= 3 24 17 36 q) (7-2040)
. 1 2 :2 1
mg = ip 1+q+-1—2-q10 ——Z—qko (7-204c)
2]1 + 1 iz '
3 1% (7-204d)
m =
1-gq
with
ko = {27 (1 - 0.9408 q) 047 (7-205)

The range-rate correction is given by
A0y = -107 E, N; Hy cos E, I:n2 - :Q-’- qL cos® E,

. (7-206)
x (i + 106N,ij - j sin E,)]

where

j = F(Sin Ea.’ le JZ! jOi jl’ p) (7'2078)
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n = F(sinE,, Nj, Nz, ng, m, Pp)
The variables J;, J2, jo, and j, are

] =

0| w

J = ';'(512 - B

jo=/i_1

. i
Jl"z"

jo
where

i = fx
2% 1 -1.0239"¢

The variables Ny, N3, ng, and n, are

3
N, = =M
1= 7 M

K
"

2 (5M; - N
ng = Jm;

’ 1., .
+izq + — iz (o @?

1o
- g? 4

ng = o
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(7-208a)

(7-208b)

(7-208¢)

(7-2084)

(7-209)

(7-210a)

(7-210b)

(7-210c)
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7.6.4.2 Ionospheric Correction

Tonospheric refraction corrections are computed from the empirical electron density pro-
file, described in Section 7.6.2.2, and its integrated electron content. The profile is com-
puted for the latitude, ¢, and longitude, A, where the radio wave from the measuring
station to the satellite penetrates the ionosphere. This is called the subionospheric point
and is computed as a function of the station latitude, ¢,, and longitude, 4,, and the
elevation angle, E, and azimuth angle, A, from the station to the satellite, as follows:

¢ = sin™! (sin ¢, cos @ + cos @, sin a cos A) (7-211)
. .1 [sin A sin a
A= 2., + sin™? (_CC;;T) (7-212)

where o is the geocentric angle between the station and the subionospheric point, given
by

4 . 1 {Re cos E
= — -E ~ = 7-213
a > sin (Re " hm) ( )

and hy, is the height of the ionosphere at the maximum electron density above the surface
of the Barth. On the first iteration, hy, is estimated to be 300 kilometers. After computing

hy, via Equation (7-147), the difference between the computed and estimated values of
hy, is determined. If this difference is less than 1 kilometer, its effect is negligible; if it is
greater than or equal to 1 kilometer, iterative computations of Equations (7-211) through
(7-213) are made to obtain a new value of hn.

The total vertical electron content, N;, required by the correction algorithm is obtained by
integrating the electron density profile in Equations (7-141) and (7-142) from zero to the
height of the satellite, h. For a satellite below the biparabolic layer of the ionosphere,

Ni=0 - (7-214)

For the satellite in the bottomside biparabolic layer,

h
. 8 h - ZM-lM]mm
N,_LN,dh=Nm[15ym (hy - h) + - 5ot (7-215)
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where ¥ is the half-thickness of the bottomside layer of the segmented electron density
profile.

For the satellite in the topside parabolic layer,

8 (hm - h)s]

- — - - h — 7-21

N; N.:.[15 Ym = (hm = h) + 35 (7-216)

where ¥, is the thickness of the topside parabolic layer (see Figure 7-9) and is given by
Yt = QG ¥m (7-217)

where

1 (for foF, < 10.5 megaheriz)
(7-218)

1 + 0.1333 (foF; - 10.5)  (for foFz > 10.5 megahertz)

For a satellite in the first exponential layer,

8 ds aéayxf1 - e-k:(h-h:))
N, = N { — - =2 N - — 7-219
1 m(ls ¥m + d 3y?) + m(l Y?)( K ( )

where

ky
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For a satellite in the second exponential layer,

8 da d¢
““Nm(l-s"m "'?yr) Nm(‘”y?)

(7-221)
1 - ekilka-hy) g-Ki(hz-h1) _ p-[ki(hz-by)+ka(h-ha)]
X +
k ks )
For a satellite in the third exponential layer,
8 d?
N; = N d- Nmll - =
‘ “‘(15 Tm ¥ 3y‘) "'( y’)
. {1 - g kiha-hy) . g~¥1(bz-hi) [1 - e-kz(hs-hz)] (7-222)
k] k2
g~ [k1(h2-hy)+ka(ba-ha)] [1 - e-ks(h-hs)]}
+ -|
ks
For a satellite in the fourth exponential layer,
8 d* d?
NI = Nu[— d- —5|+Npll-—=
‘ "’(15 Tm ¥ syf)* “‘( y%)
P ) g Xa(ba-hy) [1 - e-kz(hz-hzﬂ
X + = =
k;[ k2
(7-223)

o~ (K1 (h2=hy)+k3(B3-ha)] [1 - ¢k (lu-hszl
ks

¢~ [Kki(ba-ba)+a(y-ba)sks(hamba)l [ 1 e-n(h-mj}
* ke
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Finally, for a satellite in or above the fifth exponential layer,

8 d? a2
N] BNm('EYm-I-d— -37)+Nm(1 - ?)

— p-ki(ba-hy) -k (hz-h;) _ p-ka(hs-hy)
% {1 e ;£ [1 4 :|

k; ko
e-[kl(hz-h1)+kz(h3-hﬂ£1 - e-ks(hrhs] (7-224)
ks

o[k Ga-h)ta(es-ba)sks(hamhs)] [ _ grkaCbs-be)

+ —
k4
, ¢~ [k (hzb) o es-badks (harho)aChs-ba) [ 1 - c-ks(h—hsﬂ}
ks

The range correction, Agy, is computed from the vertical electron content and the eleva-
tion angle at which the radiowave passes through the ionosphere, as follows:

40.3

R Vo (7225)
£ \/1 (Re + hmean) ?OS Fa

where the quantity f is the transmission frequency, the height of the mean of the electron
distribution, hpean, 1S given by

AQ[ =

1 N 8
hmean = Nm + 5 ﬁ':: - 15 Ym _ (7-226)
and
1 1 1 \1/2
— = —— — 7'227
f (Zf.% ¥ Zﬁ) (227

where f, and fq are the uplink and downlink frequencies, respectively.
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The range-rate correction, Aé,, is obtained by differencing two successive range correc-
tions in the following form: '

Agi(t) - Aot - Av) (7-228)

A = - At

At the start of a data span for which no previous range correction exists, A @, assumes
one of the forms described below.

Satellites Below the Lower Biparabolic Laver
'Abl e 0 (7-229)
Satellites Within the I Bi bolic I
hy - h YV P
40.3 x 1.24 x 1072 [1 - ( = )]
Aé__.qé.a_l.g_@zx( ) }_’:_n xl.-l
1 = dt f 1 ( R, . E)z]m
[ B R, + hpean 08 Fa
(7-230)
_ R, z .
. Ap; (—-—-———-—Re " hmm) sin E, cos E, -
R, 2
1- (Re + Bmean o0 E‘)

where

h = altitude rate of the satellite
E = elevation rate of the satellite
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Satellites In the Topside Paraholic I

(40.3 x 1.24 x 10°%) [1 - (hmy-2 h)’]

' dAgs foFa \? :
AQ""T='(f) ; R, T2 *h
[ - (Re + Npean cos B.)]
(7-231)

+
R, 2
1- (& P cos E.)

x B

Satellites in the Exponential Layers

(40.3 X 124 x 109 [1 - -3;]

1d wh X em

R, 2|1/2
[1 B (Rc + Nmean oo E.)] :
(7-232)

R‘ 2
Ag; (R. b ) sin E, cos E,
+ Nmean X E

+
__ R ’
1 - (Re - cos E,)

The exponential multiplier, em, of the h term can take on five different forms, as defined

below.
For a satellite in the first exponential layer,

em = e fi-b) (7-233)

For a satellite in the second exponential layer,

em = e"kl(hﬁ'hﬂ e'kl(h'hz) (7'234)
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For a satellite in the third exponential layer,
em = g-Xi1(bzB1) g-ka(hs=ha) o-ks(h-ha)
For a satellite in the fourth exponential layer,

em = e'kl(lu'hl) e"kz(lu'hZ) e-k3(h4'h3) e-h(h'hi)

Finally, for a satellite in or above the fifth exponential layer,

em = eg-¥i(haB1) grka(hs-ha) -ks(he-ba) g~ x4(bs-b4) o-ks(b-hs)

The elevation angle correction, AE,, is given by

X, co08 a - Xz
(X% + X2 - 2X; X, cos a)l/?

cos (AE,) =

where

X; = [(Ry + h)?> - R2 cos? E,]'/2 + R, cos E, tan (%)

X2=R,sinE.—R,cosE.tan(%)

2 2
a= 1 (o 3 tan ¢o sec” o N (deviation angle)
2 f Io Nm

s = Re + hpenn
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(7-235)
(7-236)

(7-237)

(7-238)

(7-239)
(7-240)

(7-241)
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1 N 8
MM'M+5ﬁi“ﬁh (7-243)

sin ¢p = —E’- cos E, (7-244)

The variable  is tabulated as a function of

(59-?3) sec? ¢ (7-245)
where
sin ¢y = %’; cos E, ~ (7-246)
and
fp = Re + hp (7-247)

7.7 ADDITIONAL CORRECTIONS

This section discusses the modeling in GTDS of the light-time, ground antenna mount,
transponder delay, and spacecraft antenna offset corrections.

7.7.1 LIGHT-TIME CORRECTION

GTDS provides for a light-time correction which can be applied to GRARR, C-band, and
Minitrack measurements for greater accuracy of modeling. All of these measurement
types are modeled (Section 7.2.3) in terms of the instantaneous relative position vector
from the tracking station to the spacecraft, computed in the local tangent coordinate sys-
tem (Section 7.2.2). Since the spacecraft is the only object that is moving in this coordi-
nate system, the appropriate time for calculating the instantaneous relative position vector
is the time t,, when the vehicle transponder turns the tracking signal around. (For the
one-way Minitrack signal, tv corresponds to the time when the signal was transmitted by
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the spacecraft.) The actual measurement is time-tagged at the time tg, when the signal is
received at the ground station. The light-time correction consists of making an approxima-
tion to t, by changing the measurement time tag to

t, = tg - i‘cﬁ  (7-248)

where Ap is the one-way relative range from the spacecraft to the tracking station. A first
approximation to Ag is determined in GTDS by computing the relative range vector at
the actual measurement time, tg, utilizing the spacecraft position vector at tr. The differ-
ence between this relative range and the correct relative range corresponding to t, could
be corrected by means of an iterative estimation algorithm. However, this is not done in
GTDS, since the very small improvement in accuracy is insignificant compared with the
degree of the approximation implicit in the basic measurement model. Thus, the first
estimate for Ap is used in computing the light-time correction to the measurement time

tag.
772 GROUND ANTENNA MOUNT CORRECTIONS
For X and Y antennas, a correction is performed on range and range-rate measurements,

since the electrical phase center of the antenna moves with the antenna and is displaced
from the geodetic point of reference which is the center of the fixed axis. The correction

AR applied for range is
AR = D cos (Y) (7-249)
which, by differentiation with respect to time, gives the correction for the range ratc
AR = -Dsin (Y) Y (7-250)
In these exprcssidns, Y is the measured Y angle and D is the nominal distance from the
electrical phase center to the center of the fixed axis. The correction to AR and AR due to
the X angle and the corrections to the X and Y angles due to the displacement of the

electrical phase center are ignored.

7.7.3 TRANSPONDER DELAY CORRECTION

For those tracking systems that use a transponder onboard the satellite to receive and then
retransmit a signal, the transponder delay, i.e., the time interval between reception and
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transmission of a given signal, must be taken into consideration. These satellite transpon-
der time delays are functions of the frequency of the signal received by the transponder,

i.e.,

Ar = f(v) (7-251)

The characteristics of the function f for a specific transponder must be determined ex-
perimentally by calibration of the transponder on the ground before launch.

For tracking systems other than TDRSS, the function obtained in this manner can then be
entered in GTDS as a table of transponder delay times versus the frequency, from which
the delay for any intermediate value of the frequency can be obtained by interpolation. As
an alternative, provision is made in GTDS to use nominal (default) tables or constant
delay times. See Section 7.3.2.2 for a description of the method used for TDRSS.

7.7.4 SPACECRAFT ANTENNA OFFSET CORRECTIONS

In general, when computing the range to a spacecraft, it is assumed that the tracking
antenna is located at the center-of-mass of the spacecraft. However, in cases where the
tracking antenna is located at a significant distance (e.g., more than 5 meters) from the
center-of-mass, this offset can be accounted for in modeling the tracking measurements
using the model described in this section. Currently, this capability is only available for
the user spacecraft in computing TDRSS and/or SGLS tracking measurements.

The antenna offset vector, Af,, is assumed to have constant components in the orbit
plane coordinate frame (described in Section 3.2.5), i.e.,

AF, = AH R, + AL §,, + AC 2, (7-252)
where
A r
Rep = 7T (7-253a)
909 = %op X ﬁop (7'253b)
op ™ "'_F x‘”_.F (7-2530)
IF x |

and F is the radius vector of the spacecraft center-of-mass.
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The true antenna location to be used in the computation of the spacecraft tracking meas-
urements is then given by '

i'-., =7+ A.fg (7'254)

7.8 ESTIMATION MODEL

The deviation between the actual measurement and the computed measurement is mod-
eled as a first-order Taylor series expansion around the predicted measurement. This
expansion relates deviations in the measurement residuals to deviations in dynamic pa-
rameters, station locations, measurement biases, and time biases, and it establishes the
required set of linear regression equations. The estimation model for any measured quan-
tity can then be written as

Qg -0, = 90, Aq + n (7-255)

oq
where

O, = actual measurement with time tag t

O. = computed measurement based on a previous estimate of the parameter
vector @

correction to the parameter vector

>
o
n

n = measurement noise

The parameter vector T can consist of dynamic parameters, p (those parameters involved
in the equations of motion); station locations, fs; measurement biases, b; and measure-
ment time biases, dt. The total parameter vector can then be written as

P
Y

T=|, (7-256)
ot

The modeled measurement can be written functionally as

O, = f@ t) = f(p, T, b, 1, 1) (7-257)
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Substituting the appropriate partial derivatives of Equation (7-257) into Equation (7-255)
yields

30} — (90 90, 80,
Oy~ O = (-a—p_-) Ap + (-E) Ar, + (—E) Ab + (8_(6?)) A(dt) + n (7-258)

which can be written in a more compact form as

Ap
30, | 30, | 30, ! ao..,] x
-0, = | 7259
Go - O [aﬁ:ar.iabia(at) an | T" (7-259)
A@)
or
Op - 0. = FAq +n (7-260)

Equation (7-260) defines the linear regression equations that are solved by the iterative
classical or sequential weighted least-squares methods described in Chapter 8. The for-
mulation, as shown in Equation (7-260), describes m equations (for m measurements) in

unknowns (the number of ¢ parameters). The matrix F in Equation (7-260) is of di-
mension {m X p). Chapter 8 derives the required solution to the normal equations in
terms of F and the weighting matrix, W, under the assumption that W is a diagonal
matrix, that is, that the measurements are uncorrelated. Under this assumption, the terms
in the normal equations requiring F can be developed on a measurement-by-measurement
basis, yielding the solution of the normal equations without explicitly forming the full
(m x p) F matrix. This is a standard method for all existing least-squares orbit deter-
mination programs and is discussed in more detail in Chapter 8.
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CHAPTER 8—ESTIMATION

The basic orbit estimation problem involves solving for values of a set of parameters from
a measurement model (described in Chapter 7) so as to minimize, in the sense of
weighted least squares, the differences between a computed and a measured trajectory.
The model parameters include the trajectory of the vehicle (initia] conditions and differen-
tial equation parameters), the locations of the ground stations and relay spacecraft, and
the bias errors in their instruments or clocks (these errors may vary as a function of the
pass over a station). In practice, values are determined for only a selected subset of the
model parameters.

Since the measurements made by a tracking system are imperfect, no trajectory fits them
exactly. At best, only an estimate of the actual trajectory can be obtained from the data.
GTDS uses a classical weighted least-squares estimator (derived in Section 8.2). For a
theoretical discussion of estimation, see References 1 through 6.

8.1 DESCRIPTION OF THE PROBLEM

Let a set of m measurements, denoted by an m-dimensional vector ¥, be given. These
measurements are assumed to be equal to a known vector function f of a set of
p parameters, denoted by a p-dimensional vector X, plus additive random noise, denoted

by a vector fI, i.e.,

y=H0)+1 (8-1)

The above equation is called a nonlinear regression equation. The trajectory determina-
tion problem is to estimate X given ¥, the functional form of f, and the statistical
properties of L.

The estimation process attempts to deduce a value for X that minimizes the weighted sum
of the squares of the measurement residuals [¥ - f(%)] between the actual measure-
ments and the measurements computed using the mathematical model. More precisely,

the following is minimized:
QE® = [ - f®]T Wiy - 2] (8-2)

where W is the m X m weighting matrix. The scalar quantity, Q, is called the loss
function. An a priori estimate of the state, %o, is assumed to be available for use in the
minimization. The deviation of %p from the true value of the state is assumed to have

zero mean and covariance, Pax,.
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A necessary condition for the loss function to be minimum with respect to X is that
3Q/3%X = 0. Therefore, the value of X that minimizes Q is a root of the equation.

‘:—QX = -2[y- f(x)]‘fw(:—i) =0 (8-3)

The method of solving this nonlinear minimization is to linearize Equation (8-3) and then
apply a standard Newton-Raphson procedure to iteratively solve the nonlinear problem.
Expanding (%) in a truncated Taylor series about the a priori estimate, %o, yields

f(®) = f(%) + FAX (8-4)
where
AX =X -%p ' (8-5)

and

m X p matrix of
P of partial derivatives of (86
=\ ax f(%) with respect to ¥, -6)

X Je
% evaluated at X = Xp

The linearized measurement vector becomes

Ay = FAX + #1 (8-7)
where

Ay = Y- f(%o) (8-8)

Substituting Equations (8-4) and (8-7) into Equation (8-3) yields the lincarized partial
derivative of the loss function in Equation (8-3)

_ 2@y -FA)TWF =0 (8-9)
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which can immediately be solved for Ax, yielding the classic equation for the best esti-
mate, AX, '

Ax = (FTWF)" FTW Ay (8-10)

The value of ﬁ, the estimate derived from the linearized system, is

A

§ =%+ Ax (8-11)

The symmetric matrix (FT W F) is called the normal matrix. The inverse of thisp X p
matrix is the covariance matrix of the error in the weighted least-squares estimate, L.

As a result of the linearization performed in Equation (8-4), the correction A‘;\x must be
small so as not to violate linearity. This means that the a priori estimate, Xp, must be
reasonably close to the true external solution of Equation (8-2). If such is not the case,
the process is iteratively repeated in a standard Newton-Raphson procedure, each time
using the last best estimate 4 as a reference for the linearization. The iterations continue

A
until the differential correction vector Ax is truly small (i.., approaching zero), which is
equivalent to minimizing the original nonlinear loss function, Q(x).

In the following sections the specific estimator algorithms implemented in GTDS and their
associated covariance matrices are derived and discussed, and details concerning the
application of the estimation process are described. Much of the material is taken from
References 4, 5, and 6.

8.2 BATCH ESTIMATOR ALGORITHM

To facilitate the derivation of an iterative weighted least-squares solution, the various
quantities that are iteration dependent will be subscripted with an i. Thus, Ax in Equa-
tion (8-5) is written Ax; = X - %,, where &, is the best estimate of X, the extended
state, obtained from the i® iteration. At the beginning of the process (0% iteration),
Qo = X, is the a priori value of these solve-for variables. The objective is to determine
%,,, from %, so as to minimize the loss function.

The discussion that follows uses the expectation operator €{}. If u denotes a random,
unbiased variable, the expectation of u, €{u}, equals zero. The expectation of a vari-
able x is the mean value of x or the first moment of x

Ex} = X (8-12)



The covariance is the expectation of the product of the deviations of two random variables
from their mean -

cov {x, v} = E{(x - EXNG - EGN} (8-13)

The initial assumption that the measurement vector § can be related to the state and
_ model parameters at epoch time, to, is given as

v=1%2+0 (8-14)

where two classes of variables are included. The p-dimensional vector X, designated the
solve-for vector, contains as components the state and model parameters whose values are
known with limited certainty and are to be estimated. The g-dimensional vector Z, desig-
nated the consider vector, contains as components all model parameters whose values are
known with limited certainty but are not to be estimated. Nevertheless, the uncertainty of
¥, is to be considered. A priori values of X and Z are specified as X, and Z, with
respective covariance matrices Pay, and Pag, i.., .

E{Xp} = X (8-152)
cov{%y - X} = Pay, (8-15b)
e} = z (8-15¢)
cov{Zo - 2} = Py, (8-15d)

On the i iteration, the loss function is defined to be
QR = [ - IX 2)TWIT - f(% Z0)] + (X - X)T Py, (X - Xo)  (8-16)

The second term on the right has been added to the loss function to constrain the best
estimate to the a priori specified Xp, with the degree of constraint dependent upon the
uncertainty Pay,. This term accounts for the fact that Xp is known to be accurate t0 a
confidence level given by Pa,,. Therefore, any solution is constrained to satisfy the
a priori realization Xp to within the limits of its uncertainty.
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To obtain the weighted least-squares solution that minimizes Q(X) in Equation (8-16), the
same procedure is followed as is used in Section 8.1. First 8Q/axX is linearized; then, a
Newton-Raphson procedure is iteratively applied to solve the nonlinear minimization
problem. For convenience, the value of X, for the it iteration is considered first, and the
nonlinear regression equation is linearized as follows:

fx, 2 = f(R, %) + R A + E Az (8-17)
where
A%, = X - % (8-18a)
Az, =T -2, (8-18b)
and
9
= | e 8-19
i (a;)(x. z= %, %) (8:152)
d
= | =— 8-19b
. (a‘r")(x. 7= %, %) (13

Since the consider variables Z are not being estimated, their values remain equal to Zo.

Substituting terms with nonzero mean from Equation (8-17) into Equation (8-16) yields
the linearized loss function

Q'(Ax) = [Ay - BAX|™W [Ay: - F: Ax]

. - - (8-20)
+ (Bx ~ Ax)T PR, (Bx - Ax)
where the measurement residuals are
A_yi = ¥ - f(gl, Zo) (8'21)
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and the deviation of the a priori estimate from the i®iterative estimate is

A-.xl = Xy - ﬁl (8'22)

The value of Ax; that minimizes Q', denoted by ﬁ\x,ﬂ , is therefore

ﬁxm = (Ff WF, + Pol)™" [FT WAy, + Py, Axi] (8-23)

and the best estimate of the solve-for variables is

i+1

J"Em = Xo + Z AAXI: = 5\‘1 + AAKH] (8-24)

k=1

This estimation process is iteratively applied until the convergence criteria (discussed in
Section 8.6.3) are satisfied.

Equation (8-23) is the estimation algorithm used in GTDS. It requires the inversion of a
p X p matrix, the same dimension as the vector of solve-for variables. Insofar as the
estimation algorithm is concerned, it makes no difference whether consider variables are
included. Equation (8-23) depends only on the values Z, not on the uncertainty, Pag,-
This might be expected, since the uncertainty resulting from the inclusion of consider
variables affects only the second-order statistics or covariances (i.e., the ensemble proper-
ties). The last term on the right in Equation (8-23) can only be included subsequent to the
initial iteration, since on the initial iteration Ax = 0. :

The estimation algorithm in Equation (8-23) differs slightly from the classical weighted
least-squares algorithm (Equation (8-10)). This difference results from the addition of the
second term on the right in the loss function (Equation (8-16)). '

8.2.1 MEAN AND COVARIANCE OF ESTIMATE

The best estimate & which results from convergence of the estimation algorithm will next
be examined to determine its statistical properties. Two quantities are of concern, the
expected (mean) value and the covariance of the estimate. The expected value of the

A . . . . "
deviation Ax yields the amount of bias in the estimate, while the covariance indicates the
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amount of dispersion or uncertainty. Obviously, zero bias and minimum dispersion are
the qualities sought. -

In the following discussion, it is assumed that the iterations have converged and that the
unsubscripted variables X, Ax, Ay, etc., correspond to the converged solution and pertur-
bations about it.

The expected value and covariance of the measurement noise vector, ii, are assumed to
be

E{ﬂ} = { (8-258)
cov{fi} = W? (8-25b)

and the linearized vector of measurement residuals can be written as

Ay = FPAX + EAz + It (8-26)

Therefore, the expected value of Ay is

E{Ay} = E{F Ax} (8-27a)
since

Em = E(Az} = 0 (8-27b)
The covariance of Ay is

cov{Ay} = E{[BY - E@Y)] [Ay - EBY)]™
- E&(Az AzT)ET + E E(Az A"} + EMAZT}ET + E(@AT)  (8-28)
= E Paz ET + W1
where the correlation between the consider variable errors and the measurement noise is

assumed zero, i.e.,

E(AZRT} = 0 ' (8-29)



The mean of the best estimate Xy, is

E{&yy - X} = 8{&1+1 - Ax}
= (BT WE + PiL)™ [FT W E{Ay} + Pz, E{Ax}
- FTWF + Pal) E(BR)]
= FTWF + Pal ) Pp,, E{% - X}

(8-30)

However, X, was defined to have an expected value equal to X (seec Equation (8-15a)).
Therefore,

gk -x1=0 (8-31a)

and

E{f) =X (8-31b)

Equations (8-31) show that the best estimate is unbiased. The covariance of the error in
the estimate is

Pax = E{[Riw1 - KA1 - KT} = E([Axyy - AX)|[Axyy - Bx]T)
= 9 {FTWEPs, ETWE + FTWF + Pa}
+ FTW [E €{Az BX - Ax)™} Pz}, + E E{Az "} WF] (8-32)
+ [Pa, E(BX - Ax) AzT}ET + FT W E{mAzT}E] WF

+ Pl E((BX - A) AT} WF + FTW E{fl (BX - AX)™} Pax} ¥"

where

p = (FFTWEF + P )" (8-33)



To simplify Bquation (8-32), the following definitions are made:

Caxetz = E(BX - AX) Az} = E{(X - %)(Z - Z)"}

(8-34a)
= E{(% - D& - DT}
CT - E H - Ay = - - T
Axeaz = €1AZ ( AT = E{Z - B)(X - X)) (8:34b)
= &% - D% - D7)
CAm = S{EﬁT} - 8{(2' - Zh) ﬂlr} a 0 (8'358)
Ci, = E@AzT} = E{fi (Z - %)™} = 0 (8-35b)
Canen = E((EX - AX) AT} = E((X - Ro) A7} = O (8-362)
Cl,. = EM@X - A)T} = E@EX - X)T} = 0 (8-36b)
Therefore, Equation (8-32) becomes
Pay = Y FTWEPyp ETWF + ¢!
(8-37)

+ FTWE CLoa: Pil + Pak, Cats ETWF ¢

In Equations (8-35) and (8-36), it is assumed that no statistical correlation exists between
the measurement noise and the error in the solve-for or consider variables. The correla-
tion between errors in the a priori solve-for and consider variables, CaxpAz is neglected in
GTDS, primarily because a priori values of this correlation matrix are ususally unavail-
able. The terms are maintained in Equation (8-37) for completeness and for possible use
in the error analysis application discussed later. In the event that no consider variables are

included, Equation (8-37) reduces to

Pa, = ¢ = (FTWF + PR (8-38)

which is the gain matrix in the estimation algorithm (BEquation (8-33)).
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It was stated previously that a desirable quality of an estimate is small dispersions. It is
evident from Equation (8-38) that the covariance matrix of error in the estimate, Pay,
varies with the measurement uncertainty, W-1, and the a priori covariance matrix of the
solve-for variable uncertainty, Pa,,. Equation (8-37) shows that Pa, also varies with the
covariance matrix of uncertainty in the consider variables, Pa,,. Therefore, minimizing
the measurement noise, as well as the a priori uncertainty in the solve-for and consider
variables, will result in reducing the dispersion or uncertainty in the estimated variables.

The correlation between errors in the solve-for and consider variables, which results from
the processing, is

Caxse = E(R - D (%o - D7)
= ¥ {Pak, Caxprz - FT W E Pag}

(8-39)

Even if the a priori correlation, Cax,as is assumed to be zero, a correlation between
errors in the solve-for and consider variables will result because of their dependency in
the processing model.

8.2.2 MEASUREMENT PARTIAL DERIVATIVES

Throughout Sections 8.2 and 8.2.1, the components of the solve-for and consider vectors
% and Z have been ignored along with the way the components and their error
covariances, Pa, and Py, are associated with a specific time or epoch. Furthermore, it
has been assumed in Equation (8-14) that the calculated measurements at various times
(ty, t2, ..., tm) can be related to the solve-for and consider variables at the epoch time,
to. In Equation (8-17) it is assumed that the time varying matrices F, and E; can be
calculated, which linearly relate the calculated measurements to variables at the epoch
time. In the following section, attention is focused upon the solve-for and consider vector
components, the manner in which the time dependency is accomplished, and the proper-
ties of the normal matrix which are utilized in its formation.

The general estimation (solve-for) vector X in the regression equation (Equation (8-14))
and the estimator equation (Equation (8-23)) contains the following types of variables:

P

T,
x| | = {solve-for vector} (8-40)

b
Ot
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where

f = dynamic parameters, consisting of the spacecraft state components at
epoch and mode! parameters in the acceleration model (Equation (4-1))
for one user spacecraft and up to three TDRSs; the model parameters
include gravity constants, the drag parameter, the solar radiation con-

stant, and thrust

f, = tracking station locations or Bilateration Ranging Transponder sites in
Earth-fixed coordinates

b = measurement biases

St = measurement timing bias

The mean of B1950.0 or J2000.0 Cartesian coordinates, R, and ﬁo, are used for the
purpose of describing the method.

Each row of the F(t) matrix in Equation (8-192) contains partial derivatives of the com-

puted measurement with respect to K, Ro, and the other specified components of
B, f., b, and 3t The dynamic variables P must be related to the epoch time through the
state transition matrix, ®(t, to), as discussed in Chapters 4 and 6. Partial derivatives with
respect to #,, b, and 4t are not dependent upon an epoch and can be obtained by differ-

entiating the measurement equation explicitly.

The nonlinear measurement equation is written in Equation (7-1) as

0. = fo [R(t + 6, B), R(t + 6t P), f)] + b + RE (8-41)

where
R, R = position and velocity vectors for user spacecraft; for TDRSS tracking,
this also includes the position and velocity vectors for the TDRS

RE, = systematic error correction to the measurement due to atmospheric
refraction, light-time correction, transponder delay, antenna mount
errors, etc. .

8-11



The partial derivatives of a measurement, O., at time t;, with respect to the solve-for
variables X are at time tp, are given by -

oM e

The first matrix on the right-hand side is explicitly determined from the measurement
equations in Chapter 7. The second term on the right-hand side, the state transition ma-
trix, must be obtained by integrating the variational equations (or approximations of these
equations), as described in Chapter 6 and in Section 8.2.3. Equation (8-42) constitutes a
single row & of the F matrix. '

On each iteration, the m measurements are sequentially processed to form the normal
matrix FT W F. Since the weighting matrix W is diagonal, the recursive relation for accu-

mulating the normal matrix is

m
g 5

P (8-43)

FTWF =

j=1

where

5 = jbrow of the F matrix given by Equation (8-42)

o, = standard deviation of the j*» measurement

By forming FT W F row-by-row instead of manipulating the full (m X p)F matrix, a
saving in storage and computation time is realized. Since the matrix F* W F is symmet-
ric, elements below the main diagonal need not be computed or stored.

The general consider vector 7 in the regression equation (Equation (8-14)) can have as
components any model parameters in B, f;, b, or dt.

Each row of the E(t) matrix in Equation (8-19b) contains partial derivatives of the com-
puted measurements with respect to the specified components of Z. The partial deriva-
tives with respect to the dynamic variables {5, specified in 2, can be calculated
simultaneously with the dynamic partial derivatives in F(t) as described in Chapter 6.
However, the partial derivatives in E(t) need only be computed on the final converged
iteration, since the estimator equation (Equation (8-23)) is not dependent upon E(1).
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In GTDS the components of the vectors X and Z are merged on the final iteration to
an expanded state vector . The elements of T are ordered as described above. The
measurement partial derivatives are then calculated with respect to f, and a
(p + @ X (p + q) expanded state normal matrix F* W F is sequentially accumulated
as described above. When all m measurements have been processed, selected elements of
FT W B are extracted to form FT WF, and ET WE, and ET WF, which are required
to compute the covariance and correlation matrices in Equations (8-37) through (8-39). It
should be noted that only ¢lements on and above the main diagonal of FT W F need be
calculated and stored.

8.2.3 COVARIANCE MATRIX TRANSFORMATIONS

The converged estimate, &, covariance matrix, Pax, and correlation matrix, Caxas, re-
sulting from the differential correction process correspond to the epoch time, to. The
spacecraft state vector components of % can correspond to Cartesian coordinates in mean
of B1950.0, mean of J2000.0, or true of date axes; classical Keplerian orbital elements;
spherical coordinates; or DODS variables. For discussion purposes, the case where X
contains one spacecraft state vector is addressed and the first six components (the state
components) of 4 are denoted by 5. The vector § can optionally be

po— p— ——

X | X a r X3
% y e c‘; X2
- -| 7 -1 L = =| % 8-44
5=l x i Q v X4 (8-44)
v w Xs
Y y M ﬂ Xs
| Z_|Meanot | Z_ Tmeot [ _JKeplerian L _|spherteal L ! pops
?21:‘;00. g or Epoch Elemenis Elemnents Variables

depending on the variable set used in the differential correction process. The upper left
6 X 6 submatrix of Pay, denoted Pa,, also corresponds to the variables used in the
differential correction process. :

GTDS transforms the estimated state, 5, and its covariance matrix, Pa,, to any of the
other variable sets shown above, The constant solve-for parameters and consider parame-
ters in X and Z of the original differential correction problem are not coordinate
dependent. Only the state (position and velocity) depends upon the coordinate system
utilized. Therefore, only the subset ¥ of 4 and submatrix Pa, of Paxneed to be consid-
ered in the coordinate transformation.
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If the sets to which § and Pa, are being transformed are denoted by § and P,,, the
nonlinear transformation can be written as '

'(to) = h[5(to)] (8-45)

Transformations of this type between Cartesian and spherical coordinates are presented in
Section 3.3.4 and between Cartesian and Keplerian elements are presented in Sec-

tion 3.3.8.

To transform the covariance matrix, Pa,, Equation (8-45) is linearized, yielding
Bs'(to) = Hito) Bs(to) - (8-462)

where the transformation matrix from the unprimed to the primed system is given by

Hit) = (%E.) (8-46b)
tatg

These partial detivatives between Cartesian and spherical coordinates and Cartesian and
Keplerian elements are presented in Sections 3.3.4 and 3.3.8, respectively. The covari-
ance matrix, Pa,, is defined as

Pad(to) = E([As(t0) - Bs(0) [Ls(to) - Bs(to)] (8-47)

A ——
where ﬁs and As correspond to the position and velocity components of Ax and Ax
defined previously. The covariance matrix of transformed variables, Pay, is defined as

Paclto) = E([A¢ () - A1) [Ad (t0) - B ()]™) (8-48)
Substituting Equation (8-46a) into Equation (8-48) yields
Py, (to) = Hito) Pas(to) H' (to) (8-49)

A second type of transformation is the propagation of the estimate, R, and the covariance
matrix, Pa,. The estimate, ﬁ(to). is propagated by integrating the equations of motion
from initial conditions, X(t), to other times of interest.
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The propagation of the covariance matrix is performed using the state transition matrix
from time to to the time of interest. In deriving the state transition matrix, model parame-
ters other than those estimated (solved for) can be considered as uncertain in the propa-
gation process. The a priori values of the uncertain state and model parameters (whether
solved for or considered) at epoch time tp are denoted by ﬁ(to) and their covariance
matrix by Pa,(ty). At any later time t, they are given by

&
§ = (8-50a)
Zo
and
Pax i Caxaz
Ppy #|-mmmdem o (8-50b)

Cha: | Pax

It is assumed that i and Pa, are composed of state components § and uncertain model
parameters U “ Perturbations about ft) are related to perturbations about the a priori
values as follows:

Au(t) = ¢(t, to) Aulto) (8-51)

where the transition matrix ¢ is given by

@(t, t0) | Ot t)

¢, tp) =|————4———- (8-52)
o | I
with
0 can
O, to) = (——-—amo)) (8-53a)
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and

as(t)
o, to) = (m) (8-53b)

By definition, the covariance matrix of {i at time t is
Pau(t) = E(AuE® - Zu(®)] [Au®) - ZEOID (8-54a)

Substituting Equation (8-51) into Equation (81-54a) yields

Pas(t) = ¢(t, to) Paulto) #7(t, to) (8-54b)

The covariance matrix of state (upper left 6 X 6 submatrix of Pay,) is obtained by
partitioning ¢ and P, into their § and @ subparts as follows:

Pas(t) = Ot to) Pas(to) ®T(t. to) + 6(t, to) Chuane ®T(L t0)
(8-55a)

+ @(t, to) Casaur 67(t, to) + 6(t, o) Pave 67(1, t0)

If no uncertain model parameters are included in the propagation, Equation (8-55a) re-
duces to

Pas(t) = ®(t, to) Pas(to) ®7(t, to) (8-55b)
From the same partitioning, the correlation between the state § and @' is given by
Casaue(t) = @(t, to) Casaue + 61, to) Pau (8-56)

8.2.4 COMPUTATIONAL PROCEDURE FOR THE DIFFERENTIAL
CORRECTION PROGRAM

This section describes conceptually how the estimation and covariance equations are
solved in GTDS. Figure 8-1 shows a computational flow schematic, which aids in the
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Figure 8-1. Computational Sequence for the Differential Correction Program
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discussion. The figure is divided into functional blocks, and the discussion is similarly
organized. Theé logic shown in Figure 8-1 is not the same as the specific source logic in
GTDS but is presented to characterize the concepts. The circled letters in the following
discussion refer to specific locations in the computational sequence illustrated in Fig-
ure 8-1.

8.2.4.1 A Priori Input

The process is initialized by specifying all necessary input data at @ This includes the
estimated and considered variables and their covariances, as well as measurement
timespans and times to which the best estimates of the state and covariances are to be
propagated. The state input is optionally expressed in any of several convenient coordi-
nate systems. It is transformed to the basic coordinate system used in GTDS (i.e., mean
equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true equator
and equinox of a given epoch) for subsequent processing. These transformations are
described in Chapter 3.

8.2.4.2 Measurement Data Management

The next step is the preparation of the measurement data for processing at . This
encompasses relocating the data within the specified measurement span from the original
input device (single or multiple tapes, disk, or keyboard) to a working file convenient for
subsequent retrieval during processing. During this relocation function, the data sequence
can optionally be edited considering the type of measurement, the source of the data, the
tracking station, and the timespan between adjacent points. The data on the working file
are chronologically numbered, and the number of the data point that bounds the initial
epoch time, t,, from below is recorded. The data management function also includes
determining whether the initial epoch time is less than the first data time, between the
first and last data time, or larger than the last data time. For the first case, the data are
processed sequentially from the first point at t; to the last point at ty. For the second
case, the processing starts backward in time from the initial epoch to the first data point.
It then switches back to the initial epoch and proceeds forward in time to the last data
point. In the third case, the data are processed backward in time from the last (chrono-

logical) data point to the first data point.

8.2.4.3 Outer Iteration Loop
The outer iteration loop begins at @ or © Normal GTDS operation starts at (C) with

initialization of the inner processing loop point counter, j, and subsequent integration of
the ephemeris from measurement point to measurement point within the inner loop (at
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@). An alternative scheme begins the outer loop at @ by calculating and storing the
ephemeris and state transition matrix over the entire differential correction timespan

(To to Tp.
8.2.4.4 Inner Processing Loop

The inner processing loop starts by retrieving the first data point to be processed from the
working file at @ Under normal operation, the nonlinear equations of motion (see
Chapter 5) and associated variational equations (see Chapter 4) are numerically inte-
grated (see Chapter 6) to the data time at @ Alternatively, if the ephemeris and state
transition matrix are generated and stored at @, their values are interpolated to the
measurement time at (F). The best estimate of the measurement and its related residual
Ay; are calculated (see Chapter 7). Editing is performed based on the magnitude of this
residual (see Section 8.6.2.1). If the measurement passes the editing test, the single row
g of the F matrix corresponding to the measurement is computed at @ To minimize
core storage, the matrix products FT W Ay and FT W F are accumulated as each row of
F is calculated, as described in Section 8.2.2. It is apparent from Equation (8-23) that
only these matrix products are required for determinating the estimate. All symmetric
matrices (e.g., FT WF) are stored in upper triangular form. On the last iteration, the
matrix products FT W F, ETWE, FT WE, and ET WF are accumulated for subsequent
use in computing the covariance and correlation matrices. At @ tests are performed to
determine if all m data points have been processed. If they have not, the measurement
point counter j is incremented or decremented, depending on whether the data are being
processed forward or backward in time. The procedure then returns to the beginning of
the processing loop to retrieve the next point to be processed.

8.2.4.5 Estimation Computation

When all m data points have been processed, the complete matrix products FT W and
FTWF arc available at @ as is the measurement residual vector Ay. On the last
iteration, FT WE, ETWF, and ETWE are also available. The best estimate of the
perturbations Ax;,; and variables %1 are then calculated via Equations (8-23) and (8-24)
at @ The iterated residual editing procedure (see Section 8.6.2.2) is then used to refine
this estimate.

8.2.4.6 Termination of Outer Iteration Loop

After determining an estimate at @, the iteration is complete and convergence tests arc
performed at ® The convergence criteria are described in Section 8.6.3. If the itera-
tions are converging, the iteration counter i is tested against the maximum number of
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iterations allowable. If the maximum has not been reached, the iteration counter is incre-
mented and processing proceeds through @ to begin the next iteration at @ At @ the
measurement residual vector can be used to edit the data as discussed in Section 8.6.2, as
well as to determine iteration statistics as discussed in Section 8.6.4. If the convergence
test at ® determines that divergence is occurring, processing can be terminated. If the
iteration has converged, or the maximum number of iterations has been reached, then the
covariance and correlation matrices at epoch to are calculated at @ Finally, the state
vector, the covariance matrix, and the correlation matrix can be transformed to other
space and time sets as described in Section 8.2.3.

8.3 ERROR ANALYSIS APPLICATION

The weighted least-squares estimation algorithm and the associated covariance and corre-
lation matrices, derived in Sections 8.2 and 8.2.1, are summarized below.

Eetimation Fauati

KXy = [FTWE + PR ]’ (F;Fw Ay, + Pzl A_xi) (8-57)
Covari ¢ Esti
Pax = ¥ [FT WEPa, ETWF + FT WE Ci, . P2,
(8-58)
+ Pal Caxas ETWF + FTWP + PRl ] ¢"
Correlation. of Esti { Consider Variabl
Caxaz = ¥ [Pg‘o Caxoaz = FTWEPAZO] (8-59)
where
p = [FTWE + PRL]" (8-60a)
Pax, = E{(%o - (% - D) (8-60b)
Py = E{R - DR - DT (8-60c)
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Pag, = (% - D% - DT (8-60d)
Caxotz = E{(%o - D@ - DT (8-60¢)
Caxtz = E(R - D@ - DD (8-60f)

and & is the converged X,

In Equations (8-57) through (8-59), only the estimator requires measurement data. The
equations for the covariance and correlation matrices require only the statistics W of the
measurements, which are usually known for specific classes of trackers and sensors.
Therefore, if it is assumed that the a priori reference trajectory, Xo, is the best estimate,
the estimation equation can be omitted and the covariance and correlation matrices can
be determined for specific mission sensors and measurement profiles. It must also be
assumed that the mathematical models in the program accurately characterize the physi-
cal situation. Since actual measurements are not required, these operations can be per-
formed during preflight studies to determine the following:

e The effect of measurement data errors (random and systematic), measurement
timespans, and sampling rates on the accuracy of the estimated state and

model parameters

e The effect of the trajectory dynamics and the trajectory/sensor relative geome-
try on the accuracy of the estimated state and model parameters

e The relative effects of different types of measurements on the accuracy of the
estimated state and model parameters

Such problems are referred to as error analysis problems, since they are solely concerned
with the influence that errors in problem variables have on the accuracy of the estimate. -
This type of analysis can strongly influence the design and enhancement of spacecraft
missions, as well as establish requirements for measurement sensor accuracies, sampling
rates, tracking times, and sensor locations. Currently this error analysis capability is only
available for ground tracking measurement data.

The method for evaluating Equations (8-58) and (8-59) in GTDS is nearly identical to that
for estimation applications. An a priori estimate of the solve-for and consider variables,
%, and Z, along with their covariance and correlation matrices, Paxy» Paz and Caxjaz
is specified. The measurement schedule and measurement uncertainty W is also specified
a priori. The program then proceeds to integrate the nonlinear differential equations of
motion and their corresponding variational equations to the measurement times and
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computes the measurement partial derivatives. The rows of the matrices F and E in Equa-
tions (8-58) and (8-59) are accumulated as the measurement statistics are processed.
Ultimately, the covariance and correlation matrices, Pay and Caxa,, are calculated at the
epoch time. The covariance and correlation matrices are then propagated to specified
times Ti, Ta, ..., T, by means of Equations (8-51), (8-52), (8-53), and (8-55). Analo-
gously to the transformations presented in Equations (8-45) through (8-49), the time-
transformed covariance matrix, Pa,(T), which is a submatrix of Pax(Ty), is itself
transformed to the § system. From the nonlinear transformation

F(T) = h[5(TY] (8-61)
a linearization yields
As'(Ty) = H(Ty) As(Ty (8-62)
where

The covariance matrix of Q'(T,) is thus formed by appropriate substitution as

Pag(T) = E((AS(T) - BT AS(T) - AS(T)]™ (864)
H(T) Pas(T) HY(T)

The correlation Casa (Ty) is transformed to Caya.(Ty) as follows:

Carad(T) = E{ #(T) - §(T)] [ - 2
= E([ AS(T) - BS'(TY} [%o - 21 a69)

= E[H(T) [As(T) - Bs(TY] [Z - AT
= H(T;) Casa:(T3)

Since the estimation equation is'not being solved, iteration is unnecessary.
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Differentiating Bquation (8-23) with respect to Z and ignoring both the iteration notation
and the 7 dependence on the matrix of measurement partial derivatives, the variation of
the least-squares estimator with respect to the consider parameters is

A
dAX -1 8-66
= - —(FTWF+P3‘,q) FTWE (8-66)

A
Within the bounds of linearity, the responsiveness of the components of Ax to perturba-
tions in the components of Z are given in the epoch sensitivity matrix

S = (a&* Az,) (8-67)

aZj

From Equations (8-51) through (8-53) for the state vector §, the perturbation about a
given value of s is

As(t) = @t to) As(to) + 6t to) AU (8-68)

Differentiating ﬁs(t) with respect to ', the variation of the state components with respect
to the consider dynamic parameters is obtained as follows:

3 As(®) aAs 860

Then the time propagation of the matrix of functional sensitivities is

A
S@) = (333;5‘) Auj') (8-70)

As in the transformation of the covariance matrix from Pa, t0 Pay, 2 simple chain rule
calculation yields the variation of the transformed state with respect to the consider vari-

ables
( aA"s'(t)) ] ( aﬁs’(t)) (85'&)) (8-71)
oz 98(t) oz
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To give more insight into the applicability of the sensitivity quantities, the i'® component
of the least-squares estimator As is written in nonlinear functional form as

A\si = &(® (8-72)

By expanding £(2) in a Taylor series about Z = Z, the following first-order approxima-
tion is obtained:

A5, = B = 5 + Z (222 2 79

If the errors in the Z parameters are uncorrelated in a Bayesian sense (as they are as-
sumed t0 }\:e in GTDS), and if the linearity assumption is valid, an estimate of the vari-
ance of As; due solely to the variability in Z is obtained. In particular, this variance

estimf.tc is given by invoking the variance operator on both sides of the above expression
for As; and noting that £(Zo) is a constant and that the Az values are uncorrelated.

Therefore,
aﬁs 2 :
oi..ﬁ(f) B Z ( 9z l) oizj &7
i

Assuming the linearization is valid, it is easily seen that Az; = 0p, in the sensitivity
analysis. Hence, the sum of squares of the sensitivities for a given state component over
a}\l consider parameters plus the excess of the (i, i) ele}\nent of the consider covariance of
As over ¢ (2) yields the total variation observed in As;. This excess quantity is the (i,i)
element oi"1 the normal matrix (measurement noise variance component) since the covari-
ance equations were derived under the assumption that T and Z are uncorrelated, thus
uncoupling their effects on variance estimation.

It would appear that since an estimate is not actually being determined, it should make
little difference whether mode] parameters are associated with the solve-for vector, X, or
the consider vector, Z. A subtle difference does exist, however, Components of the con-
sider vector, Z, are maintained at their a priori specified values throughout the processing
and therefore have no possibility for modification through estimation. As a result, their
covariances never differ from those initially specified, i.e., Pa,, in Equation (8-58). The
solve-for variables, X, have their values continually modified through the estimation
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process, which is reflected through the changes in the variance elements in Pax. Because
of the coupling, the uncertainty of the state components is affected differently if the same
model parameter is associated with X rather than with Z.

8.4 SEQUENTIAL ESTIMATION (Not Currently Available in GTDS)

In the approach taken to the basic orbit estimation problem in the preceding sections of
this chapter, the measurements are processed by classical least-squares methods, i.e., by
processing the data in batches. The solution to the problem is the state vector (the system
parameters or unknown constants) which is estimated from a set of measured data. Since
the problem is nonlinear, the solution is linearized about the a priori state estimate and
then iterated to minimize the loss function. This approach requires considerable computa-
tion time and cannot be applied to realtime situations.

An alternative approach is to perform the data reduction and parameter estimation in a
sequential or recursive manner. The process is begun by making an initial estimate of the
state vector from a minimum data set or from a judicious guess. Each new data point is
combined with the previous parameter estimate by appropriately weighting the data point
to give an improved estimate of the state. This process is repeated as each new data point
is reduced. Hence, the procedure can be interrupted at any time and the best estimates of
the system parameters and their uncertainties based on all accumulated data to that time
are known. Other advantages of sequential weighted least-squares estimators are that at
each step the calculations are fixed in size and format and that the need for storing
previous data points is eliminated. Under certain assumptions, the sequential weighted
least-squares estimator is identical to the Kalman minimum variance estimator. Addi-
tional discussion of sequential weighted least-squares and minimum variance estimation
can be found in Reference 2.

The derivation of the Extended Kalman Filter from recursive weighted least-squares esti-
mation is discussed in Section 8.4.1. Because of the sensitivity of Kalman filters to dy-
namic model errors associated with orbit generation, filters have been designed to
adaptively estimate the true value of the unmodeled acceleration along with the state. This
approach, dynamic model compensation, is discussed in Section 8.4.2. In Section 8.4.3,
statistical adaptive filtering, which climinates the need to specify a priori noise statistics,
is discussed. :

8.4.1 DERIVATION AND APPLICATIONS OF THE EXTENDED KALMAN
FILTER

In reconsidering the weighted least-squares problem described in Section 8.1, an
m-component measurement vector ¥ is assumed. The nonlinear regression equation

8-25



(Equation (8-1)) is linearized about a reference state, X, as shown in Equation (8-7).
The best estimate, &, in the classical weighted least-squares sense, is given by Equa-
tions (8-10) and (8-11) as

8o = %o + A¥em (8-75a)
where
Ax. = FTWR 'K WAy (8-75b)

The subscript m indicates that the solution is based on an m-component measurement
vector, and the quantities F, W, and Ay are defined by Equations (8-6), (8-12), and
(8-8), respectively. If one more measurement is included, the correction has exactly the

same form, i.e.,
Axpey = ETW F)1FTW Ay (8-76)

where F, W', and Ay’ are related to F, W, and Ay as follows:

F
Fej--- (8-77a)
| Fu
"W Lo
W = —-—T-—-— (8-77b)
| 0 | Wme
Ay
B? | e-——- (8'770)
AYIIH-I

and Fpy1, Waoe1, and Ayg. correspond to the (m+ 1)* measurement. In other words, the
original matrices and vectors are augmented to include the next measurement.
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Substituting Equations (8-77) into Equation (8-76) gives

\ wl o F -1 W : 0 Ay
fma = | F7) Fhal [-=F==| F——| | P FRal{=-p—— ===
0 | Wamn Fmn 0 | Wi |[|AYma

The quantity in parentheses in Equation (8-78) is the invAerse of the covariance matrix of
error, Pax,,,, for the weighted least-squares estimate, AXpey, 184,

Paxpa = (FTWF + Fry Wma Frs1)™! (8-79a)

However, FT WF is the inverse of the covariance matrix, Pa., which is based on
m measurements. Therefore,

PAxm.l = (P-A}Lm + FEH Wm+1 Fm-l-l)-l (8'79b)

Bquations (8-78) and (8-79a) are expressions for the state correction estimate and the
covariance of the error in the estimate obtained by processing (m+1) measurements.
These expressions can be written more conveniently in the following recursive form:

AAxm-i—l = A’\xm + Ax (8-80&)
PAxma = Pﬂxm + AP (8-80b)

where Ax and AP represent the changes in :fxm and Pa,_ caused by the (m+ 1)* meas-
urement. This form allows the state vector and covariance matrix to be determined as

each measurement is sequentially processed.

As shown in Appendix E, Equation (8-80b) can be written as
Paxps = Paxg = Paxg, Fin [Wzh1 + Fane1 Pax, FEHTI Fr+1 Pax, (8-81a)
or

Paxgy = Paxy = KFme Paxy, = (I - K Fpe1) Pax, (8-81b)
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where

K = PAxm FE:H [qu-] + Fra PAxm FEH]']

(8-82)

Substituting Pay,,, from Equation (8-81b) into the first term on the right-hand side of

Equation (8-78) yields

A

Axpy = (I - K Fr1) Paxy [PTWH + PI:H Wme1 AYmr]
Substituting Equations (8-75b) and (8-81b) into Equation (8-83a) yields

A A
Axyyy = I -K Fui1) AXp + Paxpy F;ﬂ Wme1 A¥me1

In Appendix E it is shown that
K = Py, Foe1 W

Therefore, Equation (8-83b) can be written as

A A A
AXpey = AXp + K [AYmﬂ = Py Axm]

Summarizing the above results,
Rov = %o + AAXmu
Axp,y = Axn + K [AYII:I;I - Frt A
Paxy, = Paxy = K P Pax, = (I = KFumu) Paxy,

K = Pax, Fgﬂ [w;}ﬂ + Fue1 Paxg FEH]-l
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where

of,
F - m'l'l)
m+l ( X ez

and

Ay = linearized {m+1)* measurement (see Equation (8-8))
wZl, = variance of the (m+1)" measurement, e.g., 0241

The preceding recursive form of the weighted least-squares estimate yields the update
equations for the Extended Kalman Filter. The weighted least-squares estimate is a mini-
mum variance estimate because the measurements are weighted with W = 1/0*. This is
the condition necessary for Equation (8-79a) to be the covariance matrix of error. The
matrix K is defined as the Kalman gain. For additional discussion of Kalman filter theory,

see References 6, 7, and 8.

Assuming that FL,;, in Equation (8-84) is a matrix whose elements are all unity, then
cach clement of the gain matrix, K, is a ratio between the statistical measure of uncer-
tainty in the state estimate, Pay,,, and the uncertainty in the measurement, Rt

From the fundamental definition of the covariance matrix given in Equation (8-32), a
more convenient form for Pa,,, can be derived using Equation (8-86b), as follows:
Pargn = E{AXper AXpr}
- E([(1 - KFnup) Axg + K AYan] [({ - KFno)) Ak + K 8yal"}
= &([0 - KFno) A%p + KAyma] Axg @ - KFan)? 87
+ [( = K Fup)) Axp + KAYma] AyRa KT}
= (@ - K Ppyy) E{A%n AXg} (@ = KFu))T
+ K E{Aymn Axg) 0 - KFno)?

+ ( - KPpy) E(Axm AR} KT + K E{AYmes Ayur) KT
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Assuming uncorrelated measurement errors, then

E{Aymn AXL) = E{Axp AyEas) = 0 (8-88)
By definition
£{8x, AxL} = Pay, (8-89)
and
E{AYm+1 A¥me1} = Wan1 (8-89b)

Substituting Equations (8-88) and (8-89) into Equation (8-87) yields
PA"mﬂ = (I - Kan) PAxm (I - KFm-l-l)T + KW;}H KT (8-90)

Equation (8-90) is preferred over Equation (8-86c) because, to first order, it is insensitive
to errors in the filter gain, and it is better conditioned for numerical computations, since it
is the sum of two symmetric nonnegative definite matrices.

Up to this point, the effect of adding one more measurement to a set of m measurements
has been considered. These results will next be generalized to indicate sequential esti-
mates without dependence on the size of the measurement vector, that is, j will represent
the measurement counter, replacing m in the subscripts.

The prediction formulas for the Extended Kalman Filter follow from the discussion in
Section 8.2.3 concerning the timewise propagation of state perturbations (Equa-
tions (8-51) through (8-53)). Including the state noise, @, with zero mean and covariance,
Q, the prediction equation can be written as

Axlte |t) = Bl |8 AxW 1) + D (8-91)

where A\x(tm | ) denotes the best estimate of the correction at time 4 based on proc-
essing data through time t;, and ®(t: | t) is the state transition matrix. For prediction
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purposes, the state noise, @, in Equation (8-91) is set equal to zero. The predicted
covariance matrix at time t;,; is obtained from Equation (8-91) as follows:

Pax(tor |4 = E{ Ax(ta |8 AX (i | B)

= E(® Axy|t) + Tl [@ Ax(y 1Y) + Byl (8-92a)

- 8@ Ax( 1) + Tl AT 11 T + [© Ax(y|t) + Bl Bha)
- @ &04x( |t AX (|9} OT + E@n Ax" @ | 1)} O7

+ O & Kx(q | &) E}Eﬂ' + E{@jn z")-j?.u}

Assuming that the noise, @, and the state.Ahx, are uncorrelated, Equation (8-92a)
becomes

Pater | 4) = @ Paxlt | 1) &7 + Q1 (8-92b)

where Qj,; is the covariance of the state noise, i.c.,
Q1 = &{@jp1 Tja (8-93)

To use this formulation of the Extended Kalman Filter, a reference trajectory must be
generated. This is done by numerically integrating a nonlinear second-order differential
equation (see Equation (5-2)) of the form

Zolt) = B(X, 1) . (8-94)

where § is a known function of the state variables, X is an n-dimensional state vector,
X(to) = Xo, and t = to. |

The predicted measurement residual error, r(t j ), is

ot 1Y) = Y - B Rl (8-95)
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where % (ty1 | ) is obtained from the integration of Equation (8-94) with the initial state
for the integration obtained from the previous state updated by Equation (8-91), and the
predicted measurement residual uncertainty, Y(tj | ), is given by

Y(tyer [ t)) = E{r(he | t) rT(ter 1)} = B Pax(tye1 | ) F;E'-l + Wi (8-96)

A comparison of these residuals with their theoretical statistical properties provides a
means of judging the performance of the filter (see Section 8.6.4).

Equations (8-91) and (8-92b) are used to predict the state correction and covariance ma-
trices at a future time t;,;, based on the best estimate at the last measurement at time ;.
The next measurement, Yy, is then used to update the state correction and covariance
matrices (Equation (8-85)). These steps are repeated until all the measurements have
been processed. The advantage of this recursive estimator is that the estimate of the state
and covariance based on processing m + 1 measurements uses the information contained
in the (m+1)" measurement plus the state and covariance based on m measurements.
The entire process of accumulating sums and inverting matrices does not have to be
repeated when a new measurement is processed. The error covariance of the filter is
inversely proportional to the measurement noise from Equation (8-79b). Large measure-
ment noise implies that wp, is small, and hence Pp,; decreases by only a small amount.
Small measurement noise implies a large Wmq1, and consequently a relatively large de-

crease in Pmqi.

The recursive equations can be applied from the first point on. In that case, the reference
trajectory is chosen as £(tp) = %y, the a priori state; hence, Anx(to | to) = 0. There are
two ways in which the Extended Kalman Filter can be used, with an updated reference
trajectory or with a nonypdated reference trajectory. In the nonupdated reference ap-
proach, the corrections Ax are accumulated, and the a priori reference state, X, is cor-
rected only once, at the final time after all data are processed.

The updated state vector at the final time, based on processing all the data, is then
smoothed back to the initial time to obtain the best estimate of the state at all intervening
times. The covariance matrix can also be propagated backward in time via Equa-
tion (8-92b) to obtain the timewise variation of the uncertainty of the state based on

processing all data.
If the batch of measurements is sufficiently large, a new initial reference state can be
determined from the following equation: '

T(t) = X(to) + Ax(lo |t (897)
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where

ﬁ\x(to | ) = new best estimate of the state at to based on processing all
measurements

tr = time of the final measurement

This reference state will be closer to the true initial state than will %(tp). Using the new
state, the data are reprocessed, i.e., the solution is linearized about X'(to), and the filter-
ing process is repeated over the same batch of measurements. This process is repetitively
applied until there is no change in the initial reference state. At that time, convergence t0
the best estimate of the state has been achieved, i.c., a solution has been found that is as
close to the true solution as the neglected nonlinear effects will allow. These global itera-
tions involve the same procedure as that which is followed in the batch processor (iterated
weighted least squares). This mode is used when the signal-to-noise ratio is small, and a
good initial estimate of the state is available.

Another approach (used primarily when the signal-to-noise ratio is large or when a good
estimate of the state is unavailable) is to update the reference trajectory after processing
each subset of the data vector ¥. This allows large errors in the a priori state, Xp, to be
corrected early in the process, thereby assuring that the processing of later data satisfies
linearity. This, in turn, impr?\ves the outer loop (global iteration) convergence. Lineariza-
tion about & (to) results in Ax(to | to) = 0. Hence, using Equation (8-91) and relineariz-
ing about each point yields

Axtly) =0 [y s t S ty(orallj) (8-98a)
Since, due to the relinearization,
Ax(or 1) = R ltw) = R lt) (8-98b)

substitution of Equations (8-8), (8-98), and (8-99) into Equation (8-86b) gives

Rt | 4e) = R | 1) + Kte) 5 - (R |, yal} (99

The preceding result is used for updating the state vector. The updated reference mode is
ideally suited to realtime applications.

The Extended Kalman Filter for continuous-discrete systems as described above is the
result of the application of the linear Kalman filter to a linearized nonlinear system, which
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is relinearized after each measurement. The procedure for the updated reference mode is
summarized below.

1.
2.

Store the reference state, % (t; | ;) and the covarjance matrix, Pax(t; | t;).

Compute the predicted state at time Y., by numerically integrating Equa-
tion (8-94), i.c., obtain & (b, | 1) given X(y|1)-

Calculate the state transition matrix from time t; to time t;y, either analyti-
cally or numerically, as discussed in Section 4.10.2,

ax(ty41)

Blth 4 R419) = [ S (6:1000)

] g(y=Riylt)

Compute the predicted error covariance matrix at time t,, via Equa-
tion (8-92b)

Pax(er | ) = (e, 1) Paxll | ) @T(%, 1) + Qg (8-100b)
Compute the measurement via Equation (8-1), assuming no noise,

Yt = TR W | 1), Yol (8-100¢)

Compute the partial derivative of the measurement via Equation (8-6)

3
Fi,, = -1) | (8-1000)
i (ax =X (a1t

Test whether this is an acceptable measurement, i.e., determine whether the
absolute value of the residual (observed-minus-computed value) is less than the
root-mean-square (RMS) multiplier times the square root of the predicted
measurement residual uncertainty Y(t.: | t)) in Equation (8-96). If it is not,
reject the measurement, increment j, and return to step 1.

Calculate the filter gain matrix via Equation (8-86d)

K(tjﬂ) = PAx(tjﬂ | Ti) Fﬁ: [Fjﬂ Pax(t+1 ltj) F};rl + ""',l_-n-ll]‘-1 (8-100e)
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10.

11,
12.

13

14.
15.

Process the measurement y(t,;) to obtain the updated state via Equa-
tion (8-99) |

Rt | t1) = R 1) + Kltw) 3(he) - NG |y, el (8-200D)
Compute the updated error covariance matrix at time tj,; via Equation (8-90)

PAx(tjﬂ |tj+1) - [I = K(tjn) Fjﬂ] PAx(tj-rl |tj) [I - K(tjﬂ) Fjﬂ:rr
+ K(tyer) Wi KT(e1)

(8-100g)

Increment j and return to step 1 to repeat the cycle for the next measurement.

Continue the cycle between step 1 and step 12 until a specified set of measure-
ment data is processed.

Integrate back to epoch and output the results utilizing the data to time t;, e.g.,
R (to | t) and Pax(to | tr), where t; represents the time of the final data point in
the set of measurements processed.

Continue the cycle between step 1 and step 14 until all the data are processed.

Make a final pass through the measurement data to compﬁte the residual statis-
tics and print the final reports.

One of the main difficulties associated with the filtering approach to orbit determination
is filter divergence, i.c., the estimated (filtered) state diverges from the actual state. It can
occur when estimates of the state become more accurate and, hence, the covariance be-
comes smaller. As a result, the Kalman gain decreases and new measurements exert less
influence on the solution. The measurements, which are a realization of the true state,
have a smaller effect than the “learned” dynamical model. Therefore, successive esti-
mates of the state tend to follow the erroneous “learned” dynamical model and to diverge
from the true state, which is reflected in the measurements. Consequently, the estimated
covariance fails to represent the true estimation error. '

Divergence can arise from the following sources:

Linearization errors (e.g., measurement linearization)
Computational errors (e.g., Pa, loses its positive semidefiniteness)

Modeling errors
Unknown noise statistics
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Generally, the first source can be minimized by iterating the solution (updated reference
trajectory). Computational errors can be minimized by square-root filtering algorithms
(Reference 9) and program coding techniques (Reference 10). Modeling errors can be
handled in either a nonadaptive or an adaptive manner. The nonadaptive methods modify
the filter structure'to maintain the Kalman gain at some suitable level for sustained filter
operation, The Modified Extended Kalman Filter (MEKF) by Torroglosa (Reference 11)
is a filter of this type. The adaptive techniques can be divided into structural and statisti-
cal methods. The structural or dynamic model compensation methods are designed to
adaptively estimate the true value of the unmodeled acceleration along with the state.
Tapley and his associates (References 12, 13, and 14) have followed this approach, which
will be discussed in Section 8.4.2. The statistical methods are designed to correct the
basic filter to accommodate the combined effects of all error sources, e.g., the neglected
nonlinearities, unknown noise statistics, and computational error effects, in addition to the
model errors. The Jazwinski Filter (Reference 15) is a filter of this type. Statistical adap-
tive filtering is discussed in Section 8.4.3.

8.4.2 DYNAMIC MODEL COMPENSATION FILTERING

The dynamic model compensation (DMC) techniques are designed to adaptively estimate
the true value of the unmodeled acceleration along with the state. A sequential estimation
method has been developed (References 12, 13, and 14) that compensates for the un-
modeled effects in the differential equations that define the dynamical process. The ad-
vantages of this method are as follows:

e It can be used to obtain an improved estimate of the state vector in realtime
applications.

e It yields information that can be used in postflight analysis to improve the basic
dynamical model.

The unmodeled accelerations are assumed to be a first-order Gauss-Markov process, i.e.,
they consist of the superposition of a time-correlated component and a purely random
component. The discussion of the mathematical model for this type of filter follows that
given in Reference 12. There the technique is applied to estimate the state of a lunar
orbiting spacecraft acted upon by unmodeled forces due to venting, water dumps, or
translational forces due to unbalanced attitude control reactions.

The equations of motion of the nonlinear dynamical system are given by

F=v (8-101a)

T = Bu(f, 0, 1) + Bt (8-101b)
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where T and V are the position and velocity components, &y is the three-component
acceleration vector used in the filter-world or nominal dynamical model, and &, is the
three-component vector of all unknown and/or unmodeled accelerations.

The unmodeled acceleration, &(t), is represented as a first-order Gauss-Markov process,
Z(t), which satisfies the differential equation

&) = A®) &) + B(Y) Ut (8-102)

where A(t) and B(t) are coefficient matrices, Z(t) is a three-component vector, and Tis a
three-component vector of Gaussian noise whose components satisfy the a priori statistics

E{m®)} = 0 (8-103a)

(T 1T(X)} = 16(t - 1) (8-103b)

The matrix I is a 3 x 3 identity matrix and d(t - 7) is the Dirac delta function. The
quantity A(t) is a 3 x 3 diagonal matrix of the time correlation coefficients

-1/Ty 0 0
A= 0 -1yT, 0 (8-104)
0 0 -1/Ts

where T;, Tz, and T; are the correlation times, which are unknown parameters to be -
estimated by including the vector T

TT = [Ty Tz Ty (8-105)

in the set of parameters to be estimated.

The quantity B(t) isa 3 x 3 diagonal matrix

by 0 O
B) =| 0 b 0 (8-106)
0 0 b

where the b; are treated as specified constants.

8-37



When Bquations (8-101) and (8-102) are combined with T = 0, the dynamical system is
described by the following set of first-order differential equations:

Fay (8-107a)
Vv = an(f, ¥, t) + &) (8-107b)
£ =Af+BOM (8-107c)
T =0 (8-107d)

If the state vector X is augmented as

T = [fT] 9T} &1 TT (8-108)

the dynamical system in Equation (8-107) can be written as

% = B(X, T, t) (8-109a)

X(to) = %o (8-109b)
where

5T = [V (@ + ©T) (AT + BD)T 0] (8-109¢)

and the initial conditions X, are unknown.

For t > t, where t; is a reference epoch, the solutions to Equation (8-107) in integral
form are

t
ft) = F(t) + V() At + J aF v, g 1)t - 7] de (8-110a)
Yy
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where

and

t

() = v(t) + I af, v, € t)dr

Y
&t = E@) &) + &Y

Q) = Ty

At =t -y

alr, v, t) = &u(f, V, 1) + €OV

The matrices E(t) and Z(t;) are defined as

where

and

a4 0
Et) =| 0 as
0 0

0
0
as

'ty = [01(1 - a)ruy | o1 - a?)/?u; | os(1 - a3)/? us]

ax = expl-(t - 4)/Ti]

o = be(2/To)'?
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Equation (8-110) can also be written as
Xt t) =CXE), 4t + @ (21 (8-113a)
where
@7 = [of | of| 0fi 0] (8-113b)

is the state noise matrix which is due to the purely random components of the unmodeled
accelerations

- ¢ _
[tt- e
Yy
t
o = J () dr (8-114)
t
)
L 0 _
The statistics of @ are
E@ =0 (8-115a)
QO Qv Qe O
El@ &TT] = Q 511 = g: | 8: 8:: g du (8-115b)
0 0 0 0
where 9, is the Kronecker delta function and
Q, - 3@y (8-1162)

4
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Qn = Q = @Y (8-116b)

2
Qe = Qg = i%lﬁ (8-116c)
Qn = S (At)? (8-116d)
Que = Qo = SjAt (8-116¢)
Qe = S (8-116f)
and
of(1 - ad) 0 0
Sy = 0 o¥(1 - a} 0 (8-117)
0 0 031 - af)

The measurement equation for the j®measurement is

% = fIX(t), 4] + 0 (8-118a)

where f is the measurement noise that satisfies the following conditions:

€M =0 (8-118b)

E[EAT] = R & (8-118c)

and R is the covariance matrix of the measurement noise.
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The procedure then follows that of the Extended Kalman Filter described in Section 8.4.1,
with the following modifications: '

1. The state is predicted via Equation (8-113) with & = 0.

2. Equation (8-115) is used for Qj; in the predicted covariance matrix of error.
3. In the filter gain matrix K, the matrix R from Equation (8-118c) replaces w’.
4

The updated covariance matrix is computed via Equation (8-86¢c) rather than
Equation (8-90).

The algorithm requires a priori values for the augmented state, Xy, along with the a priori
covariance matrices, Pay, Q, and R;.

When applied to the Apollo 10 and 11 missions, the DMC method gave the following
results:

1. Its accuracy was limited by the measurement noise rather than by the model
inaccuracies.

2. The unmodeled accelerations were primarily due to neglected effects in the
lunar potential, and the magnitude of the unmodeled accelerations was domi-
nated by the radial component.

3. The estimated values of unmodeled accelerations were repeatable from orbit to
orbit and from mission to mission.

4. The magnitude of the radial component of the unmodeled acceleration was
highly correlated with the focation of lunar surface mascons.

The obvious drawback of the preceding filtering theories is that the noise statistics must
be supplied a priori. A remedy for this difficulty is discussed in the following section.

8.4.3 STATISTICAL ADAPTIVE FILTERING

Statistical adaptive filtering techniques are designed to correct the basic filter to account
for the combined effects of all error sources, e.g., neglected nonlinearities, unknown
noise statistics, computational errors, and model errors. One of the difficulties with filter-
ing is the determination of the proper value of Q, the state noise covariance. Additional
problems arise in determining the statistics associated with the measurement noise. Ef-
fects such as atmospheric refraction variation and random disturbances in the rader in-
strumentation are unpredictable. The assumptions that have been made are that 1, the
measurement noise (Equation (8-1)), and @, the state noise (Equation (8-91)), have zero
mean. However, due to model errors and nonlinearities, this is rarely true. The goal of
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statistical adaptive filtering is to determine the actual mean and covariance of both the
state and measurement noise so that better estimates of the state can be obtained.

Numerous investigators have developed adaptive sequential estimation techniques based
on the recursive Kalman filter equations (References 15 and 16). The J-adaptive filter is
discussed as an example of statistical adaptive filters. Jazwinski developed a sequential
adaptive estimator having the capability to track system state and model errors in the
presence of large and unpredictable system or environmental variations. The approach is
to add a low frequency random forcing function, representing the model errors, to the
differential equation representing the system model. The filter then estimates this function
as well as the state. The model chosen for this random forcing function is a polynomial
with time-varying coefficients. This particular approach is especially useful in parameter
identification problems.

It is assumed that the estimator system model is

X = B(X 1) + B0 - (8119)

where §; includes the accelerations that are well known, 2 includes possible unknown
accelerations and model errors in Ey, and O(t) is a random forcing function.

If U(t) is a linear polynomial in time, the discrete form of the system model over the time
interval [t Ys1] is

X(t1) = GIK@), TO] (8-120a)

o) = o) + T [t - 4l (8-120b)

where uis modeled as a random constant to be estimated.

The measurement model is the same as in previous sections, i.e.,
yit) = %), o) + @ (8-121a)

where fTis measurement noise with

g@Ent} = R | (8-121b)
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Hence, the complete dynamical system model is

(1|9 = CIRG 1Y), B ly] + (8-1220)
Otper [ = Uy |t + Tl )7 (8-122b)
Ty ly = T4 1Y (8-1220)
where
T=b1-Y (8-1224)

To describe the system, the covariance and correlation matrices are defined as foll.ows:

E{Ax() AX"®)} = Py|Y) (8-1232)
E{ Ax(t) AuT()} = Cult|1) (8-123b)
E(Ax(t) Au ()} = Cialy |t) (8-123c)
E( Aut) AuT(R)} = Umlt|t) (8-123d)
e fu) Au'®) = Uiy (8-123¢)
g fu@) M) = Uyl |y (8-1230)
where
Ax() = X(t) - X(1) (8-1243)
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Au@) = wy - B@) (8-124b)

Au) = o) - T (8-124c)
Let
Kt | ) = ¢ XM + YY) + ya TW) (8-125)
where
Pltr | &) = %"-;l (8-126a)
Yt | ) = 2:(7;’:]-;-2- (8-126b)
Yaltyer | ) = X)) (8-126c)

au(t)

The Jazwinski Filter is derived by augmenting the state X with the vectors T and @ and
using the Extended Kalman Filter in augmented form.

Equations (8-122b), (8-122c), and (8-125) can be combined to yield an augmented transi-

tion matrix
¢ ¥ Y
p=(0 1 7 (8-127)
0 0 I
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The augmented form of the error covariance matrix is

P Cun G
Pyl = Gk Um U (8-128)
Cx U Us

The augmented state, gain, and measurement matrices are

- -

X=|0 (8‘129&)
—u-—-
K]

K=|K (8-129b)
| K

F=[Fl0!0] (8-129¢)

Substituting Equations (8-127) and (8-128) into Equation (8-92b) and ignoring the state
noise yields

v vl [P Cx Cux|[¢" 0 o

Phpilt) =10 1 7| |Ck Uwm Us||y™ 1 o (130

0 0 I||CL Uu Uuj [T 7 1
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Expanding the right-hand side, the upper triangular elements of P(t,y | t) are

Pltr [t) = $P T + P CL o™ + ¥aCL 4™ + #Cu¥™ + Y Uny”
+ Pa UL YT + ¢ Co T + wUm ¥ + va Ui %

(8-131a)

Caxtip1 |%) = @ Cux + YU + Y2 Uy + 7 (@ Cix + ¥ U + ¥o Us)  (8-131b)

Cix (1 | ) = @ Cix + ¥ Uii + ¥aUins (8-131c)
Uua(tp1 | ) = U + TU% + 7 (U + 7 Ui) (8-131d)
Usiltyer | ) = Usa + 71U (8-131¢)
Ut | %) = Ui (8-131f)

where all the terms on the right-hand sides of Equations (8-131a) through (8-131f) are
evaluated at (| t).

Substituting Equations (8-128) and (8-129) into Equation (8-86d) yields

par —

K. ] [P Cux Ca|[%r

KuBCExU““Uu' 0

=l L - - - (8-132)

x < wiy + [F 0 0] Ck
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Carrying out the indicated matrix multiplications,
k.| [PF (FPF" + wi) ]

K, | = | CLFT FPFT + wi))™? (8139

K, CLET(FPFT + wii)?

Substituting Equations (8-128) and (8-129) into Equation (8-86c) yields

Pty | twa) = |1 - | Ka| [F1010] Ck Uw Uam

| Ko | & Vs Ui

_ o _ (8-134)

I-KF 0 0 P Cux G

=| -KF I 0f | Gk Un Uux

| -KF 0 If | CL Us Ui

Hence, the upper triangular elements of P(t, | 4+1) are

Pty | ) = @ - KxF)Phn | 1) | (8-135a)
Cuxltirr | 1) = (0 - K F) Cuxltien | ) (8-135b)
Cix(ti | 1) = 0 = KxF) Cictia | 1)) .. (8;-1350)
Uualtios | 1) = Unities 1) - KuF Caxltins [ 1) (8-135d)

8-48



U841 ftjer) = Usi(tyer ) - Ku F_Cﬁx(tji-l | t) (8-135¢)
Usa(tier | ) = Usia(ter | ) - Ki F Cix(tiaa | 1)) (8-1351)

Substituting Equation (8-129) into Equation (8-100) gives the update equation for the
augmented state

p— — p— p— -

X X Ky
T -| o o K, | G - ARG 1Y), g} (8-136)
T {ta | ta1) LT (1 | Yer) Sas

or
Tltpes | 1) = Kltpor | 1) + Ke (Ft1) = ARCGp1 1), ]} (8-137a)
Tlter | o)) = Tltper (1) + Ko Fte0) = TR Ger [1), ]} (8-137b)

s [ 4o) = O |8) + Kg Tl - ARG 10), g B1370)

Equations (8-125) and (8-130) are the prediction equations for the Jazwinski Filter, and
Equations (8-133), (8-134), and (8-137) are the update equations. The inclusion of Equa-
tion (8-135f) is a modification by Torroglosa which keeps the covariance matrix of the
state from becoming nonpositive definite. In the original Jazwinski Filter, the uncertainty
in U was maintained constant and, hence, Uz(tis1]t) = Ui. The initial conditions
201 0) Pax(® | 0) Uu(0 | 0), and Ug(0 | 0) must be specified. The correlation terms
Cux(0 | 0), Ci(0 ] 0), Uwi(0 | 0), and the initial values of &(0]0) and & (0] 0) are set
equal to zero externally. '

8.4.4 COMPUTATIONAL PROCEDURE FOR THE FILTER PROGRAM

The computational sequence for the Filter Program is similar to that for the Differential
Correction Program (see Section 8.2.4). The computational flow schematic is shown in
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Figure 8-2. Both the figure and the accompanying discussion are divided into functional
blocks. The computational sequence is described below. The circled letters in this discus-
sion refer to specific locations in Figure 8-2.

8.4.4.1 A Priori Input

All necessary input data are specified at @ This includes the estimated variables and
their covariances, the measurement timespans, and the number of measurements per set.
The state input can be expressed optionally in any of several convenient coordinate sys-
tems as in the Differential Correction Program. For subsequent processing, the state is
transformed into the mean equator and equinox of B1950.0 or J2000.0 system or into the
true equator and equinox of a given epoch system. The transformations are given in
Chapter 3.

8.4.4.2 Data Management

The measurement data are prepared for processing at and © This encompasses
relocating the data for the specified measurement span from the original input device
(single or multiple tapes, disk, or keyboard) to a working file convenient for subsequent
retrieval during processing. During this relocation function, the data sequence can option-
ally be edited considering the type of measurement, the source of the data, the tracking
station, and the timespan between adjacent points. The data on the working file are
chronologically numbered, and the number of the data point that bounds the initial epoch
time, to, from below is recorded. The data management function also includes determin-
ing whether the initial epoch time is less than the first data time, between the first and last
data time, or larger than the last data time. For the first case, the data are processed
sequentially from the first point at t; to the last point at tr. For the second case, the
processing starts backward in time from the initial epoch to the first data point, and it
then switches back to the initial epoch and proceeds forward in time to the last data point.
In the third case, the data are processed backwards in time from the last (chronological)
data point to the first.

8.4.4.3 Processing Loop

The processing loop begins by retrieving the first data point to be processed from the
working file at @ A test is made to determine the optimal integrator to be used consid-
ering the timespan between measurements at t and t.,. A predicted covariance for the
measurement is calculated. The measurement, its residual, and the partial derivatives of
the measurements with respect to parameters being estimated are computed at ®, deter-
mining whether to accept or reject the measurement at ® If the measurement is
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Figure 8-2. Computational Sequence for the Extended Kalman Filter
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accepted, the Kalman gain is calculated; the state, state covariance matrix, and correla-
tion matrices are updated; and the processed measurement is output at @

8.4.4.4 Data Set Loop

If it has been determined at @ that the last measurement of a set has been processed,
the updated state at the last measurement time and its covariance matrix are printed. The
updated state is then integrated backwards to the a priori epoch time and intermediate
output reports are printed. (See @.) After it has been determined at @ that all the
measurements have been processed, a last pass is made through the measurement data to
compute the residual statistics and print the final reports at @

8.5 COVARIANCE MATRIX INTERPRETATION

In the previous sections, equations have been presented for calculating the mean, %, and
the covariance matrix, Pa,, of the errors in the estimated state and model parameters.
There is little difficulty in recognizing the value of the mean (or estimated) value, but
interpretation of the covariance and correlation matrices in terms of the uncertainty of the
variables is not as clear. Yet, the covariance matrix yields a great deal of information on
the statistical character of the variables. Some of these characteristics are described in the

following subsections.
8.5.1 AUGMENTED VECTOR AND COVARIANCE

The estimation process yields the mean, 4, and covariance of errors, Pay, of the solve-for
variables and the matrix Caya. relating errors in the solve-for and consider variables. The
mean, Z,, and covariance, Pa,,, of the consider variables are known a priori. As an aid in
understanding the role of each of the matrices, the augmented (or expanded) state vector,
T, is defined as (| Z)T. The best estimate (or expected value) of u is (X ! Z)T. The
covariance matrix of errors of {T is Pa,, which can be partitioned into the following
components:
Pax E Caxaz
Pay = | m=--d=m-= (8-138)

Cazax | Paz

where Py, is a positive definite symmetric matrix. Therefore,

Came = CLa (8-139)
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The submatrix P, remains constant throughout the processing, since the consider vari-
able uncertainty cannot be improved through estimation.

The following subsections present a geometric heuristic interpretation of the covariance
matrices Pau, Pax, and/or Py, in terms of hyperdimensional volumes of constant prob-
ability in the (p + ¢)-, p-, and/or g-dimensional Euclidean space of the vector compo-
nents.

8.5.2 HYPERELLIPSE PROBABILITIES

In the following discussion, the random vector X with uncertainty Pa, is considered. The
discussion is equally applicable to the random variables U and Z. Assuming that the
random vector X(f) is normally distributed, it can be completely described by its mean
and covariance. The assumption that X(t) is normally distributed is partially justified as a
result of an analogue of the Central Limit Theorem which states as follows: “If a large
number of random variables are combined in a reasonably complicated fashion to form a
single multivariate random variable, then this random variable will have a nearly normal
distribution.”

For the following discussion, it is assumed that the random vector of errors, Ax, about
the mean, %, is composed of six components. It is normally distributed with zero mean
and covariance Pa,. Its probability density function can be written as

px(Ax) exp [-% AXTPZL E] (8-140)

1
" @n) [Pl

If P,, is a diagonal matrix, X has components that are statistically independent (uncorre-
Jated); and px(AX) can then be factored into a product of six univariate functions of X1,
Xz, ..., X (the one-dimensional marginal probability density functions of the six compo-
nents of the state). This constitutes a sufficient condition for independence of the mar-

ginal random variables X1, ..., Xs.

By virtue of its definition, Pay is a nonnegative definite matrix so that it has nonnegative
eigenvalues. Hence, a similarity transformation

Ay = SEX (8-141)

which diagonalizes Pay is always possible, since the hypersurface of constant likelihood
(constant value of probability density) in six-dimensional space is a hyperellipsoid, and
by a rotation of axes it is possible to use the principal axes of the hyperellipsoid as

8-53



coordinate axes (i.c., to transform to another random variable space having uncorrelated
or independent components). The Ay in Equation (8-141) represents space coordinates
and is unrelated to the measurements.

Of interest is the probability that x; , X , ..., X¢ lie within the hypereltipsoid

AXTPLAX = £ (8-142)

where ¢ is constant. By transforming to principal axes, this expression becomes

2
1 2

where 04, 03, ..., 05 are the eigenvalues of Pay. The transformation matrix from Ax to

Ay space is accomplished by the matrix of eigenvectors, S. By a second transformation,
Az, = Ayi/o;, the expression in Equation (8-143) becomes the equation for a hyper-

sphere in six dimensions

Az + Az + -+ +Azk =0 (8-144)

The probability of finding Az inside this hypersphere is

JI ce I 1 ﬁexp{-émzh +Az§)}dA=1dAZz o dae  (8:149)
volume

where the integration is carried out over the volume of the hypersphere of radius Ar,

where

A = AZ2 + AZZ + * * + + Az} (8-146)

Thus, the probability of finding Ax;, AXs, .., Axs inside the hyperellipsoid

AxTP;LAx = £is

!
P, = (—2“1-)—, J ¢1/287 §(Ar) dAr (8-147)
0

where f(Ar) is the spherically symmetric differential volume element.
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In six-dimensional space, Equation (8-147) is

{
P, = szr_)-“" L e1/287 (3 Ar%) dAr = [1 - %e*lﬁf’ (-’41 + 84 2)] (8-148)

For ¢ = 1, 2, and 3, the probability is 0.014, 0.332, and 0.826, respectively. Also of
interest are hyperellipsoids of other dimensions. Considering an m-dimensional random
vector, where m = 1 through 7, the probabilities corresponding to £ = 1 through 4 (often
called 1o, 20, 30, and 4o probabilities) are as shown in Table 8-1.

Table 8-1. Hyperellipse Probabilities

I~ 4 1 2 3 4
1 0.683 0.958 0.987 1.00
2 0.384 0.865 0.989 1.00
8 0.200 . 0.739 0.7 0.988
4 0.090 0.594 0.939 0.957
5 0.037 0.480 0.801 0.693
8 0.014 0.523 0.826 0.966
7 0.005 0.220 0.747 0.976

The problem of evaluating the hyperellipsoid, however, remains very difficult since it
‘cannot be visualized. The equation for the ellipsoid can be transformed to its principal
axes by means of the eigenvector transformation. The resulting diagonal matrix of eigen-
values yields the maximum excursions of the state variables. However, these excursions
are in the transformed (principal) axes and therefore are maximum excursions for combi-
nations of Ax,, AXs, ..., Axs and are still difficult to visualize.

8.5.3 HYPERRECTANGLE PROBABILITIES

Another method of interpreting the confidence regions of state variable uncertainty is by
means of hyperrectangles instead of hyperellipses. Consider a two-dimensional case
where Pa, is the covariance matrix

Py = |:"2M1 ”A"‘A’ﬂ (8-149)

OAx;Axz azﬂxz
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The quadratic form AxTP;L Ax = £ is
Gy AXE ~ 20ax,00; AXy AX; + TRy, AXE = £ [Pay (8-150)

This quadratic equation represents an ellipse such as that shown in Figure 8-3.

Figure 8-3. Error Ellipse and Rectangle

The width Ax) and height Ax; of the rectangle enclosing the ellipse are determined from
Equation (8-150) for the condition that dAx;/dAx; = 0 and dAx,/dAx, = 0, respec-

tively, yielding

A%} = £ oay, (8-151a)

Ax} = £ 0ax, (8-151b)

Thus, the probability that Ax lies within the region - 30ax, < Ax; = 30ax, is 0.997,
Ax, falling wherever it may. The probability that Ax, lies within the region
-30ax, S AXz < 30, is also 0.997, Ax, falling wherever it may. Assuming no sig-
nificant correlations, the probability that Ax; and Ax, simultaneously lie within the re-
spective regions -30ax, < AX; < 30a, and -30ay, < Ax; < 30a4, is therefore
(0.997)? or 0.994. The probability that Ax, and Ax, lie within the 3¢ ellipse is 0.989,
slightly less than that for the rectangle due to the lesser area.
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Extending this interpretation to six dimensions, the probability that Ax;, AXa, .., AXs
simultaneously lic within their 3¢ hyperrectangles is (0.997)% or 0.982. The probability
that they lie within the six-dimensional hyperellipsoid is 0.826, significantly lower because
of the smaller volume. The hyperrectangle probabilities corresponding to £ = 1, 2, 3, and
4 and m = 1 through 7 are presented in Table 8-2.

Table 8-2. Hyperrectangle Probabilities

m~d 1 2 3 4
1 0.883 0.955 0.897 1.00
2 0.468 0.812 0.984 1.00
3 0.319 0.872 0.891 1.00
4 0.218 0.632 0.988 1.00
5 0.149 0.784 0.985 1.00
8 0.102 0.759 0.982 1.00
7 0.089 0.724 0.679 1.00

The hyperrectangle probabilities are much easier to analyze since the various sides of the
hyperrectangles are multiples of the square root of the variances. However, it is important
to be aware of the fact that the boundary of the hyperrectangle merely encloses a volume
of space and in no way can be regarded as a boundary of constant probability as is the
case with hyperellipses.

The hyperrectangle probabilities are particularly convenient during program checkout. By
processing simulated data having Gaussian random error with zero mean and known
variances, the residuals of the estimated vector can be compared with the calculated
standard deviations. The distribution of residuals should satisfy the 10, 20, 30, and 40
probabilities in Table 8-2.

8.5.4 CORRELATION COEFFICIENT

It has been shown that the off-diagonal covariance elements of a covariance matrix deter-
mine the deviation between the random vector coordinate axes and the principal axes of
the hyperellipse of constant probability. When the covariance elements are zero, the prin-
cipal axes are aligned with the coordinate axes and the components are independent of
each other. Furthermore, the normal density function (Equation (8-140)) can then be
factored into a product of n univariate functions of Ax;, AXa, ..., AXs.
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Another measure of the dependence of two random vectors Ax and Az having a
(p X Q) correlation matrix -

[ cov(Axy, Azy)  cov(Ax;, Az) -+ ¢ cov(Ax, Azq)—
COV(AX;, AZ]) ¢ .
Caxas = ' (8-152)
_cov(Axp. Azy)  cov(Ax,, Az) - - - cov(Ax,, Azq)_
is the correlation coefficient, defined as
cov(Axy, A
gy = o(Ax, Az) = v@x, L2) (8-153)

Jvar(Ax;) var(Az)

The variance elements are the squares of the standard deviations for Ax, and Az, respec-
tively, and lic along the main diagonal of Pax and Pa., respectively. The correlation
coefficient satisfies the following conditions:

e 0 =0 if and only if Ax; and Az (and therefore X; and z;) are uncorrelated

® ol =1
® o = #1,if and only if

{%} _— {%} | (8-154)

where Oay;, Oag; are the standard deviations of the errors x; and z;, respectively.

8.6 ESTIMATION-RELATED TECHNIQUES

Specific techniques required in the estimation process include matrix inversion, editing of
residuals, iteration control, residual statistics, and hypothesis tests. These are discussed in

the following subsections.
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8.6.1 MATRIX INVERSION

The normal matrix is inverted by recursively inverting smaller matrices and by the use of
the Schur identity. The symmetrical properties of the normal matrix are utilized during
the inversion process. The Schur identity method is developed by assuming that the ma-
trix to be inverted is of the form

My | M
M] = B it (8-155)
Ma] | - [Maz)
with the inverse given by
- [Hy) | le]
M = | ——--f-——- (8-156)
[Ha] | [Hzl
Since
- [1] | [0]
[M] M} = ——)——- (8-157)
[0) | I
then
[My1] [Ha) + [Maa] [Hz] = [I] (8-158a)
[Mz1] [Hul - [Mzs] [Ha} = [0] (8-158b)

Eliminating {H;;] from Equations (8-158) and solving for [Hy] gives

[My] [Hy) + Maz] Mz]™ Mai] [Hu) = [1] (8-1592)
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or

[Hy] = [My]? = Mnl™ Miz] Mz2a]™ {Mi] [Hu]} (8-159b)

Premultiplying Equation (8-159) by [Ma1] [My]™? gives
[Maq] [Hia] + [Mz1] M) Mia] Mz2]™ [Maz] [H] = [Mai] Myl (8-160a)

or

Mas] [Hs) = [[11 ¢ Mar] Mac]™ [Mig] {Mzzr*]" Mya] [Mar] (8-1605)

Substituting Equation (8-160b) into Equation (8-159b) gives

[Hy] = Mn]™? - [My3]7! [Mi2] [Mz2]™
X [[I] + [Mz] My1]™ M) [Mzz]'l]-1 [Mz;] [My]™?

(8-161)

The matrices [Hy,], [Hiz], and [Hy) can be derived in a similar manner, yielding

ol = = | M) Dol Pl + el | (3-1620)
[Hi2] = - [Mu]™? [Miz] [Hzo) (8-162b)
[Hy)] =  [Mz]™ [Mz1] [Hu] (8-162c)

It is assumed that the inverse of [My;] is known and that [Mp,] is in allcasesa (1 x 1)
matrix. The matrix inversions required in Equations (8-161) and (8-162) are simply the
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reciprocals of the elements of the respective matrices. The inversion begins by setting

[My,] as

Mp]™ = = (8-163)
11

and

- M) = - i
[Mz] —~— | (8-164)

Equations (8-161) and (8-162) are then employed to determine the inverse of

my myz
(8-165)

mj; msz;

The result is called [My,] and the diagonal element following (in this case mj3) is used
to form a new [Mg]. The process is continued along the diagonal until the required
matrix is inverted. GTDS takes full advantage of the symmetry of the normal matrix by
computing and storing only the upper triangle of the matrix. The inversion process is
designed to invert a matrix in upper triangular form and store the result in the same
manner.

8.6.2 EDITING OF MEASUREMENT RESIDUALS

The measurement residual, as computed by GTDS, is defined as the actual measurement
minus the computed measurement that is based on the trajectory specified by the current
state vector solution. Deletion of a measurement from the differential correction or filter
computation can be accomplished by one or more of the following tests that are made on
each iteration or filter set for each measurement:

e By Time. The measurement is rejected if it falls outside a specified timespan.
e By Type. The measurement type is among those to be rejected.

e By Station. The identifier of the station making the measurement is among
those to be rejected.
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e By n'h Measurement. Every n'® measurement of this type is to be processed;
all other measurements are rejected.

e By Deviation. The measurement is rejected when the deviation from the orbit
established by the previous iteration is greater than a specified value, or, in a
filter run, when the residual differs from the predicted measurement residual,
by more than a specified amount. The residual editing algorithms used in the
Differential Correction Program are discussed in Sections 8.6.2.1 and 8.6.2.2.

e By Geometry. The measurement is rejected when the elevation angle of the line
of sight from the tracking station is below a specified minimum value.

If a residual is deleted by any test, then the row of the augmented matrix F (the matrix of
partial derivatives of the measurements with respect to the estimated parameters) corre-
sponding to the measurement is not computed.

Preliminary measurement editing and the iterated residual editing procedure in GTDS are
described below.

8.6.2.1 Preliminary Residual Editing

For the first outer loop iteration, the measurement fails the preliminary residual editing
test if

Mg |Aay® | > R (8-166)

where

Ay(y) = measurement residual for the i'® measurement

R = maximum residual multiplier (this is a constant, with a default value
of 10)

Wy = component of the measurement weight matrix W corresponding to
the j® measurement

For subsequent outer loop iterations, the measurement is edited if

Jwy | Ay(t) | > kRMSP,; + K (8-167)
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where

k = constant multiplier (default = 3)

K = additive constant (default = 0)

RMSP,.; = predicted root-mean-square (determined at the end of the previous
least-squares iteration) for the current iteration (see Section 8.6.3)

The subscript i indexes the outer loop least-squares iterations.

8.6.2.2 Iterated Residual Editing Procedure

After the state estimate, ﬁl, is computed in each outer loop iteration, it can be refined
using the iterated residual editing procedure. The three major steps followed in this proce-
dure are as follows: '

1. For each measurement, the predicted weighted measurement residual, Ay'(t),
is computed by keeping only the linear term in the Taylor series expansion, as follows:

AY'W) = YWy Ay() - & ARy (8-168)
where
wy = component of the measurement weighting matrix corresponding to
jtt the measurement
Ay(y) = o measurement residual computed in the outer loop
g = b row of the matrix F computed in the preliminary outer loop
zdefined in Equation (8-42))

Aﬁm.n = state correction computed in the n™® residual editing iteration,
A%1.0, equals the correction computed in the i** outer loop,
AR,,,, given in Equation (8-23)

Next, an n-sigma editing test is applied by using the previous predicted root-mean-square
(RMSP) to edit the predicted residual. The first residual editing iteration is initialized with
RMSP, = RMSP from Equation (8-185). (Note that the root-mean-square (RMS) and the
RMSP of the measurement residuals are defined further in Section 8.6.3.) If the predicted
residual exceeds the tolerance

| Ay'(t) | > Kk + RMSPsy - (8-169)
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where kk is a multiplier that may or may not be the same as the quantity defined for
preliminary residual editing), then the contribution of the measurement is removed from
the normal equations. This is done by first eliminating the contribution of the measure-
ment from Equation (8-23), as follows:

Nin e Ny - 8 wi § (8-170)

Sin <= Sin - & wy Ay() (8-171)
where

Nyo = FFWE, + PiL,  (8-172)

S0 = ET WAy, + PiL A¥, (8-173)

Then the measurement residual Ay(t) is removed from the vector of measurement re-
siduals, i.e.,

Afin = AWin - [Ay(y) element] (8-174)

where

Afio = A% (8-175)
Next, the total number of measurements is reduced by one, i.e.,
my, e m, -1 (8-176)

where

This process is repeated until all the measurement data are examined.
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2. The state correction vector, Aﬁm.n; the estimation state vector,

the RMS and RMSP are recalculated as follows:

Afu1a = Nik * Sin

A
ﬁm.n = Rli-l.n-—l + AXyin

1

i,n

- - 1/2
RMS,; = { (AYT. W AFin + Ax{, Py, Axl'n)} /

where
AXyy = Xp - ﬁlﬂ.n-l
and

T 11/2
RMSP, = {RMS?, _ 28% Sun S‘-"}
My,n

ﬁi+1.u , and
(8-178)

(8-179)

(8-180)

(8-181)

(8-182)

The quantities N; , and S, are given in Equations (8-170) and (8-171), respectively, and
A§,n includes only those residuals that survived the residual editing. (Inclusion of the

term in RMS, that includes the a priori covariance is optional.)

3.  Tests for convergence (or termination) of the inner loop residual editor are then
performed. The process is terminated if any of the following criteria are satisfied:

a. The difference between the state update produced by the current recursive
iteration and that produced by the preceding iteration is less than a

specified tolerance.

b. The maximum allowable number of recursive iterations (default = 10) has

been reached.

c. The relative difference of two successive values for RMSP is within a

specified tolerance, i.e.,

RMSP,-; ~ RMSP, <

RMSP, €

8-65

(8-183)



I

where

RMSP,., = predicted RMS for the (n- 1)'® residual editing loop
RMSP, = predicted RMS for the n® residual editing loop

€ = specified tolerance

The final values obtained in Equations (8-178) through (8-182), by definition, are the
Aﬁm , %1, RMS, and RMSP, respectively, of the entire outer loop, replacing those
given in Equations (8-23), (8-24), (8-184), and (8-185). The final RMSP can also be used
in the preliminary editing test for the next outer loop iteration.

8.6.3 ITERATION CONTROL FOR THE DIFFERENTIAL CORRECTION
PROGRAM

Conditions that can cause termination of the differential correction process are as follows:

¢ Convergence of the solution
e Maximum number of consecutive iterations reached
e Maximum number of iterations reached

The convergence criteria in GTDS are based on iterative reduction of the square root of
the mean square of the measurement residuals. This quantity, denoted by RMS, is calcu-
lated as follows on the {'® iteration:

' - - Y1/2
RMS = {% BYTW By, + AxF PR, Ax,)} (8-184)

where Ay, and Ax, are defined in Equations (8-21) and (8-22), and m is the number of
measurements. If the value of RMS decreases during two consecutive iterations, the solu-
tion is converging. After a prespecified number of consecutive divergent iterations, the
problem is terminated. After testilkg for convergence or divergence, a predicted RMS is
calculated through first order in Ax;,, for the next iteration as follows:

RMSP = {% [(371 - F ffxm)TW @Ay - B AAXM)
(8-185)

& AT Pl (A - 12
+ (Axyyy - Ax)TPal (Axjy =~ Ax)

8-66



where &xm. Ax;, and Fi are defined in Equations (8-23), (8-24), and (8-19a), respec-
tively. The second term on the right is exactly correct for the (i+1)* iteration. The first
term on the right linearly corrects the measurement residuals to account for the iteration.
The first term on the right linearly corrects the measurement residuals to account for the
differential correction Axy,;. If the regression equation (Equation (8-14)) were linear, the
predicted RMS (RMSF) would be exactly correct. The iterations are considered converged
and the problem terminated when the following criterion is met:

RMSB - RMSP
| 18
RMSB < (8-186)

where

RMSB = smallest RMS achieved compared with all previous iterations

€ = improvement ratio criterion specified by input

8.6.4 WEIGHTED LEAST-SQUARES AND FILTER STATISTICS

Upon completion of each iteration of the weighted least-squares fit or after a specified set
of measurements has been filtered, a summary of the measurement residual statistics is
calculated and printed. The statistical quantities that comprise the summary are computed
for data types and residual groups that contain data from specific tracking stations. The
following abbreviations are used in the statistical relationships:

where

Ay = j® residual, y, - f[%,(t), %]
n, = total number of residuals for a station and data type (group)

The measurement residual statistics are defined below.

Root Mean Square Error

The total weighted RMS, the predicted total RMSP, and the RMS for each station and data
type are calculated from Equations (8-184) and (8-185). It is normally desirable that RMS

be small, preferably zero.
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Group Mean

The mean value of each residual group is a measure of the bias in the measurement and
is calculated as follows:

n;

1 Z —
o= — A : 8-187

1=1

L

It is desirable that f¥ for each group be zero to be consistent with the assumption in
Equation (8-25a) that the measurement noise has zero mean.

Sum of Squares About the Mean

The sum of the squares of the residuals about the mean of each residual group is

Dy

S = Z (By; - m)? (8-188)
j=1
Sample Standard Deviation
The sample standard deviation of each residual group is a measure of the dispersion of
the measurement data and is calculated as follows; g

i

1/2 N
— rs i \1/2
g = [ml_ 3 E ‘(ij - EDE| = (n;_ - 1) (8-189)

In GTDS, the approximation is made that n, is large. Hence, n, - 1is replaced by n, in
the denominator of Equation (8-189). The standard deviation should be consistent with

the values used in the priori weighting matrix, W.

Confidence Interval for the Group Mean

If the measurement residual group population is normally distributed with Zero mean,
then the variable

m

t= m (8-190)

has a t-distribution (Student’s) with (n, ~ 1) degrees of freedom. Therefore, confidence
intervals for the mean can be constructed from tables of the t-distribution. As n, becomes
large, the t-distribution approaches the normal distribution.
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Megsurement Residual Groups

For each iteration of the weighted least-squares fit, or after a specified set of measure-
ments has been filtered, the following data are printed for each residual group:

e Number of measurements, 1,
e Number of rejected and accepted measurements
e Histograms of the measurements by the true anomaly

8.7 STATISTICAL OUTPUT REPORT MODELING

The Statistical Output Report (SOR) is designed for validating the tracking data and for
calibrating trackers. The SOR groups the measurement residuals computed during the
differential correction process in a number of different ways and computes the mean and
standard deviation of each group of residuals. The basic groupings used in the SOR con-
sist of SOR categories and SOR batches. Mean and standard deviation values based on
SOR categories form the validation statistics, while the values based on SOR batches form
the calibration statistics. Statistics for the first differential correction iteration residuals,
the last differential correction iteration residuals, or both can be computed.

The SOR batches and categories are discussed in Section 8.7.1. Section 8.7.2 describes
the SOR validation statistics, and the SOR calibration statistics are defined in Sec-
tion 8.7.3. A noise estimate, based on the calibration statistics, is also computed in the
SOR; this is discussed in Section 8.7.4.

8.7.1 SOR BATCHES AND CATEGORIES

An SOR batch corresponds roughly to the set of all measurements and residuals obtained
from a particular tracking station during one tracking pass. The criteria used to form an
SOR batch are the following:

Tracking station

Time difference between measurements

Timespan of the batch

Number of measurements in the batch

Equipment mode (Reference 17, Table 4-3) (depending on the tracker type)
Data rate (Reference 17, Table 4-4) (depending on the tracker type)
Vehicle identification code (depending on the tracker type)

Object number (depending on the tracker type)

Range ambiguity (depending on the tracker type)

Multifunction receiver number (depending on the tracker type)
Frequency band (can be overridden) (TDRSS data only)
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Carrier frequency identification (can be overridden) (TDRSS data only)
User bit rate (can be overridden) (TDRSS data only)

Multiple-access antenna identification (TDRSS data only)

Forward-link TDRS identification (TDRSS data onty)

Return-link TDRS identification (TDRSS data only)

Ground transponder identification (TDRSS data only)

The mean and standard deviation statistics are computed separately for each measure-
ment type within the batch.

An SOR category corresponds roughly to the set of all batches obtained from stations
using the same tracker type. The criteria used to form an SOR category are the following:

Measurement type (Reference 17, Table 4-2)
Tracker type (Reference 17, Table 4-1)
Equipment mode (depending on the tracker type)
Data rate (depending on the tracker type)
Frequency band (TDRSS data only)

8.7.2 SOR VALIDATION STATISTICS

The SOR validation mean and standard deviation statistics are based on SOR categories.
The SOR category validation statistics are described in Section 8.7.2.1. Validation statis-
tics are also computed for each batch and for each station, using some of the results from
the category validation statistics. Section 8.7.2.2 defines the batch validation statistics,

and the station validation statistics are given in Section 8.7.2.3.

8.7.2.1 Category Validation Statistics

The following three types of data are included in the category validation statistics:
e Data that are accepted by the differential correction process
e Data that are residually edited in the differential correction process

e Data that are edited by user-sui:plied specifications (preedited; see Sec-
tion 8.6.2) ‘

The data residuals in each category are first subjected to a maximum O-C residual test, in
which each residual that exceeds a specified value is marked as “SOR O-C max” edited.
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The mean, M,, and variance, S}, of the remaining unedited residuals are then computed
as :

ng

Z Ay(t)

My = ———— (8-191)

Ny

and

> yr

2w 20 - M3 (8-192)
No

where

Ay(y) = i® unedited residual

n, = number of remaining unedited residuals

The remaining unedited residuals in each category are then subjected to an iterative
n-sigma edit, i.e., they are edited if

|Ay(tj) - Mk-ﬂ > NS (8-193)

where

M;.; = mean of the unedited residuals from the previous edit loop
n = sigma multiplier

S,.; = standard deviation of the unedited residuals from the previous edit
loop .

k = edit loop counter
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The mean, M,, and variance, S, of the residuals that are unedited on successive edit
loops are computed using Equations (8-191) and (8-192), with ny rather than no, where
n, is the number of unedited residuals on the k® edit loop.

If the maximum number of iterative edit loops has not been reached and no additional
residuals are edited, the iterative n-sigma edit is terminated. All residuals edited during
the iterative n-sigma loop are marked as “SOR validation edited.” The mean values and
standard deviations of the final sets of unedited and edited residuals are computed sepa-

rately as described above.

8.7.2.2 Batch Validation Statistics

For the batch validation statistics, no O-C maximum or n-sigma editing is performed.
Instead, the final edit status from the category validation statistics is used in determining
the edit status of the residuals in the batch. The mean values and standard deviations of
both the validation-edited and the unedited residuals are computed separately for each
batch. The batch and category validation statistics are the same only if the data from each
category are obtained from exactly one batch.

8.7.2.3 Station Validation Statistics

Each SOR category is also partitioned into one or more groups, based on the tracking
station. The mean values and standard deviations of the unedited and validation-edited
residuals are computed for each station included in each category. The station and cate-
gory validation statistics are identical if the category contains data obtained from only one

station.

8.7.3 SOR CALIBRATION STATISTICS

The SOR mean and standard deviation calibration statistics are based on SOR batches
and are described in Section 8.7.3.1. Ground transponder calibration statistics, based on
the batch calibration statistics, are also computed and are described in Section 8.7.3.2.

8.7.3.1 Batch Calibration Statistics

The following types of data are included in the batch calibration statistics:

e Data that are accepted in the differential correction process
e Data that are edited in the differential correction process
e Data that are edited by user-supplied specification (preedited)
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The validation edit status of the data is ignored. The data residuals in each batch are first
subjected to a maximum O-C test in which each residual that exceeds a specified value is
marked as calibration edited. The mean and standard deviation of the remaining unedited
residuals are then computed as in the validation statistics.

Next, residuals in each batch are subjected to an iterative n-sigma calibration edit, as in
the category validation statistics, and the mean and standard deviation values of the final
sets of unedited and calibration-edited residuals are computed.

Although the maximum O-C value, the number of iterative loops, and the sigma multi-
plier are the same for both the category validation and batch calibration editing, the batch
validation and batch calibration statistics are not the same. These statistics will only be
the same if each category contains data from only one batch.

An additional validity indicator is computed whenever batch calibration statistics are com-
puted. The indicator is set when the number of edited points from the batch validation
statistics is not equal to the number of edited points from the batch calibration statistics

and when

M, - My > 3(Se + Su) (8-194)

where

M, = final unedited batch validation residual mean

M,

S, = final unedited batch validation residual standard deviation

final edited batch validation residual mean

Se final edited batch validation residual standard deviation

8.7.3.2 Ground Transponder Calibration Statistics

Additional calibration statistics are computed for TDRSS ground transponder tracking
data. The batch calibration statistics for two-way and hybrid range data taken from each
ground transponder user are used to compute the additional statistics, as follows:

>
inl
My = (8-195)
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Mg = 2l (8-196)

b

S = ——— - My (8-197)

Ny

§2 = A2t M (8-198)

where

Mg, = final unedited batch calibration residual mean from the i®® batch

Sc, = final unedited batch calibration standard deviation from the i® batch
My = mean of the unedited batch calibration residual mean values

Sy = standard deviation of the unedited batch calibration residual mean
values

Mg = mean of the unedited batch calibration residual standard deviations

Ss = standard deviation of the unedited batch calibration residual standard
deviations

n, = number of batches of either two-way or hybrid range data for each
ground transponder user
8.7.4 BATCH CALIBRATION NOISE STATISTICS
A noise estimate for the residuals in the batch is computed whenever batch calibration

statistics are computed. Both the Variate Difference Noise Analysis (VDNA) and Divided
Difference Noise Analysis (DDNA) techniques are used (Reference 18). Data that are
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unedited in the calibration statistics or n-sigma edited in the calibration statistics are
included in the noise estimate. Due to the manner in which raw nondestruct Doppler and
range-rate measurements are constructed during preprocessing, these types of data are
treated somewhat differently than other types of data when the noise analysis techniques
are applied (Reference 19).

8.7.4.1 VDNA Noise Estimation

The VDNA technique requires that the data be evenly spaced, which might not occur in
practice because of frame dropout or the presence of invalid data. Thus, the most fre-
quently occurring time-tag difference in the batch is computed, and those residuals that
fall at other times are marked as data-gap edited and are not included in the VDNA noise
estimate. The Ph-order VDNA noise estimate, 0Op,, 18 computed as follows:

A%, = Ay(t) (=12 . N (8-199)
AW, = AFV, - APV, =12 .. N-P]®>0 (8200
N-P
> @y
o, = ’;‘ql(N 5 (8-201)
where

Ay(t) = i unedited residual

APV, = it variate difference of order P

N = number of unedited residuals available for noise estimation
P = order of the variate differences

q = (P + 1) for nondestruct Doppler and range-rate data for which the
majority (more than 50 percent) of the Doppler count intervals are
equal to the most frequently occurring time-tag difference; for this
case, the resultant o8, is also multiplied by two

= P for all other cases
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and

2q
£, = - .52%’. (8-202)
q q q

For nondestruct range-rate data, the Doppler counter VDNA noise estimate, Ncntr, 1S
computed as

Newrs = M (_2%) DCI (%) (8-203)

where

Fr = receive frequency (hertz)
¢ = vacuum speed of light (meters per second)

M = 1000 (if FR < 3000 megahertz)
= 100 (if Fg = 3000 megahertz)

N- = averaged range-rate VDNA noise estimate (computed as in
R Equation (8-201))

DCI = Doppler count interval (seconds) (average Doppler count
interval if it is not constant throughout the batch)

For nondestruct Doppler data, the Doppler counter VDNA noise estimate, Ncnrr, 1S
computed as

Nents = M (1729) (8-204)

where Np is the averaged Doppler VDNA noise estimate (computed as in Equa-
tion (8-201)).

8-76



8.7.4.2 DDNA Noise Estimation

The DDNA noise estimate, op,, is computed as follows:

aovl = Vi (i = 13 2’ 1ery N) (8'205)
6P Wy = 651V .
otV = =12 .,N-P] (>0 (8-206)
tup = 4
1
Wf; * Pei
l-[ (ti+j+l - ti+k-1) (8_207)
k=1
kot §
N-p  (OPVy)?
1 Pl
0% = ——— 8-208
i=1 j=1
where
{ = time tag associated with V; (seconds)
Wy = weighting factor for the P™-order divided differences

oPV; = i divided difference of order P

For nondestruct range-rate or Doppler data, the DDNA noise estimate is computed only if
the Doppler count interval associated with each data point is equal to the corresponding
time-tag difference. In this case, the number of residuals (data points) available for noise
estimation is incremented by one (i.e., N is set to N + 1), and the formation of the

first-order (P = 1) averaged differences is bypassed.

For nondestruct range-rate data, the Doppler counter DDNA noise estimate, NcnTr, 1S
computed as

Nentr = M 2—1:5 Nr (8-209)
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where Ny is the intermediate range-rate DDNA noise estimate (computed as in Equa-
tion (8-208)).

For nondestruct Doppler data, the Doppler counter DDNA noise estimate, Ncnrr, iS
computed as

Nentr = MNp (8-210)

where Np is the Doppler DDNA noise estimate (computed as in Equation (8-208)).

8.7.4.3 Noise Analysis Editing and Convergence

Prior to formation of the noise estimate, the individual variate or divided differences are
subjected to an iterative n-sigma edit. The edit criteria are basically variances to be tested
directly against the squares of the differences. These criteria are as described below.

VDNA
1. Initial loop of the initial order:

a. Unsampled range-rate and Doppler data

G (a9

b. General

3 m ’ 82 + M2 f, (8-212)
2

2. Initial loop of other orders:
a. Unsampled range-rate and Doppler data

G40

b. General

(2 m)’ it (8-214)
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3. Other than the initial loop, all orders:

mz 023_1 fq (8-215)

1. [Initial loop of the initial order:

(% m)z (sg ; Mz) (8:216)

2. Initial loop of other orders:

3 2
(—2— m) a%—l (8-2 1 7)

3. Other than the initial loop, all orders:
m? o, (8-218)

In all of the above equations, the following symbol definitions are made:

m = sigma multiplier for the noise analysis “m-sigma” edit

%., = final variance for the P*-order noise estimate computed as in
Bquation (8-201) (VDNA) or as in Equation (8-208) (DDNA)

o, = variance estimate for unedited differences on the (E - 1)* edit loop of
the same order

S, = final unedited batch calibration standard deviation

M.

final unedited batch calibration mean value

Bach squared difference that exceeds the applicable edit criterion is marked as edited and
is not included in either the variance estimate for that edit loop or the noise estimate for
that order. All differences of a particular order are considered unedited prior to the initial
edit loop of the order, regardless of the edit status of the differences from the previous
order. If the maximum number of edit loops has not been reached and no additional
editing has been performed, the iterative edit “m-sigma” loop is terminated.
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The noise estimate itself is considered converged at the order level if either

ey
0p2(1 - C) < 0py < Opz (1 +C) | (8-219a)
and
op1 (1 -C) < 0p < 0p-1(1 +C) (8-219b)
or
)
op2(1-C) s 0p < 0p2(1+C) (8-220)
where

o; = i®-order final noise estimate, computed as in Equation (8-201) (VDNA)
or as in Equation (8-208) (DDNA)

C = noise estimation convergence criterion (default: C = 0.1)

For nondestruct Doppler or range-rate data, the intermediate noise estimates for Equa-
tions (8-201) and (8-208) are used to test for convergence, rather than the Doppler
counter noise estimates.
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CHAPTER 9—LAUNCH AND EARLY ORBIT METHODS

The estimator algorithm in GTDS requires an a priori estimate of the spacecraft position
‘and velocity to initiate the iterative estimation process (see Chapter 8). GTDS is part of
the Trajectory Computation and Orbital Products System (TCOPS) in the GSFC Flight
Dynamics Facility (FDF). The TCOPS taunch processor provides the capability to propa-
gate an insertion vector through successive burns to obtain an initial on-orbit vector. How-
ever, an accurate estimate is frequently unavailable because of large booster injection
errors, maneuver errors, or unknown orbits of tracked satellites, Therefore, GTDS pro-
vides the capability to determine a starting value of the position and velocity from a
limited number of discrete tracking data samples.

Three techniques are optionally provided to perform this function. They are as follows:

e Gauss Method and Double R-Iteration Method. These deterministic methods
use three sets of chronologically ordered gimbal angle measurement pairs to
solve for the six Cartesian position and velocity components at an epoch time
equal to that of the second measurement. The gimbal angle measurement sets
need not be from the same tracking station. The central angle (from the Earth’s
center) subtended by the three sets of angles should be less than 60 degrees for
the Gauss Method and less than 360 degrees for the Double R Method. Either
X and Y or A and E gimbal angle data from the GRARR, ATSR, USB, or
C-band systems; £ and m direction cosines from the Minitrack System; or geo-
centric right ascension, a, and declination, ¢, measurements can be used.

¢ Range and Angles Method. This method uses multiple (more than two) sets of
simultaneously measured range and gimbal angle data from the GRARR,
ATSR, USB, or C-band radar systems. Two-body equations are regressively
fitted to the transformed data to yield epoch values of the spacecraft position
and velocity.

"For TDRS tracking, a separate method based on homotopy continuation techniques is
used. This method, which is part of the Preliminary Orbit Determination System (PODS)
of TCOPS is documented in Reference 1.

This chapter discusses the powered flight propagation techniques available in the TCOPS
launch processor and the early orbit methods available in GTDS.

9.1 LAUNCH AND POWERED FLIGHT PROPAGATION
TECHNIQUES

During launch support of an expendable launch vehicle, a vector is selected following the
first main engine cutoff (MECO-1) of the launch vehicle and is designated the insertion
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vector. This vector is propagated through the following burns of the main engine and the
second stage burns to provide the orbit trajectory. Exactly how many burns of the main
engine and the second stage depends on the specific vehicle and the mission design. The
trajectory from the time of liftoff (main engine ignition) to MECO-1 is provided to TCOPS
from outside sources. During the launch, telemetry data from the launch vehicle contain
accelerometer data, which are integrated at the launch support site to provide either the
thrust components of the spacecraft position and velocity that are used in launch support
processing or the position and velocity vectors provided directly as Launch Telemetry
Acquisition System (LTAS) vectors. '

The propagation of an insertion vector through successive burns when the thrust compo-
nents are provided requires the following:

e The capability to predict the thrust before the events and the inclusion of this
predicted thrust in the force model used to propagate an insertion vector to
provide a predicted trajectory. (This capability is available in GTDS and is
discussed in Section 4.8.4 of this document.)

e The capability to include thrust information extracted from launch telemetry
data in the propagation as the launch telemetry data are received. (This capa-
bility is available in the TCOPS launch processor.)

The mathematics for propagation through powered flight using the telemetry data re-
ceived during launch is presented below.

The following items are given:

(Fo, Vo) = position and velocity vectors at the initial time, to (insertion vector)

m « mass of the satellite/launch vehicle combination at ignition (or at
the last burnout)

A = cross-sectional area of the launch vehicle

Tro = time of liftoff (UTC)

ag = Greenwich hour angle at Tio

A = longitude of the launch pad

Y = ground clapsed time from Tio for the selected Delta Inertial Guid-

ance System (DIGS) station
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of;, 6%} = thrust components in terms of position and velocity changes, re-
spectively, in a geocentric body-fixed coordinate system referenced
to the launch pad at time t, extracted from the launch telemetry
data

M = transformation matrix from the geocentric body-fixed coordinate
system to the true of date system

where
cos (ag +A) ~-sin(gg+4d) 0
M=|sin(ag+4) cos(g+id) O (9-1)
| 0 0 1 |

The position and velocity at time t; are computed as follows:

f; = T + AFf] (9-2)

v =9 + Ag (9-3)
where

t =9 + To (9-4)

The quantities ¥, and ¥ are the result of integrating from -1 to 4 considering the
effects of forces on the spacecraft other than thrust. The integration to produce (7, v is
done with a low-order Runge-Kutta integrator, described in Section 6.2.2. The initial con-
ditions are (Fj-1, %-1), the position and velocity vectors computed at the previous step,
including thrust effects. :

The quantities Afj' and AV, which are the changes in the position and velocity from -3
to t; due to thrust, are computed by rotating (05, OV} from the geocentric body-fixed
coordinate system to the true of date system as



AV:' = M 67} (9'5b)

and computing the following differences:

Av; = Avy ~ (9-6a)
Ary = Arn (9-6b)
AV, = AV - A% G>1 (9-7a)
aj - s (A58 6o (570

If there are no thrust data at t, then Afj and AV equal zero.

When LTAS vectors are used, the only processing necessary is the conversion from the
geocentric body-fixed coordinate system to the true of date inertial system, using the
matrix M given in Equation (9-1).

9.2 ANGLES-ONLY METHODS

Both the Gauss Method and the Double R-Iteration Method use three sets of chronologi-
cally ordered gimbal angle measurements from up to three separate tracking stations to
determine the Cartesian components of position and velocity. The angle data set can be
distributed over an orbital arc of less than 60 degrees in mean anomaly for the Gauss
Method and up to 360 degrees in mean anomaly for the Double R-Iteration Method. The
epoch for the position and velocity corresponds to the time of the second measurement
set. The methods are deterministic since the six measurement components yield the six
position and velocity components. Additional descriptions of these methods are presented

in Reference 2.
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9.2.1 TRANSFORMATION OF TOPOCENTRIC GIMBAL ANGLES TO INERTIAL

COORDINATES

All gimbal angles are initially transformed to topocentric station-centered azimuth, A, and
elevation, E. The X3 and Ysp angles corresponding to the GRARR and USB 30-foot

antennas are transformed by

sin B = cos X3 cos Yap

cos E =1 - sin’E

and

sin X3o cOs Ygo

sin A =
' cos E
sin Ygo
COS A =
os E

(o=%=

(OsEs

0= A=

0 = A<

2m)

27)

(9-8a)

{9-8b)

(9-9a)

(9-9b)

The Xgs and Ygs angles corresponding to the USB 85-foot antennas are transformed by

sin E = cos Yas cos Xss

cos E =y1 - sinE
. sin Yss
sin A = ——
cos E
cos A = - c0s Ygs sin Xgs

cos E
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(OSE$
(OSES

0 s A <

(0 s A =

(9-10a)

(9-10b)

(9-11a)
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The direction cosines, { and m, are transformed by

cos E = JB + m? (0 < E < -g-) (9-12)

and

sin A = " 0 <= E s 273) (9-13a)
cos A = —2 © < E s 27) (9-13b)
cos E

The C-band radar gimbal angles are directly measured as A and E, and the resulting
angle sets are denoted by (t, A, E). The altitude above the reference Earth ellipsoid, the
geodetic latitude, and the longitude of the tracking station measuring the angle set are
denoted by (h, ¢, As). The unit vector directed toward the spacecraft can be written in
topocentric local tangent coordinates as follows:

g —

cos E sin A
f, = | cos E cos A (9-14)

sin E

The tracking station coordinates, expressed in body-fixed axes, are presented in Sec-
tion 3.3.7 as

(N, + hy) cos ¢, cos 4,

fy = (N; + hyy cos ¢, sin 4, (9-15)

[N, + hy = (2f - A} N,] sin ¢,
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where

N, = R
J1 - (2f - f?) sin® ¢,

and

R, = Earth’s equatorial radius
f = Earth’s flattening coefficient

(9-16)

Both the f.,, and T, vectors are transformed to a common inertial Cartesian axes system.
The transformations, presented in Sections 3.3.1, 3.3.2, and 3.3.7, follow. The matrix M
from Section 3.3.7 transforms from the topocentric local tangent system to the body-fixed

system and is a function of the station’s latitude and longitude, i.e.,
A A
L, = M{ Ly

where

- 8in A, cos Ay 0

My = [-sing, cos 4, -sing,sin2, cos ¢,

™ -]

|_cos ¢, cos 4, cos ¢, sin 4, sin @,_|

(5-17)

(9-18)

The matrix BT, from Section 3.3.2.3, transforms from the body-fixed system to the true
of date system and is normally a function of the Greenwich sidereal time and polar mo-
tion. Polar motion is neglected for early orbit applications (from considerations of preci-

sion), The transformation is as follows:

cos O; COS @

Lr =| cos & sin a, | = BT(ap iy

sin &,
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and

f, = BT(ap) i, - (9-20)
where
cos a; -singg 0]
BT =« {sina, cosa O (9-21)
0 0 1|
and
a, = topocentric right ascension of the spacecraft from the true-of-date equi-
nox
4, = topocentric declination of thc spacecraft from the true-of-date equator
ag; = Greenwich sidereal time at measurement time t (see Equation (3-38))

Equations (9-17) and (9-19) can be combined resulting in a single transformation matrix
M, identical to that in Equation (9-18), with A, replaced by (4 + ap), the longitude
measured from the true vernal equinox. The unit vector f.—; in Equation (9-19) can be
solved for the topocentric right ascension, ai, and declination, J;. Should measurements
of the topocentric right ascension and declination he available, they can be used to re-
place the topocentric gimbal angles and determine Lydirectly from Equation (9-19). The
matrix CT from Section 3.3.1.3 transforms from the true of date system to the mean of
B1950.0 or J2000.0 system and accounts for nutation and precession. The resulting trans-

formation is

£ -cr iy (9-22a)

R =C'r, (9-22b)
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where CT is the product of the precession transformation A({o, 6p, &p) and the nutation
transformation N(de, dy), as follows: :

CT = (NA)T (9-23)

The elements of the summation matrix CT are obtained from a Solar/Lunar/Planetary
(SLP) Ephemeris File in GTDS.

Combining the preceding transformations yields
{ =« MBOT L, (9-24a)

and

R =BOTF, (9-24b)

Equations (9-24) present the transformations necessary when the computations are per-
formed in the mean of B1950.0 or J2000.0 system. Specifying C = I permits the vectors to
be transformed to the true of reference date system.

In the following sections, three sets of gimbal angles, obtained at times t;, t2, and tj, are
available from either the same or difi;grcnt statioxls. Station vectors and unit vectors di-
rected towards the spacecraft, (R, L), (R, Ly), and (R,,, Ls), can be determined

from Equations (9-14) and (9-24) for each gimbal angle set.

9.2.2 GAUSS METHOD

The Gauss Method utilizes the geometric properties of the station positions and station-to-
spacecraft unit vectors, in conjunction with an approximation of the orbital dynamics, to
determine an estimate of the spacecraft's position at time tp. The orbital dynamics are
approximated by the low-order terms of the f and g series, therefore limiting the orbital
arc of the angular measurements to be within approximately 60 degrees in mean anom-
aly. Subsequently, the accuracy of the position vector is iteratively improved, and the
velocity vector is determined by the method of Gibbs. This method utilizes the approxi-
mately known position vectors at the three measurement times to determine a velocity
vector at time t;. Knowing the velocity allows one higher order term 10 be included in the
f and g series and thereby improves the spacecraft position determination.
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The geocentric inertial position vector, R,, can be determined from the known vectors, f,i
and K, and the unknown slant range, g, from the station to the spacecraft as follows
(see Figure 9-1):

R=R, +0o £, G=12 3 (9-25)

The three vectors K;, K, and R are coplanar since they all lie in the same orbit plane.
Therefore, K, can be written as a linear combination of R; and R; as

CGR+CGR+GR =0 (9-26)
where
C,= -1 (9-27)
Substituting Equation (9-25) info Equation (9-26) yields

Cia £1 + C; 02 £, + Csos ﬁg = - (1R, + C:R, + GR)) (9-28)

or, in matrix form,

Cios G
LiCioz|= -R (9-29)
Csos] _Ca

where

L= [I’l1 £, 0 ﬂs] | (5-30a)
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SPACECRAFT

Figure 9-1. Position Vector Geometry

and
R [R Rl R, | (9-30b)
Premultiplying Equation (9-29) by L™ yields
~C1 Q;- _Cl—
C.02] = - D|Co (9-31)
| Cs 03 | Cs
where
D =L"R (9-32)

The preceding three scalar equations involve the five unknown variables C,, Ci, @1, 02
and ps. Additional conditions must be imposed to determine the slant ranges, ¢, @z OF
03 Knowing any one of these ranges, a geocentric position vector, Rj, R,, or R;, can be

determined from Equation (9-25).
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The cross product of K; and R; with Equation (9-26) results in the following equations:

Kl X Ez = C3 El X Eg (9-333)

Eg X Kg = C Kg X Rl (9"33]))

A
Forming a dot product between k, the unit vector normal to the orbital plane in the
direction of the angular momentum, and the expressions given in Equations (9-33) yields

A

Cs = 1: - Ry x Ry) (9-34a)
k - R x Ry
A

C, = ’: * (Re x Ry) (9-34b)
k - (R x Ry

The position vectors can next be expressed in terms of the f and g series representation
for two-body motion (Reference 3). The series is expanded about t;, the time of the
second measurement, as follows:

R=(RK+aR (9-35)
where
fm - tud - L - o - W H - o (- 4w i) o - oo (9-362)
2 5 24 120
sa-r.-iu,r?--l—ﬁzrf-icaﬁ,-ug),,s-... (9-36b)
6 12 120
and
=t -t (9-37a)
b, = % (9-37b)
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where

4 = gravitational parameter for the Earth

Substituting K; and K, from Equation (9-35) into Equations (9-34) yields

g3
C = ——— 9-38
' g -fag (9-38a)
- £1
Cy = ———— 9-38b
T figs - fag ( )

- Approximating fi, f5, g1, and g3 by

f=1- -zl-uzr? + 0) G=1,23) (9-392)

g =7 - %uzri’ + 0(ch) Q=123 (9-39b)

Equations (9-38) become

Cy=a; + bu (9-40a)
Cs = a3 + baug (9-40b)
where
a; = - 1_3 " (9-41a)
a3 = - 13'_‘ - (9-41b)
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by = -g(',“ti—ﬁ) [(zs - 11)* - 73} (8-41c)

by = gty (@ - ) - ] (9-419)

Substituting Equations (9-40) into Equation (9-31) gives

_(31 + by ug) 91— r_al- -Bl_ h
-0z = -D< |=-1|+[0|u p (?‘42)
| (a5 + bsuz) 03] L8] [|bs] _J

The preceding three scalar equations involve the four unknown variables @1, 02, 03, and
u;z.

Dotting Equation (9-25) with itself (for i = 2) yields

R} =0} + 2Cy + R, (9-43)
where
Cy =28, ' K, (9-44)
is known. The second scalar equation of Equation (9-42) is
[ ] - y
gz = d; + da Y (9-45)
2
where
d; = dyya; - dzz + dz3 83 (9-46a)
d2 = d21 by + d23bs (9-46b)

and the matrix D contains the elements (dy).
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Substituting Equation (9-45) into (9-43) gives
2 e o BY .« o B 2 )
Rgl d1+dz—-§ + d;-l‘dz'—SC.p-I-R,z (947)
R3 R3

or
RE - [(d])? + diCy + REIBE - u(d3Cy + 21 RE - 42 ()" = 0 (949)

Solving the preceding equation for its real positive root yields Rp, which, from Equa-
tion (9-37b), determines up. Equation (9-42) can then be solved for o1, 02, and @3,
and, finally, Equation (9-25) can be solved for K;, R;, and R,. This sequence of compu-
tations is summarized in Figure 9-2. The resulting position vectors are only approximately
correct because of the truncation of the f and g series to obtain Equations (9-39).

The accuracy of the position can be improved and the velocity vector computed by the
method of Gibbs (Reference 2). This method utilizes the three approximately known posi-
tion vectors K, Rz, and R; to determine the velocity, R; . This allows an additional term
to be retained in the f and g series.

The position vectors R; and R; can be obtained from a Taylor series expansion about R,
as follows:

7

% (9-49)

E=§2+ﬁ21'1+§312i+ﬁg

The vector differences (R; - Ky) and (R; - Ry) can be obtained from Equation (9-49).
Multiplying (R; - K;) by -73 and adding to (R; - Rg) multiplied by ¥ yields

-gR + @G -HR + 3R

. (9-50)
. R :
= —71 72713 [Ez ‘7273?2-1113(‘!'3-}-11) ;4 * ]
where
Ts=T-0 (9-51)

9-15



CALCULATE (GAUSS METHOD) ™\

GIVEN A
—— )
Y
tlo fdl'ml Ql Kl
T a;, a D = L} d3
o LRy - L e T R . 4 > Ri» W & » K
A 73_ bbbi =(du) d;
ta, LS'E’S ) 23 Kg

EQN(9-37a) EGQN{9-41) EQN(9-30), {3-32) EQN{9-46) EQN([9-44) EQN(9-48) EQN(9-37) EQN(9-42) EQN(9-25)

= soLuTon Rs, E,
— —_— 2
o
Tcoﬂvenmn
: TEST
Hy, G, Dy ’ f1. 1 C, [14]
. R .
e Hy, G3. D2 & R .z — e —» f3,p2 —» (C; = -1) —» €2 —» CONVERGENCE m—cm,m
; Rz l.lz ofF 0 01 O3
: Hs, Gs, Dy fnes G s
EQNS(3-58), (9-59). EQN(09-56)  EQN(S-60) EQNS(9-32b), EQN(9-36) EQN(5-38) EQN(9-31)
: (9-57) (9-81)
. L )
. v

CALCULATE {GIBBS CORRECTION)

Figure 9-2. Gauss Method Computational Sequence



Differentiating twice gives
-1'% ﬁl + (Tg - ﬁ) ﬁz + T%ﬁa = =T1 73713 ﬁ'z + O[I_lgw)] (9-52)

Multiplying (R; - K;) by 73 and (R, - Ry) by -, adding the results, and differentiat-
ing twice yields

B} i} ) R
Ta Kl - 713 Fz - T1 Kg = =71 T37T13 22 + O[ng)] (9'53)

Solving Equations (9-52) and (9-53) for R, and R and substituting them into Equa-
tion (9-50) gives

g+ G -DR + 4R

. T ©-54)
= —ﬁ‘ﬁﬂ:[ﬁz - 73—1'% + (73 - ™) T% -0 -1"21]
Substituting the inverse-square law
R = R =123 (9-55)
= =} ﬁ (l = 1y & )
into Equation (9-54) and rearranging terms yields
ﬁz = -D, R] + Dzﬁz + Ds E_e, (9'56)
where
H; . 7
D1801+ﬁ (101,2, 3) (9'5)
with
H, = £ (9-58a)
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H, = -£2 | (9-58b)

12
Hg n H1 - H3 (9-580)
13
G = - -
1 T (9-59a)
71
Gy = ~ .
3 — (9-59b)
Gz = Gl - Ga (9-590)

Knowing R, and E from Equations (9-48) and (9-56), R; and its time derivative R, are
obtained from

R2 = Jﬁz ‘ Kz | | (9'608)

and

R-R (9-60b)

Then Uz can be determined from Equation (9-37b), and U, can be determined as follows:

) -
a = 'E? R, (9-61)

Knowing U, from the preceding equation permits one higher order term to be included in
the f and g series in Equations (9-36). An improved determination of R, is thereby ob-
tained by iteratively solving Equations (9-36) for f; and g (including the higher order
term); Bquations (9-38) for C; and C;; and Equation (9-31) for @1, €z, and @3 After
converged values of @1, 0z, and Q3 are obtained, Equation (9-25) is solved for K, and
Equation (9-56) is solved for R,. The computation sequence is shown schematically in

Figure 9-2.
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9.2.3 DOUBLE R-ITERATION METHOD

The Double R-Iteration method requires an initial guess of the magnitudes R, and R;.
This guess is obtained using the preliminary orbit search technique discussed in Sec-
tion 9.2.3.1. Then the geometric relations of the three station positions and station-to-
spacecraft unit vectors are used in conjunction with the orbital dynamics to determine the
time intervals 7; (between the first and second measurements) and 73 (between the third
and second measurements). A standard Newton-Raphson successive approximation
scheme is then used to correct R, and R, to match r; and 3 to the known intervals 71
and 7s. These calculations are discussed in Section 9.2.3.2. The computed orbit accuracy
determination is described in Section 9.2.3.3, and initiation of the differential correction
process is described in Section 9.2.34.

The Double R-Iteration method can be used when the angle data are spread out over a
considerable arc in eccentric anomaly, whereas the Gauss method is unreliable and may
not converge over large arcs. Conversely, when the measurement arc is short, the Double
R-Iteration method is not as successful as the Gauss method.

9.2.3.1 Preliminary Orbit Search

During the preliminary orbit search, initial estimates of the spacecraft radius vector mag-
nitudes at the times of the first two measurements (t; and t;) are determined, subject to
the constraint that these radius magnitudes be consistent with a trajectory that does not
impact the Earth. To accomplish this, an initial estimate of the spacecraft altitude, h, at
time t; is needed. From this initial estimate, potential values of the spacecraft radii, R,
and R,, at times t; and t; are assigned using the cone-masking technique (see Appen-
dix B, Section B.1, of Reference 4 for a discussion of this technique and derivations of
the equations used). These R, and R; estimates are refined until a pair is found that is
likely to produce a valid final state vector. These refined values of R; and R; are then
used in the differential correction process, which is discussed later.

The number of such (R;; R;) pairs so checked is determined by the search level. Each
such level determines a specific region in the (R, Rz ) space whose perimeter is searched
for a good trajectory to match the data.

9.2.3.1.1 Algorithmic Estimation of Upper and Lower Bounds on Spacecraft Heights

For a given search level, L, the upper and lower bounds for R, are set, based on the
cone-masking technique using the following procedure. Given an initial height estimate,
h,, at time 1z, two possible values of R, are tried, i.e.,

Ra = Ry, + B K . (9-62a)
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R;- = Ry, + hz KT (9-62b)

where R,, is the magnitude of the station vector R,, and the default value of K is 1.25.
Por each such value of R,, the resulting slant range, 0z, and position vector, R, are
. found from

e 3 [-Cn v B (569
and
K=ol + K, (9-64)
where
Cp = A, - R, (9-65)

Initial estimates for the upper and lower bounds on R; are then assigned as

Rimin = Re, (9-66a)
Rimax = Riup (9-66b)

where R,,, is equal to 105 kilometers.

Using the following definitions,

B = cos™ (—%’) ‘ (9-67a)
i-f R (9-67b)
L1 - ES
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r R Rt R-")_ | (9-67c)

b
L 'R
=31, -K (9-67d)
=R, +b Ll -FK (9-67€)
R; Y
def - 8-|—— 9-67
g8 (tan ﬂ) (. f)
the quantity A can be calculated by
A=T:-b-d@® b (9-68)

If A is negative, R; can be calculated directly using Equation (9-74) below. Otherwise,
the following computations are made:

oy m —x@ - - /B (9-69a)
A R (9-69b)

Cotn = COS%> B -1 (9-69¢)

For those values of ¢ greater than Cpu (for j = 1 and 2), better values of Rymiz 8nd
Rimax Can be determined as follows.

Hq<0.then
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If o1min > 0, then

Rimin = Qimin f.] + K, (9-71a)
Rimin = [Rimin (9-71b)
If ¢ 2 0, then
Oimex = 3 ¢ + b (9-72)
If gimax & 0, then
Rimsx = Qumax L1 + Ry (9-73a)
Rimax = |Rimax| (9-73b)

and no upper bound on R; has been found for the associated value of R, and L.

Next, a value is assigned to R; for the current search level, L, and value of R, as
follows.

¥ Rimin < R, and if Rimax > Ryups then
Ri(L, Rz) = ryo (9-74)

where i is equal to the equatorial radius of the Earth, R,, plus 1000 kilometers (by
default), and

Ryy(L, R2) = rip = Rimin (9-75a)
Rll(Ls Rz) - Rlup (9‘75b)

No valid upper and lower bounds have been found.
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Otherwise,

Rimi¢ = Rimm + Rz - Rimin) (H) (9-76)

where rqo is equal to ryp by default.

I Rypa > Rimax, then Rymg = Ry . Finally,

Ri, Rz) = Rimi¢ (9-77a)

Riu(ls Rz2) = Rimax — Rimi¢ - (9-TTv)

Ryl Rz) = Rimig - Rioun (9-77¢)
If Rymax > Riup, then

Ru(L, Rz) = Rimia = Rimin (9-78)

In this way, upper and lower limits on R, are set for each of the two assumed values of
R;.

9.2.3.1.2 Preliminary Orbit Search for a Given Level

Upper and lower bounds for R; have been set based on the cone-masking technique and
on the two trial values of R, computed in Equations (9-62). A search is then undertaken
to identify values of R; and R, within the current search level that give the best agree-
ment with the input measurements. '

Within the current search level, L, four times L (4L) trial pairs (R4, R, ) are computed,
and an attempt is made to fit an elliptical orbit through each pair. Each (R;, Ry) pair is
determined by selecting values for two integer exponents (E;, Ez) in the following man-
ner (see Figure 9-3). For the first search level (L = 0), By = B; = 0 (i.c., the origin) is
used. For L = 1, integer exponents are chosen based on the coordinate values of the filled
dots on the innermost diamond in Figure 9-3. For L = 2, they are chosen from the
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Figure 9-3. Pattern Used in Determining Exponents for the
First Three Search Levels (L) :

coordinate value of the filled dots on the next diamond, and so forth for each level. The
values of E; and E; for the first three levels are listed in Table 9-1.

For a given value of E;, R; is computed using
R; = Ry, + B K™ (9-79)

which corresponds to one of the R, values found in Equation (9-62). The corresponding
value of R, is found based on Ry, L, Ry, and Ry, as follows. First,

(5 1 _
J = max (g. I-<-) (9-80)

where K is the value in Equations (9-62). If E; > 0 and if an upper bound for R; was
found previously, then

R; = Ri(L, R;) + Ru(L, Ry) (1 - T%) (9-81)
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Table 9-1. Values of B, and E, for the First Three Search Levels

SEARCH LEVEL (L) E E;
0 0 0
1 _ 1 0

0 1
-1 0
0 -1
2 2 0
1 1
0 2
-1 1
2 0
-1 -1
0 -2
-1

If E; > 0 and if no upper bound for R, was found, then

R; = Ri(L, R;) + Ru(l, R K™ (5-82)
If E, < 0 and if no upper or lower bound for R, was found, then

R; = Ry(L, R) - Ry(L, Ro) (1 - J) (9-83)

If E, < 0 and if valid upper and lower bounds for R, were found, then

Ry = Ri(L, R2) - Ru(L, Ry) (1 - K™®) (9-84)

If the current search leyel is the first level, the initial orbital parameters and accuracy,
Qo, are determined as in Sections 9.2.3.2 and 9.2.3.3 using the initial estimates of R,
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and R, (rjo and ryg, respectively). The orbital parameters and accuracy, Q, for the cur-
rent values of R, and R; are then found, regardless of the search level. If Q is less than

Qo, the current values of R,, Rz, and Q are

Q =Q (9-85a)
Tip = R1 (9-85b)
ro = Re (9-85¢)

and the next (R;, Rp) pair for the current scarch level is processed.

If Q> Qp > Qmin (Qumin = 0.2 by defauit), then the next (R,, R;) pair is processed as
above. If Qg < Qumm, then the preliminary orbit search is ended, and the current values of
R, and R, are used as the starting values for the differential correction process discussed

in Section 9.2.3.4.

9.2.3.1.3 End-of-Level Search Processing

I, at the end of a given search level, the accuracy, Q, of all the points tried is still not
acceptable, the next search level is processed. If all search levels have been processed
and the accuracy is still not acceptable, then the best (R,, R) pair found in the orbit
search (i.c., the pair that gave the smallest Q value) must be used as the initial estimate
for the differential correction process.

9.2.3.2 Computation of Orbital Parameters

The orbital parameters that are consistent with the current values for R; and R; are
determined using the procedure discussed in this section.

From Figure 9-1 and Equation (9-25), the slant range vector from the station to the
spacecraft is

o=R-K, (=1223) (9-86)
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Dotting Equation (9-25) with itself yields Equation (9-43) rewritten for the i measure-
ment as follows: -

d+aCp+t®-RH)=0 (=123 (9-87)

where

Cp=2L "R (=123 (9-88)

Solving Equation (9-87) for g, and p; by means of the Binominal Theorem gives

R R A =) (5-89)

where the positive sign on the radical is known to yield the correct root from physical
considerations. Initially estimating R, and R, Equation (9-89) can be solved for oy and
oz and Equation (9-25) solved for R; and R, . Knowing K; and R, merely defines the
orbit plane (in terms of Q and i) and two position vectors in this plane. However, there
are numerous orbits (in terms of a and e) that satisfy the two position vectors K; and R;.
Therefore, a third position vector, along with the orbital dynamics relationships, is neces-
sary to uniquely determine the orbit being measured.

The quantity ﬁ is defined as the unit vector perpendicular to the orbit plane, i.e.,

A K} X Eg '
- — 9-90
k R R (9-90)

Then, since the third position vector Ry must lie in the orbital plane,

K-k=0 (9:91)
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Substituting Equation (9-25) into Equation (9-91) yields

o

3 L]

03 =
ﬂs'a

Knowing @s, the geocentric vector Ry can be obtained from Equation (9-25). Note that

when @s lies in the orbit plane, R,, and £3 are perpendicular to k and Equation (9-92)
is singular. Should such a singularity occur, a different measurement time t3 must be
used. Thus the vectors K;, K;, and R; have to be determined as functions of the esti-

mated vector magnitudes R; and R;.

(9-92)

The difference in the true anomalies can be determined as follows:

cos (§ - f) = ERT'RE G, k=1, 2, 3) (9-93a)
k N

sin (f - fi) = s ‘/1 - cos? (f; - fy) Gok=1,2,3) (9-93b)

where

f = true anomaly
s = orbit direction indicator, determined as described below

If it is not known whether the orbit is direct or retrograde, this is determined as follows.
Tnitially, it is assumed that the orbit is direct (s = +1). The quantity T,,, denotes the
period of a spacecraft orbiting at the mean radius of the Earth, where

o
men B e

If Tyn < T3 < -7y, then s is computed as

s = sign(Rz X Rj); (9-95)
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However, if -7; < Tmyp and ~7; < 73, then s is computed as

§ = sign (M) z
R; Rz (9-96)

= sign (Wy)

Then the orbit direction, s, is assigned as

+ 1 direct
= -9
5 {- 1 retrograde 697

and the orbital inclination, i, is given by

. - W,
i = cos™ [m] (9-98)

The quantity W, appearing in the equations above is the z component of the vector W.
This vector (which is parallel to the angular momentum unit vector), consistent with R,
and R, (assuming a direct orbit), is found using

_ E} X Ez .
W S (9-99)

If an orbit has been computed previously and the direction is to be determined, a test for
orbit reversal (i.c., direct to retrograde or vice versa) is made by comparing the sign of
the current value of W, from Equation (9-99) with the corresponding value for the previ-
ous determination. If the signs are the same, no orbit reversal is assumed to have oc-

curred.

If the signs are not the same, such a reversal may have occurred, and this is accommo-
dated as follows. If

oy < min (9-1002)
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and

7y < T_;.’?- (9-100b)

then such a reversal has already been allowed for through the value of s in Equa-
tion (9-97). Otherwise, the following computations are made:

fmjn = min [lfz - f]l, Ifg, - fz[, [180° - Ifz - f]l |, |180° - |f3 - fzI] (9'101)
5 = [90° - i (9-102)

The computed orbit direction is assumed to have changed if the inclination, i, is close to
90 degrees and if neither spacecraft position vector pair forms an angle close to 180 de-
grees. That is, if

d<1° (9-103a)

and
5 < 0.04 foum (9-103b)

then
sin (fz - f;) = .—sin {; - fy) (9-104a)
sin (fs ~ f;) = -sin (fs - fy) ' (9-104b)
sin (fz - f;) = ~-sin (fy - f2) (9-104c)

and it is assumed that reversal has occurred.

To correct the estimated values of R; and R;, it is necessary to compute the resulting
time intervals between (R, K;) and (R;, Ry) to obtain residuals as actual time
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differences. The semilatus rectum obtained from Gaussian sector to triangle theory (Ref-
erence 2) is :

R; + CaRs - Ca Ry
1 +GCs-GCn (5-105)

or, dividing the numerator and denominator by C,

p = G R] + C3Rs3 - R; (9-106)

C1+C3-1

where

R, sin (fs - f2)

C = R, on (fa ) (9-107a)
Cn = E—: %{% (9-107b)
C, = i—z %{% (9-107¢)
o, . RsinG-t) 01076

R; sin (fa - )

. For very short measurement arcs, both Equation (9-105) and Equation (9-106) are poorly
determined, and the Gauss Method (Section 9.1.2) should be used. The singularity inher-
ent in Equation (9-105) when f; - f; = & can be avoided, along with other numerical
difficulties, by using Equation (9-106) when f3 - f; = |fs -~ fz| and using Equa-
tion (9-105) when f5 ~ f; > [fs - f2l.

From Equation (3-222) the conic equation for true anomaly is

e cos f; = -1% -1 (=123 (9-108)
i
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Expanding factors of the form sin (f; + f; + f;) gives the
|sin (f, - )| > |sin (fs - f2)}: |

—e cos f; cos (f, - f)) + e cos f;

e
¢ snt sin (& - &)

Otherwise,

e cos f, cos (fs - f2) — e cos fs

£ =
€ sin f sin (f5 - f2)

following for

(9-109)

(9-110)

From Equations (9-108) through (9-110) the eccentricity, e, can be determined as

e? = (e cos f2)* + (e sin f3)?

and the semimajor axis, a, is determined from

For an elliptical orbit (e < 1), the following are obtained:

hzl\/E
a a

27
T= —
60n

h, =a(l-¢) -Re
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where

= semimajor axis

mean motion

-l O P
H

= orbital period in minutes

=
=
1

perigee height
h, = apogee height

The eccentric anomaly, E;, is given by

sin B = -%i— J1 - e? sin f; G=1,2,3) (9-117a)

and

cos E; = %(e + cos fp) (i=1,23  (9-117v)

Equations (9-117) can be written as follows for the second measurement point:

S, = [e sin By] = %2- J1 - e? [e sin f3] (9-118a)
C. = [e cos E;] = -I;—z (e + [e'cos f2]) (9-118b)

The following equations for differences in eccentric anomalies expressed as functions of
true anomaly differences can be obtained by expanding Equations (9-117):

sin (Es - E) = 7‘:°—p sin (f - £) - %& (1 - cos (s - )] Se (9-119)
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RaRg
ap

cos (B; - Bz) = 1 -

[1 - cos (f; - f3)] (9-119b)
sin (B - Br) = — sin (fa - f1) + = [1 - cos (f2 - £)] Sa (9-1190)
Jap P

cos (B, -E)) =1 -

R: Ri 11 - cos (f; - )] (9-119d)

Kepler's equation (Equation (3-178)) is written as

M=E-esinE (9-120)

where M is the mean anomaly. Mean anomaly differences about the second point can be
written as

M; - M; = E; - E; + 28, sin? (E3 ; E‘) - C, sin (B; - By (9-121a)
M, - M = E; - E; - 25, sin? (E’—;-E) _ C, sin (B - Ep) (9-121b)
where
E; - B, = tan’! ;c‘:; ((i*’; — i’:)— | (9-122a)
E, - E, = tan’! :': (;’: - ?1))- (9-122b)

9.2.3.3 Determination of the Accuracy of the Computed Orbit

A determination can now be made of how well the computed orbit fits the measurements
by comparing the times between measurements, as determined from the computed orbit,
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with the true measured times. First, using the mean anomaly, the mean time interval
between the computed measurements is calculated as follows (not allowing for multiple

revolutions between measurements):

7 - M - M, (9-123a)

5= M - My (9-123b)

Next, the number of full revolutions (1) between consecutive measurements (if these are
not known) are approximated as

= INT
Aoy o ( . (9-124a)
mins n

b

r
-T1 + 11

732 — T3z
( 23:1 (9-1 24b)

Asy = INT

The total computed time between consecutive measurements, T, is then computed by

Tate = -T1 + 41 (%:-r-) (9-125a)
' 2n
T33¢ = Ty + 132 (—n-) (9-125b)

If a differential correction is currently being performed, the differences between meas-
ured and computed time differences are determined as

ATy = =71 = Tac (9-1268)

ATs; = 73 — Taze (9-126b)
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and the overall accuracy of the fit, Q, is computed as

Q= #ATgl + AT%z

If a differential correction is not currently being performed, the following values are set:

71 Tae

(9-127)

Tzr = max T - (9-128a)
Tazr = max —T-'t:;_i:’ %: (9-128b)

and the accuracy of the current fit, Q,, is computed as
Qi = V(Tair - 11 + 0.543;) + (Teer - DA + 0.5 %) (9-129)

If both -7, and 73 are greater than 0.5 Tmy,, then the accuracy for the reverse orbit is
also determined as above using

Ty = 22 0‘:‘: - M) (9-130a)
Ty = 22° (1‘:3 - My) (9-130b)

in place of T;; and Tj;, thus generating an accuracy Q..

If Q; < Q;, then the original orbit fit is accepted, the orbit accuracy, Q, is set equal to
Q,, and Ty and Tjy, are kept. Otherwise, the reverse orbit direction is accepted as best,
Q is set equal to Q,, and (from Equations (9-130))

Ta1e = T (9-131a)

Tse = Ta (9-131b)

In either case, the time differences, AT, are determined next using Equations (9-126).
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9.2.3.4 Initiation of the Differential Correction Process

Once the parameters for the initial orbit fit have been determined as above, the accuracy
of the fit is determined using Equation (9-127). If the accuracy is less than a lower limit,
the orbit has been adequately determined. Otherwise, an iterative differential correction
process is initiated to refine the orbit (i.e., obtain a better fit to the measurements). Each

iteration consists of the following steps:

1. Assuming the current values of R; and R;, a new set of orbital parameters at radius
values (R, +AR, R;) (where AR = 10~ kilometer) are determined via the method
given in Sections 9.2.3.2 amd 9.2.3.3, yiclding the parameters ATz (R; +AR),
ATs2(R; +AR), Q(R; +AR).

2. Another set of parameters is then determined at radius values (R;, Rz+AR), yield-
ing parameters AT31(R; +AR), ATzz(R; +AR), Q(R; +AR).

3. Next, one of two methods is used to derive the corrections, Or;, to the assumed
values of R;. Por the first 12 iterations, a simultaneous linear equation method is
used: and for the remaining iterations, a Newton-Raphson method is used.

9.2.3.4.1 Method of Simultaneous Linear Equations

In this method, corrections to the assumed radius magnitudes, 0r; and ér3, are found by
forcing Equation (9-127) to zero. Using a two-dimensional Taylor series expansion and
keeping only the linear terms,

dAT ATy

= ATy (Ry, Ry) + —2= AR AR 9-132a
0 = ATz1(Ry, Rp) + R, 1+ R, 2 ( )
0 = ATy(Ry Ro) + 2512 AR, + 2202 AR, (9-132b)
dR; oR;
The partial derivatives are approximated by
3AT; _ AT;(Ri+AR, Ry) - ATy(Ry, Ro) (9-133a)
R, AR
ATy _ ATu(Ri, Rz +AR) - ATz (Ry, Ry) (9-133b)
R, AR
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aATsz - Ang(Rl -I-AR, Rz) - Ang(Rl. Rz)

aR4 AR

8ATs; _ ATn(Ri, R; + AR) - ATs:(R;, Rp)

oRz AR

. The determinant (det) of Equations (9-132) is then found as

3AT;; 0ATx _ 9ATs; 0ATx
8R1 aRz 8R1 .' aRz

det =

(9-133¢)

(9-133d)

(9-134)

If |det| < 10713, then the Newton-Raphson method described in Section 9.2.3.4.2 is

used. Otherwise, the corrections 8r; and Jr; are found using

det; = BTy . AT;;(Ry, Rg) - 9BIn . ATs(R1, Ra)

oR:z IR,

det; = 94Ty . AT3(R;, Ro) - 9ATn . ATy (Ry, Ra)

aR; aR-l

det,
ory = —
n det

det;

&r, =
2 det

(9-135a)

(9-135b)

(9-136a)

(9-136b)

The effective slope of the hyperplane satisfying Equations (9-132), on which the Jr; lie, is

found as

- Q(Rlo RZ)
Jdrﬁ + Or?
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9.2.3.4.2 Newton-Raphson Method

In this approach, the accuracy, Q, of the solution is forced toward zero by varying the R; .
Using '

Qo = Q(R1, Ro) (9-138a)
Q: = Q(R;+AR, Ry) (9-138b)
Q; = Q(R;, R:+AR) (9-138c)

found as described in Section 9.2.3.3 (after Equations (9-130)), the following approxima-
tions are made:

0Q _ Q-  (9-139)
oR, AR
90Q Q- Q (9-139b)
aR2 AR

The corrections dr; are then found using

QY (N}
S = ‘/(B_Rf + (Efi;) (9-140)

)
aR,) _Q_o (9-141a)
1% 77 s
aQ)
R~ 9.141b
by = - 31:3 . % ( )
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9.2.3.4.3 Scaling of the Solution

Next the 8r, are scaled so that they do not exceed the maximum allowed corrections. If
Qo = Q(R;, Ry), then the scaling factor So is determined as follows:

1
Sm = (9-142)
ME T TRl ol [l e
_:i h 1 ' _?_ hz , Cmu: ' mex
4 4
So = min (1.0, Sm) (9-143)
where
Cmax = maximum allowed correction
hy = Ry - Ry
h2 = R2 = Rlz
R,, = distance of the station from the center of the Earth for the measure-
ment at t

R, = distance of the station from the center of the Earth for the measure-
ment at t;

Next, the solutions are scaled using
or; =Sy * Ory (9-144g)
61'2 = So * 6!'2 (9'144b)

If the computed slope, S, is not too close to zero, then new values of ATz;, AT3z, and Q
are found at (R;+0r;, Rp+d8ry) using the methods described in Sections 9.2.3.2 and
9.2.3.3. The accuracy, Q, is then set as follows:

01 = Q(R;l + 6]’1, Rg + dl'g) (9-145)
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I Q < Q (i.e., if the solution with ér, and Or; is better), the inner loop processirg
described in Section 9.2.3.4.4 is skipped.

If S is too close to zero or if Q; is greater than Qq, the dr; are again scaled so that
neither exceeds the magnitude of the adjustment on the last loop of the same differential
correction type (i.e., Newton-Raphson or linear equations method). This is done using

B = yoér2 + or} (9-146a)

S, = ! ; (9-146b)
max | 1.0, =
(10 7)
Ory = Sy © Ory (9-146¢)
dry = S + Or; (9-1464)

where fB' is the value of § from the previous loop of the same differential correction type.

New values of ATz;, ATsz, and Q at (R, +8r;, Rp+0r2) are then found using the methods
described in Sections 9.2.3.2 and 9.2.3.3. If Q, is greater than Qq, then the inner loop
processing described in Section 9.2.3.4.4 is performed, initially halving (7 = 1/2) the dr;

to get better agrecment.

If

Ql < Qo (9-147&)

but

S; > 1.0 (9-147b)

then inner loop processing is skipped. Otherwise inner loop processing is performed,
initially doubling (7 = 2.0) the déry to try for better agreement.
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9.2.3.4.4 Inner Loop Processing

At this point in outer loop processing, up to 20 inner loops will be performed, each inner
loop scaling the dr, to try to get better accuracy. In this discussion, the following defini-
tions are made:

and
dti=9n-0n (=12 (9-148a)
Qi = QR +0ry, Ro#drs) (9-148b)
Qo = Q(Ry, Ry) | (9-148¢c)
If
|8r,| - | 6r1| < 0.25 Ar (9-149)

(where Ar = 10~ R,), then dr; is accepted (not dry), and inner loop processing is termi-
nated. Otherwise, ATz, ATz, and Q' are recomputed at (R, +6r1, Ry +0rz), where

Q' = QR +dr}, Ry+4r) (9-150)

If 7 >1and Q > Qq, then Jr; is accepted (not dry), and inner loop processing is termi-
nated. Otherwise, more inner loops are performed.

If n <1, then

|ér' | = J@r)? + Or) (9-151)

If Q' = Qo but [&' | < 0.5 Ar, then a solution has been obtained and inner and outer
loop processing is terminated. If Q" = Qo but | dr' | > 0.5 Ar, then the next inner loop
is performed. .
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If Q < Qp but the Newton-Raphson differential correction method is being used, then
inner loop processing is terminated because a good solution is assumed. If Q' < Qo but
the linear equation method is being used, a parabolic fit is tried using the following:

{ =

(5!'1
6!'2

6!’1

(51’2

Q:

New values of ATz;, ATs, and

Q!‘

1

_( Q - U )
2 00—20'1'01

or}
éra
ory (1 + §)
ora (1 + §)

Ql

Q(R; + 6ry, Ry +3dr2)

(9-152a)

(9-152b)

(9-152¢)

(9-152d)

(9-152¢)

(9-152f)

(9-153)

are found as before at (R, +0r;, Ry+0ry). If Q' < Qq, a good vector has been obtained
and inner loop processing is terminated, keeping dr; and dr, as the best values. Other-
wise, the orbit found using the dr; was poorer than the one using Ory; in this case, inner

loop processing is terminated, keeping dr; and dr; as the best values.

9.2.3.4.5 End of Differential Correction Loop Processing

If all inner loops are exhausted with no orbit improvement being found (i.e., if Q" > Qo
at the end of loop processing), then no more loops are performed. Otherwise the new

values for R, and R, are found using

Ri =Ry + 61‘1

Rg = Rg + 61‘2
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If the value of Q corresponding to the Ry in Equations (9-154) is less than a specified
tolerance (whose default value is 0.0005 second), the solution is deemed acceptable and
no more iterations are performed.

If Q/Qpo is less than 0.99, the differential correction process is converging rapidly enough
and further iterations are performed. Otherwise, the accuracy improvement is too small
and the differential correction on this loop is said to have failed. If & total of three (not
necessarily consecutive) loops fail in this way, further corrective measures must be taken.

If the initial estimates of the heights or radius magnitudes were input or the total timespan
(t3 — t;) is less than 5 minutes, and if the minimum acceptable perigee has not been
lowered previously, then the minimum perigee height is lowered by 0.1 R,, and further
loops are attempted. Otherwise a second preliminary orbit search is performed as de-
scribed in Section 9.2.3.1 using default heights of 20,000 kilometers, and the entire orbit

extraction process is reinitiated.

9.2.3.4.6 Determination of Final Orbital Vector

Once the differential correction loops have been completed, the final orbital parameters
are determined as before, and the final spacecraft velocity vector, R., is generated using

f=1- :;-[1 — cos (E; - Ep)] (9-155)

3
g =1~ \/% [Es - E; ~ sin (Es - Ep)] (9-156)
K, = -;—(KS - £R)) (9-157)

9.3 RANGE AND ANGLES METHOD

The Range and Angles Method determines the spacecraft position and velocity by fitting
two-body orbit relations to GRARR, C-band, or USB range and gimbal angle data in a

regression manner.

A set of m chronologically ordered radar data vectors are available from the GRARR,
C-band, and/or USB systems. Each vector consists of a range measurement and two
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gimbal angle measurements. The measurement vectors are first transformed to the
station-centered topocentric local tangent Cartesian coordinate system. The GRARR and
USB angles, X and Y, are transformed to azimuth, A, and elevation, E, as shown in
Equations (9-8) and (9-9). The C-band data vectors and transformed GRARR and USB
data vectors are then transformed to local tangent coordinates as follows:

B .
Xy cos B sin Ay

B, =| Yu | = @] cos E; cos A i=12..,m (9-158)

|z | sinE

The local tangent vectors are then transformed to true of reference date or mean of
B1950.0 or J2000.0 inertial coordinate systems as described in Section 9.2.1, i.e.,

o= MyBO) o, (9-159)

The station position vector in geocentric inertial Cartesian coordinates, given in Equa-
tion (9-24b), is

Ei =@ C)T fsu, (9-160)

where the station coordinates in body-fixed axes are given in Equations (9-15) and (9-16).
Vectorially adding the station vectors, R,,, and topocentric spacecraft vectors, T, yields
the geocentric spacecraft position vector

KR=R+& (=12 ..,m (9-161)

A two-body orbit is then fitted to the m position vectors by using the f and g series,
expanded about a desired epoch time

R=fR+aR @G=12 .,m (9-162)

Multiplying the preceding equation by f, and then summing on i yields

m

zfiﬁi"zfizﬁo +Zfigiﬁo (8-163)
=1

i1=1 i=1
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Multiplying Equation (9-162) by g1 and summing on i yields

imm-iﬁgiﬁo +i 8 K (9-164)

i=1 j=1 iz1

Solving Equations (9-163) and (9-164) simultaneously for Ry and R‘o ylelds the desired
inertial geocentric position and velocity at epoch:

z of Z iR - S‘ fi &1 y g R

£51 S
phTn

Equations (9-165) and (9-166) are solved iteratively by successively improved approxima-
tions for f; and g;.

The orbit is initially approximated by a circular orbit with the semimajor axis, a, obtained
by averaging the m position vectors as follows:

1
a-;Zm (9-167)
i=1

The mean motion, n, is

n=_/& (9-168)
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and the mean anomaly measured from epoch is
M -M=n( - t) (9-169)

The coefficients f and g for the two-body circular orbit, corresponding to each measure-
ment vector, are (Reference 2)

fi = cos M; - Mp) (9-170a)
g = % sin (M, - M) (6-170b)

Substituting the preceding fjand g into Equations (9-165) and (9-166) yields the first
approximation for Ry and Ro. After the initial iteration, the coefficients f; and g are
calculated from the following procedure.

Reference 3 presents a general method for computing f; and g; as functions of R, and
Ro. The Sundman transformation is used to obtain a new independent variable ¥ defined

by

y 1
Y = X (9-171)

The coefficients f;and g; are determined from the relations

fim1l- "_%'ﬂ‘-)- (9-172a)
g = Ro Sa(y) + 60 S2(yy) (9-172b)

The velocity E can be determined by

K =R+ 8 R (9-173)
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where

P - - -usl(wl) 9.

fg —_—RIRO ( 174&)

g wi- %@Q (6-174b)
']

and the time difference between K; and R, is
o=t -t = RoSi(yy) + 0o S2() + u Ss(w (9-175)
The parameters Op is
=R R | (9-176)
and the parameters S;, Sz, and S; are obtained by solving Kepler’'s equation by succes-

sively approximating ¥ to satisfy Equation (9-175). The method, described in Refer-
ence 3, is summarized below.

After initially estimating a value of ¥, the quantity 4 is calculated from

A=ay? (9-177)

where

a-FK 'K - % (9-178)

If |A] > 1, the value is saved as 4y, and 1 is repeatedly divided by 4 (keeping track of
the number of divisions, m) until |1] < 1.

The parameters Co, C; .., Cs are next computed as functions of A, as follows:

3Cs '(1 *{1 *[1 +(1 "{1 *[1 *(1 *19‘}15) 17‘}15] 1sf14} 13‘}12) nfw] 9{3} 7‘}6)/40 (9-1782)

G "(1 *{1 *[1 *(’ +[’ *[1 "(1 “13'}17) 15f15] 14‘}13} 12‘}11) 103» 9] 8‘?7] sfs)/z‘ (9-178b)
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1

¢ ‘f_“.;_"c_” (9-178¢)
C = % + iCy {(9-178d)
Ci o« 1+4C (9-178e)
Co=1+iC (9-178f)

If the initial value of 4 has been reduced (i.c., M > 0), then Co is compared with the
quantity

' MAX 2™
Co = [—K-{-z(z - )] (9-179)

where MAX is approximately the maximum positive number representable in the com-
puter (e.g., MAX = 107% for the IBM 4300 series). If Co > Co, then Co is set equal to
Cp. Next, C; is compared as follows:

MAX (f Co < 1)
C; = (9-180)

MAX/(CM) (@fCo = 1)

If C; > Ci, then C; is set equal to Cj. With these values of Co and Cy, new values are
computed by applying the following equations M times:

C] = C1 * Co (9-181)
Co = 2C3 - 1 (9-182)
The new values for C,, Cs, Cyr 8nd Cg are found using 2, from

c, = L1 (6-183)
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C -1

Cs = (5-184)
C, = _Cz_;;ﬂ . (9-185)
3Cs = 3’9%9—5 (9-186)

The parameters S;, Sz, and S; are calculated as functions of C;, C3, C3, and @ as
follows:

S = Cy (9-187a)
Sz =Gy (9-187b)
Sy = Cayp (9-187¢)

The time interval between the point corresponding to ¥ and the reference epoch, to, is
determined from Equation (9-175) to be

() = RoS; + 0082 + 4453 (9-188)
and the geocentric radius corresbonding to ¢ is
R(p) = |RoCo + 0o S1 + 1Sz | (9-189)
The difference between the desired time increment 7; and z(¥) is
At = 7 - 1o $1(¥) - 0o S2(¥) - & Ss(¥) (9-190)

The successive approximation scheme involves correcting ¥ to cause Ar to vanish. The
finite difference form of Equation (8-171)

v = “_]:R.& (wherey = Oatt = o) (9-191)
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aids in determining the iterative correction algorithm

AT

) (9-192)

Y1 = Y& -

When the solution has converged, the value y; that yields 7, is obtained. Values of S1(y)
and S(1) are a by-product and are used to determine f; and g by means of Equa-
tions (9-172).

Repeating the preceding process for the data times tj, t2, ..., tm, the values of f; and g
(for i = 1, 2, ..., m) are obtained for substitution into Equations (9-165) and (9-166),
along with data measurements R, K, ... R,. These equations yield new estimates of Ro
and K, to commence the next iteration. This computational sequence is shown schemati-

cally in Figure 9-4.
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APPENDIX A—TRAJECTORY SENSOR SYSTEMS
FUNCTIONAL DESCRIPTIONS AND PREPROCESSING

The trajectory sensor systems measure the various propagation characteristics of electro-
magnetic or optical signals transmitted between the satellite and tracking stations (or
other reference sources). These data are subsequently used to determine the satellite
trajectory. The dependence of these measurements upon the relative states of the space-
craft provides the key to the orbit determination process.

This appendix provides a brief functional description of the trajectory sensing systems
currently included in GTDS. It aiso describes the procedures followed in preprocessing
the data prior to GTDS processing. (More detailed descriptions are available in Refer-
ences 1 and 2.) The computations given in these descriptions are independent of GTDS
and are presented primarily for informational purposes. However, they do provide an
insight to the condition of the data at the preprocessor/processor interface which is neces-
sary to understand the processor measurement models described in Chapter 7.

A.1 GODDARD RANGE AND RANGE-RATE (GRARR) SYSTEM AND
APPLICATIONS TECHNOLOGY SATELLITE RANGING (ATSR)
SYSTEM (No Longer Operational)

The functional and preprocessing descriptions for the GRARR and ATSR systems are
given in the following subsections.

A.1.1 FUNCTIONAL DESCRIPTION

The GRARR System (References 1 through 7) and the ATSR System (References 1, 6,
and 7) determine and record the spacecraft range, radial velocity, and angular position.
The GRARR and ATSR systems are located at the tracking sites shown in Table A-4 of
Reference 8. These systems transmit a continuous wave signal from the tracking station
antenna at a carrier frequency, vy, which is modulated by a low-frequency tone, vp. This
signal propagates to the spacecraft’s omnidirectional antenna, where the received fre-
quency, vy, appears to be slightly different from that transmitted (»r) because of the
uplink Doppler shift. The received signal is modified by the spacecraft transponder elec-
tronics and retransmitted back to the ground tracking station. Again, the signal experi-
ences a downlink Doppler shift so that the frequency, ¥, received at the ground, differs
from that transmitted to the spacecraft. The 30-foot-diameter ground receiving antenna is
automatically steered through two gimbal angles, Xso and Yy or A and E (shown in
Figure A-1), to maximize the received signal strength. As the signal is processed through
the ground electronics system, the spacecraft transponder modification is undone and the



transmitted carrier frequency is subtracted. At the output, the differenced Doppler signal
(reflecting the uplink and downlink Doppler shifts) is modified by the addition of a bias
signal of known frequency, #.

ZENITH

¥~ NORTH

TRACKING STATION

EAST LOGAL HORIZONTAL PLANE

Figure A-1. Schematic of GRARR Gimbal Angles

The following three different types of measurements result from signals received during
the frame time interval which begins at frame time tg:

1. The gimbal pickoff angles, X and Y or A and E, defining the direction of the
received signal path at the antenna at time tr, are recorded in degrees and
decimal fractions.

2. The two-way range time delay is measured as a count C; of the number of
cycles of a reference frequency ¥, occurring between positive-directed zero
crossings of the low-frequency ranging tone (frequency = v ) associated with
the transmitted and received signals. The counter is started and the frame
time, tg, is signaled simultaneously by a zero crossing of the transmitted sig-
nal. The counter is stopped by the next zero crossing of the received signal.
Since the lowest sidetone frequency for the GRARR System is 8 hertz, the
maximum unambiguous one-way range measurement corresponds to a distance
of approximately 18,787 kilometers. Distances greater than this produce phase
shifts larger than one cycle of the v signal. When this occurs, the GRARR
System utilizes a pseudorandom binary code to determine the range ambiguity
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number, @a, the number of whole cycles to be added to the counter-measured
fractional phase shift. The ATSR System does not require an ambiguity resolv-
ing system since it is used only in conjunction with ATS synchronous satellites
which remain in the same ambiguity period during a pass.

3. The two-way range-rate measurement is made by counting the number of cy-
cles, Co, of a reference frequency, Vs,, required to count exactly N cycles of
the Doppler-plus-bias signal, va + %, in the GRARR System and 100 times
v4 + w, for the ATSR System. The count also is started at the frame time, tg,
and ended after the accumulation of N cycles of the va + W signal. All
GRARR stations except Santiago have been modified to remove the depend-
ency of Cop on the independent frequencies ¥, and vg,. The modification
amounts to deriving the reference and bias frequencies from the same source
as the transmitted frequency.

The gimbal angles X3, and Y, (or A and E) are measured only at the frame time, tr;
but the range and range-rate measurements are made at the frame time and at three
subsequent data sample times t, within the frame time interval. The spacing of these data
samples (and hence the timespan of a data frame) can be varied to give range and range-
rate recording rates of four, two, or one samples per second or six samples per minute.
ATSR stations can also record at a rate of eight samples per record. The data, one angle
sample and four range and range-rate samples for each frame, are punched on paper tape
at the tracking station in standard Baudot five-level teletype code and then transmitted to
GSFC via teletype to be preprocessed.

A.1.2 PREPROCESSING DESCRIPTION

The GRARR and ATSR data processing procedures and interfaces are obtained from
References 1 through 6 and have been revised to reflect subsequent modifications in the
software. Emphasis is placed on the preprocessor computations, but the interfaces with
the stations and the processor are also included. Figure A-2 summarizes the sta-
tion/preprocessor/processor interfaces and provides an aid in the ensuing description.

The data are formatted into frames at the station. Each frame contains four sets of range
and range-rate measurements, Co and C,, as well as a single set of gimbal angles, Xsg
and Y,, (or A and E). Each frame is time-tagged in station time, tr. Prior to transmis-
sion to GSFC, data calibration corrections are applied to the data, and the time tag is
corrected for the propagation delay of the WWV radio signal from transmission to its
reception at the tracking station, i.e.,

tp = tr + Atwwv (A-1)
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Figure A-2. GRARR and ATSR Data Preprocessor Computations and Interfaces




Thus, tr corresponds to the UTC time at initiation of the range counter. Each range
measurement, Cy, is divided by the reference frequency, Vr,, thereby converting it to a
time interval, Atg, with a standard transponder delay, Ar, accounted for as follows:

G
Atp = — - AT A2
T ow (A-2a)
where
~ 0 (for S-band)
) 2
& {" 17.1 microseconds  (for VHF) (A-2b)

Each frame of data is received at GSFC in approximately the format A shown in Fig-
ure A-2 (data quality, carriage return, line feed, and figure shift indicators are omitted).
These data are then preprocessed as described in the following subsections.

A.1.2.1 Gimbal Angles

The gimbal angles, Xj and Ys; (%00.00 to +90.00 degrees) or A (000.00 to
360.00 degrees) and E (000.00 to 090.00 degrees), are unaltered in the preprocessor.
Atmospheric refraction corrections must be applied later in the processor.

A.1.2.2 Range

The range measurement, C,, is corrected to the two-way propagation time interval, Atg,
at the station. In the preprocessor, the interval is converted to one-way distance by multi-
plying by one-half the velocity ¢ of the signal propagation as follows:

0 = %Atn (A-3)

-where ¢ is equal to the speed of light.

The preprocessed range, o', always lies in the first ambiguity period and must, therefore,
be corrected for range ambiguity in the processor. Furthermore, the transponder delay is
a function of the received signal frequency at the spacecraft transponder. Therefore, any
deviations from the standard transponder delay deducted in the preprocessor must be
accounted for in the processor. The time at each of the four range samples within each

frame is
t, = tg + kAtgp (k=0,1,2 3) (A-4)

where Atgp is the reciprocal of the recording rate.
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The time ¢, is the ground receive time in UTC, corresponding to each range sample. The

range and gimbal angles correspond to the spacecraft’s position at the time it retransmits

the tracking signal. Therefore, the times must be corrected for the one-way light time in

~ the processor. The gimbal angles cotrespond to the first time (i.e., k = 0 in Equa-
tion (A-4) on each frame).

A.1.2.3 Range Rate
The interpretation of the Doppler cycle count, Co, as a measure of the tracking station-to-
spacecraft relative range rate rests upon the following assumptions:
1. The Doppler effect can be adequately represented by the theory of special rela-
tivity.
2. A simplification can be made in representing the motion of the tracking station.

Assuming the tracking station motion is uniform in inertial space, it is shown in Appen-
dix C that the average range rate (in the sense of the Theorem of the Mean) over the time

interval between t, and ty+Atgg iS

(% - 2g)
Oug = ‘“‘N (A-5)
2 - (- i)

where the Doppler-plus-bias count time interval, Atgg, is

Co
Atpg = —— A-6

Equation (A-5) is used for the GRARR station at Santiago. Since ATSR stations count
N cycles of 100 times the two-way Doppler-plus-bias frequency, the range-rate equation
for the ATSR station data is

=

él\"



The average range rate, @,.., in BEquations (A-5) and (A-7) is dependent on the three
frequencies vr, %, and ¥a,. Four of the GRARR stations were modified by driving
and wg, with the transmitted frequency vr, ie.,

Yp = My VT (A-8a)
VR, = M2 V1 (A-Sb)

where m; and m, are the constants given in Table A-1.

Table A-1. GRARR Station Constants

GRARR STATIONS m, ™y

fosman

VHF crystal 175000 1/16
Tananarive

S5-band crystal 1/3800 1/180
Carnarvon

s-band PLL* 074500 O/1225
Falrbanks

*@ = phase locked transponder muitiplication constant {Raference §)

Substituting Equations (A-8) into (A-5) yields the relation for preprocessing Doppler data
from these frequency-independent GRARR stations, as follows:

c(m; - mz g—)
s (A9)
2 -my) - (mz "'I:I‘)
Co

A more precise modeling of the Doppler data is provided by the range difference formula
in Appendix C. In this optional processing mode, the preprocessor computes

bavg

M c
. —— At - -
e Zve Atms (o Atgg - N) (A-10)



rather than @, . The processing program compares ¢ with the range difference calcu-
lated by Equation (7-41).

A.1.2.4 Smoothing

The range, range-rate, and gimbal angle data are finally smoothed by regressively fitting
tow-order (third or fourth) polynomials to at least 20 samples each of range and range
rate and at least 5 samples each of the gimbal angles. A least-squares method is used for
the polynomial fits, and a 2.50 data rejection criterion is used to eliminate wild data. The
midpoint values of the polynomials replace the original data. The smoothed values are
stored in a format similar to format B shown in Figure A-2 for subsequent use in the
processor. |

A.2 C-BAND RADAR TRACKING SYSTEMS

The STDN C-band radar tracking systems are amplitude-comparison monopulse instru-
mentation systems that measure the range, azimuth, and elevation of spacecraft. The
range measurement is unambiguous up to 59,926.1 18 kilometers.

The NASA C-band radars are of two basic types: the FPS-16 and the FPQ-6, both of
which have a low-speed data rate of one per 6 seconds. In addition, there are FPQ-14,
FPQ-13, FPQ-15, TPQ-18, and ALCOR C-band radars. Descriptions of all these radar
types are as follows:

e FPS-16 Radar. This radar has a 3.6-meter diameter parabolic antenna mounted
on an azimuth-elevation pedestal. The antenna reflector surface consists of
wire-mesh panels supported by radial trusses. The antenna has a four-horn
monopulse feed supported on a tetrapod located at the focal point of the an-
tenna reflector.

e FPQ-6 Radar. This radar is a second-generation system derived from the
FPS-16 and offers several major improvements: tracking capability to greater
distances, greater angle tracking precision, and rapid target detection and lock-
on. It has a 9-meter diameter, solid-surface, aluminum parabolic antenna with
Cassegrain feed. The FPQ-6 antenna is mounted on an azimuth-elevation ped-

estal.

e FPQ-14, FPQ-15, FPQ-13, and TPQ-18 Radars. The FPQ-14 radar is similar to
the FPS-16 and offers all of the improvements of the FPQ-6. The radar is
computer integrated with the on-axis system. The FPQ-15 radar is functionally
identical to, but differs physically from, the FPQ-14, The FPQ-13 radar is simi-
lar to the FPS-16, but has a more powerful transmitter, a 6.1-meter diameter



antenna, and is computer integrated with the on-axis systen. The TPQ-18 radar
is identical to the FPQ-6, except that the electronic equipment is housed in
modular shelters, making the entire system transportable.

e ALCOR Radar. The Advanced Research Project Agency, Lincoln C-band Ob-
servable Radar (ALCOR) is a high-power, narrowbeam, coherent, and chirped
C-band monopulse system capable of simultaneous skin and beacon tracking. It
provides azimuth, elevation, range, and range-rate data. It has a range accuracy
of 0.5 meter in narrowband mode, 0.1 meter in wideband mode, and an angle
accuracy of 0.005 degree. The ALCOR has a 12.2-meter diameter parabolic
antenna with a gain of 54 decibels and a beamwidth of 0.3 degree. The peak
power output of the ALCOR radar is 4 megawaltts, with an average power of
10 kilowatts.

The functional and preprocessing descriptions for the C-band radar tracking systems are
given in the following subsections.

A.2.1 FUNCTIONAL DESCRIPTION

The pulse radars used most frequently to support NASA satellite tracking are listed in
Table A-4 of Reference 8. These radars measure the two-way light time from the antenna
to the spacecraft as well as the antenna pointing angles. The antenna gimballing system
records the azimuth and elevation angles A and E shown in Figure A-l.

The usual mode of tracking & satellite via a C-band radar is similar to the GRARR Sys-
tem. The two-way light time of a transmitted pulse and associated gimbal angles are
measured and time-tagged at the ground recejve time of the return pulse. The range
measurement is corrected for satellite transponder time delay, and the time tag is cor-
rected for system delays and WWV propagation time delay. The resulting two-way time is
converted to units of distance by multiplying by one-half the speed of light. These correc-
tions are performed at the tracking site. There is no range ambiguity or range-rate associ-
ated with this type of system.

A.2.2 PREPROCESSING DESCRIFTION

" The data received from the C-band tracking site is calibrated, corrected for transponder
delay, and time corrected. The preprocessor converts the range data from yards (reccived
from the station) to kilometers (1 meter equals 3.280839895 international feet) and the
gimbal angles from mils to degrees (6400 mils equals 360 degrees). The time tag corre-
sponds to the ground receive time.

Capability must be provided in the processor to account for atmospheric refraction and
light-time correction of the time tag.
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A.3 STDN RANGING EQUIPMENT (SRE) UNIFIED S-BAND (USB)
AND VERY HIGH FREQUENCY (VHF) SYSTEMS

The functional and preprocessing descriptions for the SRE USB and VHF systems are
given in the following subsections. -

A.3.1 FUNCTIONAL DESCRIPTION

The SRE system provides sidetone ranging and coherent Doppler tracking data. The SRE
operates with the wideband exciters and the wideband multifunctional receivers (MFRs).
The SRE is used with both the USB and VHF systems.

The SRE VHF ranging system operates in the 136- to 155-megahertz band. This system,
when measuring the range, uses either basic sidetone ranging techniques or a hybrid
ranging mode that uses sidetones and a pseudorandom ambiguity resolving code (ARC).
Range-rate measurements are obtained by using coherent Doppler techniques.

The USB System provides Doppler, range, and angle tracking capability, with concurrent
transmission and reception of voice, command, television, and telemetry data. The SRE
USB system operates in the 2025- to 2300-megahertz band and utilizes a single carrier
frequency to provide tracking and communication with the spacecraft. The sidetone range
measurement is independent of the Doppler measurement and is unambiguous up to a
range of approximately 15,000 kilometers. A pseudorandom ARC extends the unambigu-
ous range measurement to approximately 644,000 kilometers. The USB SRE low-speed
data rate is normally one per 10 seconds.

The USB System (References 1, 2, 4, 7, and 9) determines and records the spacecraft
range, range-rate, and antenna gimbal angle positions at the globally located tracking sites
listed in Table A-4 of Reference 8. The USB System transmits a continuous S-band car-
rier signal with a modulated pseudorandom code. The nominal uplink signal frequency of
2 gigahertz is multiplied by a constant (k = 240/221) at the coherent spacecraft transpon-
der and is retransmitted to the receiving stations.

The USB System range measurement is made by means of an autocorrelation involving a
pseudorandom code, which is modulated onto the S-band uplink carrier and coherently
turned around by the transponder. The locally generated code at the ground station under-
goes a variable delay when compared with the received code, which has undergone a
two-way propagation delay. When the inserted ground station delay equals the two-way
propagation delay, the autocorrelation has a maximum value and the inserted ground time
delay is a measure of the slant range.

With the long code or normal pseudorandom noise code, the USB range measurement is
unambiguous to a range of 958,000 kilometers. However, the range word readout size
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limits the maximum range readout to 644,000 kilometers. Normally, only one such range
acquisition is made over a single tracking station, and subsequent range readouts are
obtained by updating the initial measurement by integrating a clock Doppler signal. That
is, once range acquisition is made, the ranging code is switched off and a clock modula-
tion is switched on. The relative phase change of the clock signal, as relayed via the
spacecraft, is then a measure of the range change.

As presently configured, the clock is not an integral submultiple of the carrier frequency;
however, the smallest increment of range change in the tracking format (termed the range
unit (RU)) corresponds to approximately 16 cycles of two-way carrier Doppler change.
Thus, whenever the vehicle moves a radial distance of approximately 16 half-wavelengths
of the carrier frequency relative to the ground station, one RU is recorded. One RU
corresponds to 1.0496936 meters of range. The range update is done at the tracking site
and, from an equipment standpoint, is essentially independent of the carrier Doppler
tracking information which is also contained in the raw USB data format. Only the re-
ceiver radio frequency and intermediate frequency stages are common to the range and
range-rate channels. :

The raw time tag associated with the range corresponds to the UTC ground receive time
and includes an onsite correction for the WWV propagation time delay. Typically, all USB
remote site clocks are synchronized to the U.S. Naval Observatory master clock to within
50 microseconds. The USB dish antennas employ an X-Y gimbal mounting system (see
Figure A-1). The 30-foot diameter antennas employ an X, axis aligned north-south,
whereas the 85-foot antenna X axis is aligned east-west. The X axis is always con-

tained in the local tangent plane.
The basic measurement of the range rate in the USB System is that of carrier frequency

Doppler phase change. The downlink carrier from the spacecraft is coherently tracked by
a phase-locked ground receiver. The essential system functions are the following:

1. The uplink carrier has a nominal fixed frequency of 2 gigahertz derived from a
cesium clock source. :

2. The transponder receiver onboard the spacecraft is phase-locked to the uplink
frequency plus the uplink Doppler shift. '

3. The transponder transmitter frequency is coherently derived from the uplink
carrier plus uplink Doppler shift. A fixed frequency turnaround ratio of
2407221 is used for all USB tracking.

4. The ground receiver is phase-locked to the downlink signal, which is at the
transponder output frequency plus the downlink Doppler frequency shift.

5. In the two-way mode, a 1 megahertz signal is subtracted from the ground re-
ceiver signal prior to comparison with a signal that is coherent with the
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transmitted carrier frequency. The basic output is then the Doppler frequency
plus a stable 1 megahertz bias.

The raw data consist of whole cycle counts of the phase change, which is a direct measure
of the spacecraft radial change relative to the station. The basic measurement N is a
nondestruct cycle count of the carrier phase shift plus bias over a time period Atgg. It is
termed nondestructive since, although the counter is read out at even time intervals, the
accumulated count is not destroyed. Thus, the average frequency is obtained by differen-
cing the count in adjacent frames and dividing by the sample time.

The Doppler count, N, is resolved to 0.01 cycle through the implementation of the Time
Increment Resolver (TIR). Cycle resolving gives a precise measure of the time between
the start of the data interval and the time at which the last positive-directed zero crossing
of the biased Doppler signal is counted. This time duration is measured by counting the
cycles of a 100-megahertz oscillator. The Doppler count, along with the TIR count, will
appear in the same data transmission frame. In the high-speed format, the granularity of
the TIR is 10 nanoseconds; while in the low-speed format, the granularity is
40 nanoseconds.

The normal low-speed data rates of the USB System are onc frame per six seconds and
one frame per 10 seconds. The low-speed data are derived onsite from the high-speed
data, which are in a 240-bit format. High-speed data are simultaneously available at a rate
of 10 frames per second, 5 frames per second, or 2.5 frames per second, depending on
the operator selection at the onsite USB data processor. USB sites are capable of obtain-
ing gimbal angle and range-rate data without ranging, in contrast with the GRARR Sys-
tem, which always provides range data.

A.3.2 USB PREPROCESSING DESCRIPTION

The USB range data are transmitted from the sites in octal, with a granularity of
1.0496936 meters. The output of the data handler is the one-way range in kilometers with

no data corrections applied.

The N-count and TIR required to compute the range rate are transmitted in octal with a
granularity of 1 cycle and 40 nanoseconds, respectively. The one-way and three-way
Doppler data are converted to range rate in kilometers per second through the following

equations:

FOC = [N(‘) - NG - A““‘)] 4CEH 1079 (A-11)
Atpr .
N'() = N() - FOC (A-12)
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. N°(t) - N'(t - Atgs) ¢
Ouyg = [ A - 105] (ﬂ) (A-13)

where

FOC = fractions of a cycle

N(t) = contents of the Doppler counter at time t
N*(t) = Doppler counter at time t corrected by TIR
C(t) = contents of the TIR counter '

Atgz = sample interval of the Doppler counter

ém = average range rate
¢ = speed of light
K = transponder turnaround ratio (240/221 for USB)

vr = transmitter frequency

The angular measurements are the X and Y gimbal angles, with the 85-foot sites having

the X axis aligned east-west and the 30-foot sites having the )1{ axis aligned north-south.
The data are transmitted in octal with a granularity of 6.8664 x 107 degrec. The data
handler outputs the angles in radians.

The time tag associated with all USB angle data is the ground receive time, corrected
onsite for WWYV propagation delay.

A.4 MINITRACK SYSTEM (No Longer Operational)

The functional and preprocessing descriptions for the Minitrack System are given in the
following subsections.

A.4.1 FUNCTIONAL DESCRIPTION

The Minitrack System (References 1, 7, 10, and 11) is basically a radio direction finder
which utilizes the interferometer principle to locate a radiating transmitter carried by a
spacecraft. The Minitrack network is composed of seven stations, globally located as

listed below:

e Quito, Equador
e Santiago, Chile
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Winkfield, England

Johannesburg, South Africa
Fairbanks, Alaska

Orroral Valley, Canberra, Australia
Tananarive, Malagasy Republic

Each system consists of a series of six horizontal baselines at each station, three oriented
cast-west (EW) and three oriented north-south (NS), as shown in Figure A-3a. A fixed
antenna system is located at each end of each baseline to receive a nominal
136-megahertz signal transmitted continuously from a spacecraft as it passes within view
of each station. The spacecraft transmitter frequency can be preset to any of 2000 fre-
quencies between 136.000 and 137.999 megahertz in steps of 1 kilohertz. Each set of
three EW or NS baselines consists of a fine, medium, and coarse baseline. The fine
baselines are accurately surveyed to be 46 or 57 times the vacuum wavelength of the
nominal 136 megahertz signal. The medium and coarse baselines are 4.0 and 3.5 nomi-
nal wavelengths, respectively.

The principle underlying the Minitrack System is illustrated by the following simplified
two-dimensional case (see Figure A-3b). The spacecraft transmitter is assumed to be lo-
cated at an elevation angle a and at a very large distance from the station so that re-
ceived signals appear to be planar wavefronts, e.g., BC and B’'C'. The baseline distance
AB is a multiple Ng of the nominal 136 megahertz vacuum wavelength. At any given
instant, the phase of the signal along the propagation paths AC' and BB’ is characterized
by the two sinusoids shown in Figure A-3b.

The separate signals received by the two antennas at A and B are fed into a phase counter
which measures the phase difference between the two signals, normalized to a fractional
part of the received signal wavelength, e.g., ar in the figure. This measurement gives no
information concerning the additional number of whole wavelengths that occur between
the signal received at antenna A and the signal received at antenna B. This ambiguous
integral number, as well as the fractional phase displacement itself, is dependent upon the
wavelength of the received signal, 4, the length of the baseline, Np, and the spacecraft
_angular geometry, a. Thus, the reason for the multiplicity of parallel baselines (i.e., 46 or
57, 4- and 3.5-wavelength bases) is to resolve the integral cycle count ambiguity on the
longer (fine) baseline. This resolution is accomplished by synthesizing a 0.5-wavelength
measurement by differencing the 4.0- and 3.5-wavelength baseline phase difference meas-

urements, i.e.,

8p.s = 84.0 ~ a3.3 (A-14)

where a indicates the absolute phase difference.
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Figure A-3. Minitrack Baseline and Signal Reception Geometry
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It would be impractical to build a 0.5-wavelength baseline, since the antennas would
physically interfere with each other. The synthesized 0.5-wavelength phase difference,
ay.s, is unambiguous since the extra path length, corresponding to AC in Figure A-3b, is
less than one wavelength. By similarity of triangles in the figure, the absolute length of
the path AC can be estimated from the 0.5-wavelength value as follows:

Ngp
= —— 8 A-15
ar 0.5 ap.5 ( )

where Ng = 46 or 57

In practice, ao s is not precise enough to be used directly to obtain ar. Therefore, a
slightly more complicated process is used to determine the unambiguous fine phase dif-
ference, ar. Knowing ar, the direction cosine is

AC &F
= m — A-16
cos a (A-16)

For the three-dimensional case, the corresponding ratios obtained from the EW and
NS phase difference measurements yield the direction cosines ¢ and m of the signal path
at the station.

Each fine baseline has its own phase difference counter; hence, two measurements (EW
and NS) are recorded simultaneously. The four ambiguity baselines (EW and NS, medium
and coarse baselines) share a single counter through a multiplexed digital recording sys-
tem. Since all measurements cannot be made simultaneously, the sequence of recordings
for each data frame occurs according to the schedule of Table A-2. These data can be
recorded at the rate of one frame every 1, 2, 10, 20, or 60 seconds. The fine baseline
counter registers a decimal number between 0.000 and 0.999, and the medium and coarse
baseline counter registers a decimal number from 0.00 1o 0.99.

The frame rate is generally scheduled so that 31 frames give complete coverage of the
usable data for a spacecraft pass over a station. A message consisting of up to 31 frames
is punched on paper tape at the tracking station in standard Baudot five-level teletype
code and transmitted via teletype to GSFC for preprocessing.

A.4.2 PREPROCESSING DESCRIPTION

The Minitrack preprocessing procedures and interfaces are obtained from References 10
and 11 and have been revised to reflect subsequent modifications to the software. Fig-
ure A-4 summarizes the station/preprocessor/processor interfaces and provides an aid in
the following description.
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Table A-2. Minitrack Counter Sequence

TIME REGISTERED BY INITIATION OF BOTH INITIATION OF AMBIGUITY
MINITRACK DATA CLOCK FINE BASELINE COUNTERS COUNTER AND BASELINE SAMPLED
ts* X EW madium
1y + 0.2 seoond X EW coarse
tr + 0.4 sscond X NS medium
ty + 0.6 second X NS coarss
iy + 0.8 second X

*tr = UTC &t the baginning of the frame

At the Minitrack station, the fine, medium, and coarse phase difference measurements
are sampled and recorded in frames, as described in Section A.4.1. The time tag, tr, for
each frame is corrected at the station for the propagation delay of the WWV signal from
transmission to reception at the tracking station. Thus, tr corresponds to UTC time at the
beginning of each frame. Each frame of data is transmitted to GSFC in approximately
format A shown in Figure A-4 (the data signal) (strength indicators are omitted). These
data are then preprocessed by rectifying the shift in whole cycle counts between consecu-
tive fine, medium, and coarse phase difference measurements and then least-square fit-
ting low-order polynomials to the data. Electronic system filter delays are corrected in the
polynomial time variable, and calibration corrections are applied to the data.

The ambiguity correction for the fine phase data is determined from the medium and
coarse data. At each output time, a 0.5-wavelength baseline phase difference, ap.s,
is synthesized from the 4.0-wavelength baseline (medium) data, a4.o, and the
3.5-wavelength baseline (coarse) data, as,s. The medium and coarse data are obtained
from the smoothing polynomial previously determined.

Because of its short baseline, the synthesized 0.5-wavelength baseline data is an absolute
(unambiguous) phase difference (the underscore denotes absolute phase difference).
Were it not for inaccuracies in @o,s, it could be used to determine the ambiguity correc-
tion for the fine data. To minimize the amplification of these measurement inaccuracies,
ap.s is used to correct the ambiguities in a3 s and a4.¢, which are then used to synthesize
as s, corresponding to a fictitious 7.5-wavelength baseline reading. Finally, a; s is used to
correct the ambiguity in the 46- or 57-wavelength baseline fine data. This stepping proc-
ess is described mathematically in Section A.4.2.3.

A-17



AEWps ANSp
AW ANSy

SEWo BNSp

STATION : PREPROCESSOR EBQCESSOR

o SAMPLE e LINEARIZATION o ATMOSPHERIC
MEASUREMENTS AND DATA REFRACTION
FOR EACH FRAME SMOOTHING CORRECTION

¢ CORRECT FRAME * TIME
TIME FOR WWV ADJUSTMENT
PROPAGATION AND ZENITH
DELAY CALIBRATION

o AMBIGUITY
RESOLUTION

¢ ANTENNA FIELD
CORRECTION

e CONVERSION TO
DIRECTION
COSINES

FORMAT A FORMAT B

Is, It

AMBIGUITY FINE DATA
—A— —t—
8, .Nnn ._lgw?| "INSF
M, agwg, Sfwpr ANSp
tF

H! ‘NSM; .iwr'
D. ans. SEwp MNsg
Ip, Im, l%wru 'v,sqsr

D,H M, S
Ip

Ig, It

I, m

DAY, HOUR, MINUTE, AND SECONDS OF TIME 1
INDICATES POLAR ANTENNA (hip = 37) OR EQUATORIAL ANTENNA (Np = 46)
SATELLITE AND STATION IDENTIFICATION
PHASE DIFFERENCE MEASUREMENT:
i = NS (NORTH-SOUTH) OR EW {EAST-WEST)
§ = FINE (F), MEDIUM (M), OR COARSE (C) BASELINES
k = k™ DATA POINT WITHIN FRAME
DIRECTION COSINES OF THE RECEIVED SIGNAL

Figure A-4. Minitrack Preprocessor and Interface Schematic

A-18




At each output time, the absolute fine phase difference data are corrected for antenna
field corrections and converted to direction cosines for use in subsequent processing, Data
at different output times from the same station are correlated by means of the smoothing
polynomials, which are used to replace the actual measurements.

The preprocessing steps summarized above are described in more detail in the following
subsections.

A.4.2.1 Data Linearization and Smoothing

As stated in Section A.4.1, up to 31 frames of data are recorded for each spacecraft pass
over a station. Each frame of data contains five fine, one medium, and one coarse
baseline phase-difference measurements from each east-west (EW) and north-south (NS)
baseline set. Thus, up to 155 fine, 31 medium, and 31 coarse baseline measurements are
recorded from each of the EW and NS baseline sets for each spacecraft/station pass.

The fine phase difference counters register only from 0.000 to 0.999. Therefore, it is
possible that the absolute value of the difference between consecutive readings can be
numerically larger than 0.500. This is assumed to mean that a new cycle crossing oc-
curred between measurements and that the measured data should be rectified by adding
or subtracting a full cycle count to one of the points. This process of rectifying the data by
converting to nonmodular number sets is called linearization.

A.4.2.1.1 Ambiguity Data

The ambiguity data (medium and coarse baselines) are linearized first since it is less
likely that the phase difference will exceed +0.50 between consecutive points with these
data. The linearization is accomplished as follows:

1. Beginning with the first phase difference measurement, the difference between
consecutive points is calculated, i.e.,

0 = a4y — @ (A-17)

2. If & lies within the range -0.500 < 8, < 0.500, no rectification is necessary. If
8, = 0.500, then integer multiples of 1.000 are subtracted from a;; until §;
lies within the range -0.500 < &; < 0.500. If §, < ~0.500, then integer multi-
ples of 1.000 are added to a,; until & lies within the range

-0.500 < &; < 0.500.

3. The index i is then updated and steps 1 and 2 are repeated until all phase
difference measurements have been rectified.
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This linearization process is applied separately to each of the EW and NS medium and
coarse baseline data sets. The components of the resulting data vectors, bEW,r FNSM,
BEw,, and bys., have the correct relative phase, but the vectors may have an incorrect
absolute phase.

After linearizing the medium and coarse baseline data, quadratic smoothing polynomials
are least-squares fitted to each of the four data sets. The polynomials are of the form

bp = Ap + Ba7 + Cy 72 (A-18a)
where
n= EWM, EW.:, NSM, NS,-_-, (A-le)

and 7 is the time measured from tgy, the frame time of the midframe (middle frame of
the data sets), i.e., ¢ =t - ts. When the polynomial coefficients are determined, the
ambiguity data are tagged at their frame times; thus, each of the polynomials is biased in
time by the multiplexer time delay. The multiplexer time delay is accounted for later
when the polynomial is evaluated. Ambiguity data exhibiting unusually large deviations
from the smoothing polynomials are rejected during the fitting process.

A.4.2,1.2 Fine Data

The linearization procedure for the fine baseline data is somewhat more complicated than
for the ambiguity data, since the phase change between data in successive frames can
exceed one cycle. Therefore, an approximation to the EW and NS data phase change is

estimated as follows, using the fine phase rate, ap :

8 = au1 ~ 8 — Bplties = 1) (A-19)

The fine phase rate is determined by averaging the ratioed slopes of the medium and
coarse smoothing polynomials at the middle frame time, tem,

- Ne { Bc By
= e—] — —_— = A-20
=7 (3.5 ¥ 4.0) (Np = 46 or 57) (A-20)

The quantities Bc and By are the coarse and medium phase rates from Equation (A-18)
at the middle frame time, i.e.,, T = 0.
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The fine phase linearization is accomplished as described in Steps 1, 2, and 3 in the
preceding section but using the estimated difference given by Equation (A-19). The
components of the resulting data vectors, ng,, and 'ENS,,. have the correct relative phase,
but the vectors may have an incorrect absolute phase.

After linearizing the fine baseline data, their time tags, t,, are computed for the appropri-
ate sequential position within each frame by accounting for sequencer delay, Atp, and for
the counter delay in the phase readout digitizing equipment, At., as follows:

t, = tp + Atp + A, (A-21a)

where
Atp = 0, 0.2, 0.4, 0.6, 0.8 (A-21b)
depending on the relative position of the data point within its frame (see Table A-2), and

At, = 0.01 af (A-21c)

Cubic smoothing polynomials are then least-squares fitted to the linearized and time cor-
rected EW and NS fine baseline data. The polynomials are of the form

bm = An + Bntm + Cmﬁn + Dn T:sn (m = EWE, NSF) (A-22)

where. Tr, is the time measured from the middle point of each data set. The NS and EW
midpoint times, tu,, can differ due to the correction At,. Fine data exhibiting large

deviations from the smoothing polynomials are rejected during the fitting process.

A.4.2.2 Time Adjustment and Zenith Calibration

The four ambiguity polynomials and two fine baseline polynomials, in Equations (A-18)
and (A-22), are inconsistent in terms of their time variables. The ambiguity polynomials
neglect sequencer delay and usc a reference time equal to the midframe time, tem. The
fine polynomials use a reference time equal to the time of the midpoint, ty,, of each data
set. Neither of the polynomials accounts for the delays between the time the signal is
received at the antennas and the times the phase differences are sampled and tagged, nor
do they account for calibrations in the phase difference measurements.
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These discrepancies are accounted for by making the following corrections to the fine
baseline smoothing polynomials:

bn = [An] + Bum + Cu%h + DT (A-23)
where
Ap = Ap - Zn, (A-24)
Ty =t =t (A-25)
tm = tmg + %% + Kl - 04 (m = EWf, NSp) (A-26)

The correction terms are defined as follows:

Z, = zenith calibration constant that accounts for internal system changes
* such as aging and maintenance of electronic components, phase shifts
caused by antennas and feed lines, and unequal lengths of cable con-
necting the antenna pairs

KF, = delay of approximately 36 milliseconds caused by the fine filter

KI = delay of 0.120 second due to the optional 2-hertz bandwidth filter
when it is used

The 0.4-second delay in Equation (A-26) accounts for the difference between the time of
the middle point, ty_, and the midframe time, tey. This term shifts the reference time of

the fine polynomials to that of the corrected midframe time. The notation [ ] denotes that
the integer part of the number is truncated, leaving only the fractional part. This trans-
forms the phase difference to the first ambiguity period at the reference time.

The ambiguity polynomials are corrected for sequencer and 2-hertz filter delay, their
reference times are made equal to those of the fine polynomials, and calibration correc-
tions are applied as shown in the following equations:

by = [An] + BT + Cu P (A-27)
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where

A=Ay +Bath-t) +Caltn - ) - Zn (A-28)
T=t- 1 (A-29)
t = tpm + Aty (A-30)

and

m = EWr for n = EWy or EWe
m = NSg for n = NSy or NS¢

The correction terms are defined as follows:

Z, = same as Z, above

Ats = correction due to sequencer delay, plus a 0.15-second delay due to a
2 hertz bandwidth filter in the digital recording system,

-0.15 for EW medium
A 0.15 for EW coarse (A-31)
ta = 0.25 for NS medium

0.45 for NS coarse

The first three terms on the right in Equation (A-28) account (approximately) for the shift
in reference time of the ambiguity polynomials.

A.4.2.3 Ambiguity Resolution

The time adjusted and calibrated smoothing polynomials provide the proper relative phase
difference (time variation). The phase difference magnitudes are reduced to the first am-
biguity period when the constant terms A, (n = EWg, EWy, EWc, NSp, NSy, NSc) are
reduced to their fractional parts in Equations (A-23) and (A-27). Since the time variation
of the polynomials is proper, the coefficients B,, C, (and D, for fine polynomials) are
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correct and only A, needs to be altered to accommodate the ambiguity resolution. Fur-
thermore, A, = by (7 =0) = b, is the smooth, time-corrected, and calibrated ambigu-

ous phase difference at approximately the midframe time.

The stepping process, summarized at the beginning of Section A.4.2 and described in
detail in References 10 and 11, is then performed to determine the absolute phase differ-
ences of the fine baseline polynomials. Throughout the following description, [ ] denotes
the fractional part only, and { } denotes the minimum phase difference, i.e., -0.500 <

{} < 0.500.

The absolute phase difference for a fictitious north-south and east-west 0.5-wavelength
baseline is determined from the medium (4.0-wavelength) and coarse (3.5-wavelength)
baseline relative phase differences by o and bj s as follows:

bo.s = {[bao - b.s]} (A-32)

The absolute phase differences for the medium and coarse baselines are obtained as
follows:

bs.s = 7bo.s (A-33)
bss = bys - {[bs.s - b3s]} | (A-34)
bso = 8bo.s (A-35)
bao = bao — {[bso - biol} (A-36)

The absolute phase difference for a fictitious 7.5-wavelength baseline is determined from
the absolute medium and coarse data bso and bs s, as follows:

b7.s = bas + bao (A-37)

Finally, the absolute phase difference for the fine baseline is determined from the abso-
lute 7.5-wavelength baseline data, as follows:

by = 97.5(%) (a-38)
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br = br - {[br - brl} (A-39)

The above process is performed for both EW and NS baseline data. The resulting EW and
NS fine baseline absolute phase difference polynomials are

bm(f) = bz = 0) + BT + Cu1® + Dp7® (m = EWg, NSp) (A-40)
where

T=t-ty (m=EWg NSg (A-41)

A.4.2.4 Antenna Field Correction

The calibration Z, given in Equation (A-28) is determined as an average over the usable
antenna field. There are distortions in the field patterns, however, and they are corrected
by the following calibration polynomials operating on the corrected absolute phase differ-
ences, bws, and bew,, obtained from Equation (A-40). These corrections are of the form

s -[5]-feel] [ e
DNSe] corrected G CaCo] | sy Cal T
2 10 43
. [ Cs Cu] QEWF . [Cls Cis EI;WP (A-42)
Cio Cazf | bise] C14 C16j | bisp
+ [ C17 C]g] sin (2.1! t_)Ew,) + [ Ca1 C23] cos (23: D.BWF)
Cys C20) | sin (27 bnsy) | Czz Caa] | cOS (27 bnsy)

where the coefficients C; are obtained by field calibration.

A.4.2.5 Conversion to Direction Cosines

The direction cosines ¢ and m' of the corrected phase differences are determined from
the corrected absolute fine baseline phase differences by dividing by the distance between
the fine antennas, expressed in wavelengths of the received signal. The fine antennas are
positioned to be Ng (46 or 57) times the nominal 136.000 megahertz vacuum wavelength.
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For transmitted signal frequencies, vy, the baseline length in terms of the transmitted
frequency is (Np v1/136.000). Therefore, the direction cosine of the received signal from
the station centered local tangent east-pointing axes is

, 136.000
! = @Ewr)corrected (W) (A'43)

and the direction cosine to the local tangent north-pointing axis is

, 136.000
m = @Nsr)comcted (W) (A-44)

A.4.2.6 Processor Considerations

Several aspects of the preprocessing procedure influence the accuracy and use of direc-
tion cosine data in subsequent orbit determination processing. First, the sampled data are
approximated by a cubic polynomial which is used to determine the direction cosines. The
cubic polynomial can introduce time-correlated errors into multiple direction cosine pairs
obtained from the same station pass. Therefore, the variance of the residuals between the
cubic polynomial and the data should be scrutinized, and consideration should be given to
limiting the direction cosine data to one pair per station pass. Second, the received signal
frequency in Equations (A-43) and (A-44) neglects the downlink Doppler shift and as-
sumes that the transmitted and received signal frequencies are the same (i.e., vg = vr).
Finally, the direction cosines ¢’ and m’' correspond to vacuum signal paths. Thus, atmos-
pheric refraction corrections and light-time delays must be applied in the processor.

A.5 VERY LONG BASELINE INTERFEROMETER (VLBI)
(Not Currently Available in GTDS)

As in the Minitrack System, the VLBI System measures the phase differences at two or
more ground stations when they simultaneously receive the same radio signal. However,
in the VLBI system each terminal is controlled by its own independent frequency standard
so that there is no necessity to use cable or microwave links to preserve the phase coher-
ence among these stations. This permits the stations to be separated by arbitrarily large
distances, typically on the order of thousands of kilometers. Since the angular resolution
of any interferometer is directly proportional to the length of the baseline, the VLBI con-
cept permits the position of the radio source (e.g., satellite) to be determined to a much
greater degree of accuracy than is possible with a short baseline system like Minitrack.
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The principle underlying the VLBI concept is illustrated by the simplified two-dimensional
geometry shown in Figure A-5. The figure shows a signal, characterized as a planar
wavefront, being simultaneously received at stations A and B, which are separated by
distance D. The phase difference, Ag, between the two received signals is related to the
separation of the stations D as follows:

A = (-];-) cos 8 (A-45)

where @ is the source direction and 2 is the signal wavelength. When the value of @ is
such that A¢ is an integral number of haif-cycles, i.e., 8 = cos™!(n A/2D) where n is an
integer, the signals received at each terminal are in phase or antiphase, and a relative
extremum of power is available from the interferometer.

/
/
d =mcAt + AA¢
7/ N\
/
/ \\ 7/
A AP WAVEFRONT .
z N
’
Al 0 » B

Figure A-5. Simplified Schematic of VLBI

As the source transits the interferometer, a power (or intensity) response such as that
shown in Figure A-6 is produced. The abscissa is time, which is related monotonically to
the source direction, §. If the time at which a specific fringe is produced can be deter-
mined precisely enough, the relationship for A¢ in Equation (A-45) can be equally pre-
cisely specified in terms of source position and baseline parameters. The fringe density is
so great, however, that it is very difficult to identify the central fringe (the fringe pro-
duced when the source direction is perpendicular to the baseline) and hence very difficult
to record accurately the time of passage through any n'*-order fringe (i.e., the fringe
displaced from the central one by n cycles).
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Figure A-6. Interferometer Fringes

The fringe number ambiguity is resolved by recording the received signal onto magnetic
tape at as high a bandwidth as possible. These recorded signals are clipped and sampled
so that the information is preserved in digital format. Corrections to compensate for the
clipping and sampling are applied during preprocessing. Pairs of tapes, one from each
station, are crosscorrelated afterwards in a preprocessing program. The correlations are
repeated for many trial combinations of relative delay offset and delay-rate offset between
the two records. When both digital records are correctly aligned, all of the frequencies
within the signal bandwidth will have the same phase, and at this point the superposition
of all the harmonic components within the complex correlation function will produce a
maximum in its amplitude, as well as in the amplitude of its power spectrum. The delay
and delay-rate values that produce this maximum are recorded, and the series of such
values form the measurements,

A.6 RADAR ALTIMETER (Not Currently Available in GTDS)

A satellite is assumed to be in a near-Earth orbit, and its attitude is assumed to be stabi-
lized so that the axis %1 of an attached pointing instrument is directed along the local
vertical or gravity gradient. This can be accomplished by gravity gradient stabilization or
other attitude stabilization techniques. Such stabilization allows the use of a directional
antenna, pointed along the ﬁ, axis, for the radar altimeter. The transmitter onboard the
satellite transmits X-band signal pulses, which form a series of spherical wavefronts di-
rected towards the Barth. The antenna beamwidth results in a signal cone with its apex at
the transmitter and an axis that coincides approximately with the Q, axis of the satellite,
as shown in Figure A-7. i

As the wavefront of each pulse intersects the sea surface, it is reflected back towards the
satellite. The time difference between the time of transmission and the time of reception
of the radar pulse is a measure of the height of the satellite above the local surface. If the
beamwidth of the transmitted signal is larger than the nominal spacecraft libration in
attitude about the local vertical, the first return signal will lie on the transmission path
normal to the sea surface and through the satellite. The effective size of the illuminated
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spot on the surface is determined by the transmitted pulsewidth, the beamwidth, and the
type of return pulse detection utilized. As long as the local vertical from the surface to the
satellite lies inside the antenna beamwidth cone, the altimeter measurement will represent
the shortest distance between the satellite and the sea surface.

Figure A-7. Radar Altimeter Cone

The satellite timing equipment provides signals for measuring the time interval between
the transmitted and received signals and for time tagging discrete measurements. This
timing equipment is periodically calibrated from ground stations.

Initia] preprocessing of the altimetry data consists of applying calibration and ambiguity
corrections to the two-way time difference between transmitted and received signals and
converting the result to an altitude by multiplying by one-half the speed of light. The time
tag is calibrated and corrected to the midinterval time (i.e., the time that the signal is
reflected from the sea surface). After these preprocessing computations, each data ele-
ment is treated as if it were an instantaneous measurement at the midinterval time.

A.7 STDN LASER SYSTEMS

The STDN laser trackers provide highly accurate range measurcments to spacecraft
equipped with optical retroreflectors. Range measurements are determined using the
propagation time of a laser pulse from the tracker to the spacecraft and back. Corrections
for internal system delays and refraction are made on site. Ranging can be performed
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during both night and day up to distances of several thousand kilometers; however, at-
mospheric conditions must be favorable.

Angle data are also provided by the laser trackers. However, the laser telescopes have no
autotrack; the laser pointing direction is computer driven according to a priori orbit infor-
mation. Thus, the angle measurement is only as accurate as the laser beamwidth. The
lasers have a half-beamwidth of between 0.006 and 0.009 degree, and the receiving tele-
scopes have a half-beamwidth of approximately 0.015 degree.

The STDN laser data rate is one per second. However, the quick-look (QL) data have a
sampling rate of approximately 20 to 50 randomly spaced values per pass.

In the QL laser system, the range to a spacecraft or a fixed target is measured by deter-
mining the elapsed time between transmission and reception of a short pulse of intense
light. The laser firing is initiated by a one-pulse-per-second signal from the time standard.
A sample of the transmitted pulse is fed to a photodiode, which starts the range time
interval unit (TIU). Similarly, a pulse from the photomultiplier receiver, which recognizes
the return pulse from the target, stops the range TIU. The indication of the TIU is multi-
plied by the speed of light to determine the range.

With a transmitted pulse on the order of 20 nanoseconds (600 centimeters long), this
system is capable of measuring range to an accuracy of approximately 50 to 100 centime-
ters, because the times of starting and stopping the TIU are dependent upon the height of
the laser pulses. System performance is improved by measuring the time of occurrence of
the centroid of the transmitted and received pulses and by means of a pulsewidth dis-
criminator and waveform digitizer. When corrections for the time of occurrence of the
centroid are applied to the basic range, accuracy of the measurement system is improved
to better than 10 centimeters.

The instrumentation developed to perform the laser ranging experiment comprises three
major subsystems: tracking pedestal and receiver optics, laser transmitter, and ranging
and data control systems. These systems are interconnected to form a digitally controlled
optical radar system capable of tracking cooperative spacecraft equipped with retro-
reflector arrays to within the accuracy of orbit predictions.

A8 TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS)

The functional and processing descriptions for the Tracking and Data Relay Satellite Sys-
tem (TDRSS) are given in the following subsections.

A.8.1 TDRSS FUNCTIONAL DESCRIPTION

TDRSS is a network of geosynchronous relay satellites and a common ground terminal
used by NASA for tracking and communications support of low-Earth satellites. TDRSS
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comprises two operational satellites and one in-orbit spare. The two operational satellites,
TDRS-East at 41 degrees west longitude and TDRS-West at 171 degrees west longitude,
are centered about the White Sands Ground Terminal (WSGT) and provide 85- to

100-percent visibility coverage for user spacecraft (Figure A-8).

TORS EAST TDRS WEST
41° W 171° W
LONGITUDE

LONGITUDE
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MA FIELD
OF VIEW

pip—
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1200-KILOMETER ALTITUDE
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+ 22.5° » 45° EAST-WEST N\ y; {MINIMUM REQUIRED
+ 31° = 62* NORTH-SOUTH \ / FOR 100% COVERAGE)
\ 7 FOR BOTH MA
N / AND SA USERS

Figure A-8. TDRSS Configuration and Coverage Limits

The Bilateration Ranging Transponder System (BRTS) is used to provide range and
Doppler measurements for TDRS. BRTS is a system of four ground-based, unmanned
facilities, located at WSGT, Ascension Island, Alice Springs (Australia), and American
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Samoa, that contain a total of six transponders similar to those flown on user spacecraft.
Since the positions of the BRTS transponders are accurately known, their ranging infor-
mation is used to determine precisely the trajectories of the TDRSs.

Each Tracking and Data Relay Satellite (TDRS) is equipped with two user service antenna
systems. The high-gain system comprises two steerable 5-meter dual S/K-band antennas,
known as the Single Access (SA) System (SSA and KSA for S-band and K-band, respec-
tively). The low-gain system consists of a 30-clement S-band phased array antenna sys-
tem, which can provide one forward link and multiple simultaneous pseudorandom noise
(PN) code division muitiplexed return links. This is known as the Multiple Access (MA)
System.

WSGT is configured with three 18-meter K-band elevation-over-azimuth (AZ-EL) anten-
nas; a 6-meter S-band AZ-EL tracking, telemetry, and command (TT&C) antenna; and
roof-mounted S-band and K-band simulation/verification antennas. The communications
equipment at WSGT can simultaneously support two-way communications for six SSA,
six KSA, and three MA services, as well as a total of 20 MA return links.

User tracking equipment can provide nine ranging and 19 Doppler services simultane-
ously (Figure A-9). The Doppler measurement is a continuous count of a bias plus the
Doppler frequency resolved to 0.001 cycle at S-band and to 0.01 cycle at K-band. The
range measurement is the four-leg round-trip light time resolved to 1 nanosecond. This
range measurement is ambiguous in multiples of the ranging code period, about
0.086 second (13,000 kilometers one way). The measurements are strobed on the whole
second, formatted, and transmitted to NASA at selectable sample rates of 1, 5, 10, 60,

and 300 seconds.

BRTS (Figure A-10) is used to provide tracking measurements for the relay spacecraft.
The BRTS four ground-based unmanned facilities contain transponders similar to those
flown on user spacecraft. BRTS provides a set of transponders whose position are accu-
rately known so that ranging information can be used to determine the trajectories of the
TDRSs with a high degree of precision. The facilities are located at WSGT (two transpon-
ders, three antennas), Ascension Island (two transponders, two antennas), American
Samoa (one transponder, two antennas), and Alice Springs, Australia (one transponder,
one antenna). TDRS-East (TDRS-E) and TDRS-Spare (TDRS-S) will be supported by
BRTS at White Sands and Ascension Island, while TDRS-West (TDRS-W) will be sup-
ported by BRTS at Alice Springs, American Samoa, and White Sands.

A detailed functional description of the TDRSS network is available in Reference 12.
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Figure A-9. Closed-Loop Tracking Configuration

A.8.2 TDRSS RANGE AND DOPPLER/DIFFERENCED DOPPLER
MEASUREMENT PROCESSING

Descriptions of the TDRSS range measurement processing and the Doppler and dif-
ferenced Doppler measurement processing are given in the following subsections.

A.8.2.1 Range Measurement Processing

The TDRSS range measurement is obtained by measuring the time delay required for a
reference time marker (PN code start time determined by autocorrelation of the received
PN code with the locally generated PN code) to travel from the White Sands ground
tracking station to the TDRS, from the TDRS to the target and back to the same TDRS or
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Figure A-10. Bilateration Ranging Transponder System (BRTS) Configuration

to a different TDRS, and to return to the ground station. This time delay measurement
has an ambiguity, equal to the integral number of the PN code periods, that must be
resolved by the orbit determination process. The algorithm used for processing the range
measurements is discussed below.

The raw data, which are a measure of the signal traveling time, are converted to kilome-
ters. The raw measurement obtained at the ground terminal is a count of the number of
chips between the reference and received PN code at a time tag T. This count is converted
to a time delay and half-range by the following equations (Reference 13):

AtT) = N x 278 x 107 seconds (A-46)

eo(T) = -;— x ¢ X At(T) kilometers (A-47)

A-34



where

At = measured round-trip time delay (in seconds) at time tag T between
corresponding chips of the reference and received PN code

N = total number of counts (in units of 2-® nanoseconds)
0o(T) = measured half-range at time tag T (in kilometers)
c = speed of light

The time delay measurement, At, given in Equation (A-46) has an ambiguity equal to an
integral number of the PN code period. This ambiguity is to be resolved (see Sec-
tion 7.3.2.3). The range measurement that results from the processing is the half-range of
a round trip, since a factor of one-half appears in Equation (A-47). To be consistent, this
factor must be included when the range measurement is modeled.

A.8.2.2 Doppler and Differenced Doppler Measurement Processing

Doppler measurements in TDRSS include hybrid, two-way, one-way, and differenced one-
way measurements. The raw data measurement consists of a nondestruct Doppler count
of a nominal bias frequency, 240 megahertz, over a fixed time interval. The count is
cumulative since the counter is not reset to zero between measurements.

A hybrid or a two-way Doppler measurement is performed by transmitting a signal at
K-band frequency from a ground transmitting station to a forward-link TDRS. The TDRS
coherently translates the signal to the tracking frequency of the user spacecraft in S-band
or K-band and transmits it to the user spacecraft. The user coherently turns the signal
around at a ratio of either 240/221 for S-band frequency or 1600/1469 for K-band fre-
quency and retransmits it to the return-link TDRS. The TDRS then translates the signal to
K-band frequency and transmits it down to the ground receive station.

The one-way Doppler measurement can be generated from either spacecraft or ground
transmitters. Any 10 of the 20 MA service antennas of the TDRS can be used
simultaneously for one-way Doppler measurements. Although the individual one-way
Doppler measurements are dominated by oscillator frequency bias, given a wide-beam
antenna system on the autonomous spacccraft, the signal can be received by all three
TDRSs with the same frequency bias being measured in each measurement. In differen-
cing the measurements, this bias can be canceled out, thus offering tracking of a space-
craft as accurate as that provided by two-way measurements. .

The algorithms used to reduce raw measurements are discussed separately in the follow-
ing subsections for the Doppler and differenced Doppler measuremems.
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A.8.2.2.1 Raw Data Reduction Algorithm for Doppler Measurements

In any batch of TDRSS data, the first Doppler measurement of the batch is always invalid
because the counter for the Doppler count is not initialized to zero for nondestruct
Doppler measurements. Therefore, the first Doppler measurement of a batch is set to
zero. The following algorithm is used to preprocess all TDRSS Doppler raw measure-
ments, except differenced one-way Doppler measurements:

va(T) = 0 (for i = 1)
LL( - T
where
vo,(Ty) = measured Doppler shift (in hertz) at time tag T, , averaged over

the time interval between T; and Ti
N;, Ni.; = Doppler counter readings (in counts) associated with time tags T,
and T;.;, respectively
L = 1000 for SSA service and MA service and 100 for K-band service
Y = bias frequency = 240 megahertz

A.8.2.2.2 Raw Data Reduction Algorithm for Differenced Doppler Measurements

The differenced one-way Doppler measurements are created only when there are two or
more batches of one-way Doppler measurements from the same target within the same

period of time.

While raw TDRSS data are being processed, pertinent information is stored in an internal
table for all one-way Doppler batches that are encountered. After all the raw data have
been reduced to 60-byte output format, the table is searched in generating differenced
one-way Doppler measurements. The objective is to look for a pair of matching one-way
Doppler batches for the same target with overlapping timespans. If an identical time tag is
found in the pair, the difference of the already reduced one-way Doppler measurements is
computed using the following equation:

Avg(T) = [Vay(T)compare - [ag(T) Treterence (A-49)
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where

Ay, (T) = measured differenced one-way Doppler measurement at
time tag T

[AVay(Dlsetorence = reference one-way Doppler measurement
[Avay (T compare = comparison one-way Doppler measurement

When this pair of matched one-way Doppler measurements corresponds to two different
return-link TDRS spacecraft, the measurement associated with the lower TDRS number is
regarded as the reference. However, if they correspond to the same TDRS spacecraft but
have two different access service-link identifications, the measurement encountered first
is considered to be the reference (Reference 13). This difference, along with other perti-
nent information (e.g., time tag, user spacecraft identifier (ID), TDRS ID, and flags), is
used for orbit determination. .
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APPENDIX B—TIME ELEMENTS

The Time-Regularized Cowell system of equations achieves analytic stepsize control
through the transformation of the independent variable, time, to a new variable s defined

by

a e ®1)
ds

where a is called the uniformization constant and r is the magnitude of the radius vector.
~ The physical time, t, is obtained through the integration of Equation (B-1), which involves

r. Any linear error in r will propagate into a nearly quadratic error in the time, Time
elements are introduced to reduce this nearly quadratic error growth to a nearly linear

error growth for perturbed motion. An element in two-body motion is defined as a pa-
rameter that is either constant or a linear function of the independent variable.

For perturbed motion (assuming small perturbations), an element varies slowly from the
two-body solution. Thus, in deriving a time element 7 for the Time-Regularized Cowell
method, 7 is required to vary linearly with the independent variable s, i.e.,

dz
-a-; = C _ (B"z)

where ¢ is a constant; it is also required that 7 be related analytically to the physical
time, t. This is done via Kepler’s Equation

t-=t0+%(E-esinB) B-3)

which can be rewritten with the introduction of r as

t=tg+1:—g—(:~)—+%(E—csinE) | (B-4)

where, by dcﬁnition.

r » 89 (B-5)

and g(a) is a function relating 7 to the Kepler element a .
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Differentiating Equation (B-5) with respect to s and substituting Equations (B-1) and
(B-2) yields

L/ S | 6
5 = ner | (B-6)

B.1 UNPERTURBED MOTION

The definition of the function g is obtained for various values of a by utilizing known
integrals of the two-body problem.

B.l.1 TIME ELEMENT CORRESPONDING TO THE ECCENTRIC ANOMALY
(a =1)

In Keplerian motion, the time derivative of the eccentric anomaly, E, is given by
dE 1 ~
— =
: nar | B-7)

where the mean motion, n, and the semimajor axis, a, are constants for two-body motion.
Comparing Equations (B-6) and (B-7) for a = 1 yields

g =E (B-8)
and
c=a (B-9)
Thus,
ds n dt
and, from Equation (B-4),
t=t0+r—°s;nE (B-11)

which is the desired result for two-body motion.
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B.1.2 TIME ELEMENT CORRESPONDING TO THE TRUE ANOMALY (a = 2)

The time derivative of the true anomaly, f, is given by

f
.dT = m l'“z . (B'lz)
where the semilatus rectum, p, is a constant of the motion for the Kepler problem.

Comparing Equation (B-6) and Equation (B-12) yields

g = f (B-13)
and
/T (B-14)
n
Thus,
e 1 df 5 JEP (B-15)
ds n dt n

which is the desired differential equation for 7. Kepler’s equation, Equation (B-4), can
then be written as

f 1 .
t=to+t—H+-ﬁ-(E-esmE)

(B-16)
(f-E) esinE

n n

=ty + 7T -

B.2 PERTURBED MOTION

The extension of the time element equation for perturbed motion is presented fora =1
and a = 2, using the approach followed in References 1 and 2.
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B.2.1 TIME ELEMENT EQUATION CORRESPONDING TO THE KS
FORMULATION (a = 1)

Equation (B-11) can be written as

T 7
Tt o (B-17)

where hy is the negative Keplerian energy

he= B _ Y (B-18)
r 2

Differentiating Equation (B-17) with respect to the new independent variable, s, yields

& a [e-H ¢-0_ -7 19)
ds ds +[ 2hg * 2hg 2h% hx ds ®
This expression simplifies to
dr _ K r (f ’ F) r (F * f) (F . F) (B-ZO)
d _ %hg T 2k %
where P is the perturbing acceleration, i.e.,
L @2

r?

The differential equation for the time element in Equation (B-20) clearly has the desired
properties in that the element varies lincarly with respect to the independent variable, s,
for unperturbed motion (P = 0), and for perturbed motion (providing P is small) the
element varies slowly from the two-body solution. An alternative expression involving the

total energy

h=hg -V (B-22)



where V is the perturbing potential, can be derived by beginning with the expression

_ L, ) (B-23)
T=t+
Differentiating this equation with respect to the independent variable, s, yields
dr 1 r(F* F) .
& e — -2V -r(F- F . P) - ——— (B-24)
5 o 2r r(F - V) + r( ) T h

where VV is the perturbing acceleration due to the perturbing potential function, ie.,

Fo Tk P oW (B-25)
Equation (B-24) can be shown to be the time element equation corresponding to the KS
formulation (Equation (5-10a)) by noting that

d

= (B-26)

d
= 20 —
“ 38

and

w = ‘/-g- (B-27)

The comparison between Equations (B-20) and the KS equation, Equation (B-24), has
been made in Reference 2, and it was found that they give the same amount of accuracy

improvement for the tested cases.

B2.2 TIME ELEMENT EQUATION CORRESPONDING TO THE DS
FORMULATION (a = 2)

Equation (B-17) can be written as

F-7©  p{f-E
The | (2hg)? - BB

T=1+
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Differentiating Equation (B-28) with respect to the new independent variable s yields

_PF- D
2

% "6 T (D@Dl e B 529)
. : 3ur* (f - B) .
g - B - g
This expression simplifies to
& __# - 2 e HE -
30

* g & BE P r G (afr -\

Noting that the leading term in this equation is a constant and all other terms are a
function of the perturbations, it is clear that this differential equation for r has the
desired properties noted previously.

The differential equation for the time clement / in the DS formulation (see Equa-
tions (5-45), (5-46), and Reference 3) is given by

d? I r or r aq) rr v
a rf,or rag) r v 31
&t (2 %, * « @3

where L, the total energy, is one of the elements of the formulation, and s, the independ-
ent variable, is the true anomaly. Transforming the independent variable of Equa-

tion (B-30) to the true anomaly using the operator

d d
% - (G-d’)'d—f (B-32)

(where G is the total angular momentum and @ is the perturbing energy), and letting Q,
represent all terms dependent upon perturbations, yields

d
-d—; = ——7-(211::)3 3 + Q]_ (-B'33)
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If Q, represents those terms in Equatioh (B-31) that are dependent upon perturbations,
the following equation results:

L4
.d—s=61‘375+02 (B-34)

As in the case where @ = 1, the leading term in Equation (B-33) is a function of the
Keplerian energy, hx, whereas the leading term in Equation (B-34) is a function of the
total energy, L. This can lead to accuracy improvements for conservative perturbed mo-
tion situations, although at present no comparison studies have been performed.
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APPENDIX C—DEVELOPMENT OF RANGE-RATE
FORMULAS

This appendix presents the development of formulas that relate the tracker and spacecraft
relative motion to the Doppler shift in an electromagnetic signal transmitted from one to
the other. For a further definition of the mathematical symbols used, refer to Appen-
dix A.

The general relativistic expression relating the frequencies of an electromagnetic signal
propagation from a transmitter t0 a receiver is

&..‘.‘.‘.[I'Ffm' fr] (%)
" ar L1 -Ffi-f
where
3 3
' 2 . 1 5] C.2
a-= Soo+*€ Bmx-PE-I gy XX (C-2)
i=1 1,)=1 _
‘/ 2 i qy) > i
1 dx! dx dx
- - —_—— - —_— C-3
Fe- 200 Z (8o1 8oy — Eoo 8y) 35 dS 8oi 3 (C-3)
i!j =1 i=1
and
t, r - subscripts indicating that the designated quantities are evaluated at
the transmitter and receiver, respectively
v, ¥, = frequencies of the transmitted and received signals

£, . = velocities of the transmitter and receiver, defined as the derivatives
of their inertial positions with respect to the coordinate time 1t

gy _ elements of the metric matrix defining the nature of the space-time
frame
x = components of the space coordinates



= arc length along the propagation path

n,, ﬁ, = unit vectors along.the local propagation path at the transmitter and
receiver, respectively

¢ = wave propagation speed

The derivatives dx!/dS are simply the direction cosines of the propagation path, and thus
are the components of the local unit vector, fi.

Equation (C-1) is derived under the assumption that the metric elements g, vary slowly
in time compared with the wave propagation speed, ¢. This is a good approximation since
the variations of the g; elements are due to planetary motions, which are very stow
compared with c.

In principle, the gy should mathematically describe everything that physically affects the
propagation of electromagnetic waves in their region of definition, including gravitational
influences, the refractive effects of the atmosphere, and any other significant influences.
If such a rigorous mathematical description of the space-time frame could be formulated
and then solved analytically, propagation paths for specific cases could be computed very
accurately as geodesics. However, no such completely general treatment of the problem
has yet been produced. '

It is generally assumed that the metric coefficients for the case of special relativity are

goo = 1 (C-4a)
gy = -1 G,j=1,2 3 (C-4b)
gg=0 (=) Gi=1223 (C-4e)

Equation (C-2) then becomes

1'7 * 1.7 . (C-S)




and Equation (C-3) simplifies to

Fo (C-6)
(o]

The propagation path, which is the straight relative position vector from #, to f;, is given
by

A A A i -f -
h, = i, = n = C-
1 4 lf.r _ r.l] ( 7)

Under the preceding conditions, Equation (C-1) reduces to

(C-8)

which is the formula from special relativity for the one-way Doppler frequency shift.

The metric coefficients in Equation (C-4) describe straight-line propagation in a vacuum.
The neglect of the ray path bending due to gravitational effects is an acceptable approxi-
mation, considering the precision of the radar Doppler measuring equipment. However,
the refractive bending of the ray by the atmosphere (troposphere and ionosphere) is not
negligible and must be taken into account. The special relativistic formula given by Equa-
tion (C-8) is modified to replace the unit vector fi along the idealized straight ray path
with the unit vectors

A - & + Ab, (C-92)

A - A + AR, (C-9b)



along the actual curved propagation path. The method by which the refraction difference
vectors, Afi, and Afl,, are estimated is discussed in Chapter 7. Here the terms will sim-
ply be introduced into the equations and formally carried through the derivations. As a
result of this substitution, Equation (C-8) becomes

(C-10)

where ﬁ, and ﬁ, are given by Equations (C-9).

The geometry of two-way (or three-way) signal propagation ig illustrated in Figure C-1. A
continuous wave signal of frequency vy is emitted by a ground station at position fr at
time tr. At a later time t,, the spacecraft at position F, receives this signal along the
curved uplink transmission path. Application of Equation (C-10) gives the relationship

SPACECRAFT ORBIT

Figure C-1. Signal Propagation Geometry
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between the apparent signal frequency at the ground transmitter, vr, and at the space-
craft receiver, vy, i.e.,

N SN < [P P
" c? ¢
Mo _ - (C-11)
1 - F\‘ - f.-\f' 1 - uT fT
c? c

where

g, = 4 + al, (C-12)

r\f - FT
Iy le

and the subscript T refers to quantities evaluated at the ground transmitter.

to do so, the spacecraft USB transponder can be
modeled as though it coherently turns the received signal around and retransmits it at the
received frequency, w.* The downlink signal is received by the ground station (either the
same station that transmitted the uplink signal or an entirely different station whose oscil-
lator is coherently linked with the transmitter) at position TR at time tg. The one-way
frequency shift that occurs on the curved downlink path is

Although it is not rigorously correct

° (C-13)

* The USB uplink frequency capability is 2025 to 2120 megahertz, and the downlink frequency capability

is 2200 to 2300 megahertz.
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where

A A A
dx = d + Adg (C-14)
A fR - irv

|fR - fv'

The relationship between the transmitted and received ground frequencies for this two- or
three-way case is computed by multiplying Equations (C-11) and (C-13) together to obtain

A : A
1 - u\' irv 1 - dR fR
c c
- " (C-15)
1 - uT fT 1_ d\" f-\"
_ ¢ JL ¢

The frequencies ¥g and vy are defined with respect to the tracking station oscillator. In
the language of relativity theory, this clock measures the proper time associated with the
inertially moving tracking station. The velocities, on the other hand, are all defined in
terms of derivatives with respect to coordinate time, the time system associated with the
inertial reference frame. This time can be regarded as the same as uniform time for the
present development.

If Equations (C-12) and (C-14) are substituted into Equation (C-15), anlc\i the factors
within the brackets are expanded in terms of no higher order than Au - (F/c) or
Ad -+ (F/c), the following form results:

p— A . iy v— A . "\
- , A2 L (c16a)
L ¢ 1L ¢ -/

C-6



where
Ao = Abp-ir + AQ,-§ - Ab,-F - Adg + (C-16b)

The first term within the braces (the product of the expressions in brackets) represents
the vacuum portion of the Doppler shift. The additional term, A@/c, involving the propa-
gation path unit vector deflections, represents the refraction effects. Equation (C-16)
relates the received frequency to the transmitted frequency via the geometry of the round-
trip light path.

The continuously transmitted signal is beat against the received signal, resulting in a
signal with a frequency equal to the difference between the two, i.e.,

Vg =vg - V1=V (1’5 - 1) (C-17)
A¥r

A fixed frequency bias signal, , is added to this Doppler signal, and the combination is
fed to a Doppler-plus-bias cycle counter. Simultaneously, a reference frequency, Vg, is
fed to a separate time interval counter. At most tracking stations, the bias and reference
frequencies are coherently derived from the same source as ¥r.

The measurement is mechanized in one of two ways, a destruct or a nondestruct count.
The destruct count mode (employed in the GRARR and ATSR systems) counts a pre-
assigned fixed number of cycles, N, of the Doppler-plus-bias signal and records the meas-
urement as the (variable) number of cycles, Co, of the reference frequency required to
accumulate the simultaneous N cycle count. The nondestruct mode (employed in the USB
System) continually accumulates the count of the Doppler-plus-bias signal in its counter.
The measurement consists of recording this continually increasing number whenever a
preassigned fixed number of reference frequency cycles has been accumulated. Differ-
ences between the recorded values at different sample times gives the number N of the
Doppler-plus-bias count over the reference time interval.
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Using either technique, the measurement results in a count of some number N of
Doppler-plus-bias cycles over a period of time

Atpp = & (C-18)

VR,
This measurement count can be modeled mathematically by the equation

t+Atpn

N = | (¥g + %) ditg (C-19)
t

If the measurement is made in the destruct mode, the integration time interval, Atgg,
should be varied until the computed value of N exactly matches the fixed cycle count
number. In the nondestruct mode, Atgg is fixed and N, in general, will be some whole
number of cycles plus a fractional part. This fractional part should be truncated to simu-
late more rigorously the actual accumulation of whole cycles.

The integration variable, tg, in Equation (C-19) is the receiving station clock time, or
proper time. The significance of this point will become evident during the evaluation of
the integral.

Substitution of Equation (C-17) into Equation (C-19) yields

t+ Opx

N = [w(-:f) ¥ - v-r]dta

t (C-20)

= (1 - 1) Atgg + V1 'v:dtn



and Equation (C-16) can be substituted for the remaining integrand

T I"T
1+ =z
N = (% — v7) Atgg + V1 :
frR ° 1R
1+ py;
t+ Atgp
ul . I A =
X " . - — | dtg (C-21)
1 - r-r 1 _ d * rv
- L ¢
t
AQ 1 + It cz rr
+ V1 Atm( “’S) - :
fr * R
1+ .

In writing Equation (C-21), it is assumed that the squares of the inertial speeds, fr * fr
and fp - fr. are constant, since the motion of the tracking stations is due to the nearly
uniform rotation of the Earth. The refraction integral is evaluated by the trapezoidal rule,

yielding

Aé“s - AOH‘Aanz + Agl (C-zz)

The remaining integral in Equation (C-21) will not be considered. The geometries of the
uplink and downlink ranges are related to the light times by

0w = |fv - x| = e(tv - 1) (C-23)
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and
s = |flr - | = C(?g - f,,) (C-24)

The derivatives of these ranges with respect to the coordinate time t at the receiver are
given by

d . dt. . dt T T

&g (\r M _h d.t.T) = c(df" - d.t.T) (C-25)
dtp dtg dtgr deg dtg

dea _ § . (&R - i d_f") - c(l - "_E") (C26)
dtgr dtg dtr

Explicit solution for the coordinate time derivatives gives

A i'_a
- 1-4d ol .
dy . £ =1- 1 Qo (C-27a)
dtgr 1 - a E ¢ dty

c

- 1-4 - oo
dtr - ¢ (dtv) _l(d(’d + d?u) (C-27b)
dty e \dtg ¢ \dtg  dty

1-4 - &
[

Equations (C-27) show that a coordinate time increment of a given length at the receiving
station corresponds to increments of different lengths at the spacecraft and at the trans-
mitter, considering that the arrival of corresponding phases at tr and tt + d ty marks
the interval.
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Substitution of Equations (C-27) into the integrand in Equation (C-21) yields the expres-
sion for the integral term

14 fr ¢ Fr ty + Atpy
- _ <t [1 1 (df" 4 e )] de  (C28)
r fr ¢ \dtg dtg
1+ x
c t

At the receiving station, the relationship between coordinate and proper time is
dtg, = ‘[ - DR (C29)

(1 _ TR .2 i“R) d_? _ do (C-30)
c dtg dtp

Therefore,

and, since it was assumed that f * f = constant, Equation (C-21) becomes

N = Atgs = = AQe + =L Atsa Ay (C-31)

Terms higher than first order in Iff |’c have been neglected, and the computed quantity
Age = (ou + Qa)tprAtpy — (ou + 0a)yy (C-32)

is the range difference. Since the quantities N, Atgg, ¥, and vr are known, the preproc-
essor program can compute the measurement

. N
Qo = -2% (‘Vb - A_tR;) (C-33)

and Equation (C-31) can be written as

Ao, 5 . Al (C-34)
- 0t T2
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where the division by 2Atpg causes the range difference to approximate the one-way
range rate. Equation (C-34) mathematically describes the modeling of the USB Doppler
measurement in GTDS. The quantity on the left side of the equation is the computed
measurement and is calculated by means of Equations (C-32), (C-23), and (C-24). The
latter two equations require that two iterative light-time solutions be determined to corre-
spond to the round-trip propagation paths terminating at the receiving station at the start
and at the end of the Doppler-plus-bias count interval, Atgr. The first term on the right
side of Equation (C-34) represents the actual measurement and is calculated in the
preprocessor from the basic measurement data according to Equation (C-33). The second
term on the right in Equation (C-34) is the refraction correction,term. It is computed by
Equations (C-22) and (C-16), where the appropriate Al and Ad path deflection vectors
are computed as described in Section 7.6.3.3.

The GRARR and sidetone ATSR Doppler measurement model in GTDS is very simple.
The Doppler measurements made with the GRARR and ATSR systems differ from those
made using the USB System in terms of the hardware details. The GRARR VHF System
operates with a nominal uplink carrier frequency of 148.98 megahertz and a nominal
downlink frequency of 136.89 megahertz. The ATSR System, operating in the sidetone
Doppler mode, uses C-band frequencies of approximately 6000 and 4000 megahertz on
the uplink and downlink legs, respectively.

The simple model for these data types is derived by further restricting the assumptions
made in deriving Equation (C-15). As given, that expression for the two-way Doppler-
shifted frequency ratio is valid under the assumptions that special relativity holds and that
the origin of the inertial coordinate frame is at the center of the Earth. If it is assumed
instead that the tracking station moves with uniform velocity, i.e.,

fa = fr = constant (inertially)

then the origin of the coordinate system can be considered to be fixed at the tracking
station and moving with it. Then,

and Equation (C-15) becomes
4, - R
) 1- =
R . e (C-36)
vr i. - f
1 - v v
c
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Substituting Equations (C-12) and (C-14) into this exprgssion, expanding, eliminating
higher order terms, and noting that in this case U = -d,

E>

1- f :
_:,Tl}_= Ac‘ +Af - (C37)
14+ u' &
¢

where

AD = 2A0, - F (C-38)

Since the tracking station is motionless in this coordinate frame, the unit vector {i can be
defined in terms of the instantancous position vector of the vehicle relative to the station

at the vehicle turnaround time t, as

L COR (C-39)
|t

The instantaneous relative range at this time is

e = Ir\r(?v)l (C'40)

and the rate of change with respect to coordinate time is

0 =T- T, (C-41)
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If Equation (C-41) is substituted into Equation (C-37) and the result then substituted into
Equation (C-20), the following results:

t c (C-42)

Applying the Theorem of the Mean gives

* A
¢ ) Atgs - 2v1 (—--—A“" ’*) At (C-43)
c+ €@ avg ¢ avg

N - v, Atpg = —21"1'(

The last term on the right is the refraction correction, and it will be assux;\ned that the
mean value can be approximated with sufficient accuracy by evaluating Au, and T, at
the vehicle turnaround time, t, , corresponding to the counting interval midpoint. With
this understanding, the subscript avg will be dropped from this term. Writing @, for the
value of the range rate which produces the correct average value in Equation (C-43) and
solving explicitly for @,,; gives

N Af, - F
S, S, SV ol S}
C(Vb Atgr 'T c )

- (C-44)

N Al, - 7
2“'(""'31‘;;"2"—:—)

én\rg
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Expanding this expression in terms of the small parameter Aﬁv + f, and eliminating
higher order terms in this parameter, as well as terms involving this parameter divided by
c, yields

(% - 5a)
Awr) Al - (C-45)

én\rg = N
2vp - ( - —At]m)

It is again assumed that the correct average value for_ém, the instantaneous relative
range rate, is given by Equation (C-41) evaluated at t, , the vehicle turnaround time
corresponding to the count interval midpoint at the ground station. Equation (C-45) there-
fore represents the model of the GRARR and sidetone ATSR Doppler measurements in
the form of an instantaneous relative range rate. The term on the left is the computed
value obtained by evaluating Equation (C-42) for the current estimate of the spacecraft
ephemeris. The first term on the right side of Equation (C-45)

&, = c(ﬁ’ ) II:;) | (C-46)
5

is the algorithm in current use in the preprocessing of the GRARR and ATSR Doppler
data (References 3 through 6 in Appendix A) and represents the given measurement. The
second term on the right side of Equation (C-45), Au, - f, is the refraction correction.

The vehicle velocity is taken at the time t, defined above, and Aﬁ, is evaluated as
described in Section 7.6.3.3.
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APPENDIX D—MEASUREMENT WEIGHTING

Tables D-1 and D-2 define typical dynamic weighting factors and a priori standard devia-
tions for several measurement types that are processed in GTDS. The dynamic weighting

factors are used as described below.

N
If o2 is the a priori variance for a given measurement type and ©r is the dynamic weight-
ing factor, then the data weight for a measurement is formed as

W= e (D-1)

For those measurements where a dynamic weighting factor is not specified, the data
weight takes the form

W = 31,- (D-2)

Table D-1. Dynamic Weighting Factors

MEASUREMENT TYPE DYNAMIC WEIGHTING FACTOR*
Minitrack direction cosine / J1-&
Minitrack direction cosine m m
Range C, sin (slevation) + C;
Range rate C, sin (elevation) + Cy
Elevation C, sin {sievation) + C;
AzZimuth Cs cos (elevation) + Cg

*C,;, Cz, Cy, and C, are user-supplied constants,
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Table D-2. Typical A Priori Data Standard Deviations

MEASUREMENT TYPE

A PRIORI STANDARD DEVIATION

Range (VHF)

Rangs rate (VHF)

X1 orientation angle (VHF)
Y3g orlentation angle (VHF}
Minitrack direction cosine ¢
Minitrack direction cosine m
Range {S-band)

Range rata (S-band}
Azimuth (C-band)

Elevation {C-band)

Range (LSB)

Range rate {USB)

Xso (USB}

Yao (USB)

Xys {USB)

Yss (USB)

500 meters

30 centimetsrs/second
3600 seconds of aro
3600 seconds of aro
0.3ami

0.3 mil

100 meters

10 centimeters/second
54 saconds of arc

54 saconda of aro

15 meters

6 centimeters/second
720 seconds of arc
720 saconds of arc

54 seconds of aro

54 seconds of arc
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APPENDIX E—MATRIX IDENTITIES ASSOCIATED
WITH SEQUENTIAL ESTIMATION

This appendix presents the derivations of a recursive form of the covariance matrix of
error and an alternative form of the optimal linear gain. The results of these derivations
are used in Section 8.4.1 to simplify the expressions for the covariance matrix of error
and the updated state correction vector.

The following symbols are used in the derivations:

P = symmetric, positive definite matrix
I = identity matrix

Wpey = weight of the (m+ 1)" measurement; its inverse is equal to the vari-
ance of the measurement noise

F = matrix of partial derivatives (see Equation (8-6))

E.1 DERIVATION OF THE RECURSIVE FORM OF THE
COVARIANCE MATRIX OF ERROR, Pax,,;

From Equation (8-80b), the covariance matrix of error is given as

PMm-tl = PAxm + AP (E-l)

To find an expression for AP, Equation (E-1) is substituted into

P-Aglmq.} PA"mﬂ = I (E'Z)
yielding
Pay..., Paxg + AP) = I (E-3)

Inverting Equation (8-79b), the following expression is obtained:

P*AIxm; = (P-Alxm + F&H Wi+ Fme1) (E-4)
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Substituting Equation (E-4) into Equation (E-3) gives

P-A.lxm AP + Fl,1 Wine1 Frner Pax, + Pgu-l Wins1 Fe1 AP = 0 (E-5)

Premultiplying Equation (E-5) by Pay, yields

AP + Pay, Fat1 Wme1 Foe1 Paxg + Paxg FEH Wm¢1 Fme1 AP = 0 (E-6)

Solving this expression for AP yields

AP = - (I + PAx,. F;ﬂ Wmel l:?:m-l)“1 PAx., FEH Wme+1 Fme1 PAxm (E'7)

Premultiplying by Pax,, Pz, results in the following:
AP = "PAxm (I + PaAxn F;ﬂ Wm+l Fmﬂ)-l FLH Wme1 Fme1 Paxy (E-S)

Multiplying FL,; Wme1 Faey into the term in parentheses in Equation (E-8) and factoring
forward yields

AP = —Pay, FL-l Wme1 Faea (I + Paxp FEﬂ Wil Fmi-l)-] Paxg, (E-9)

Equation (E-9) is not the best form for AP. From the definition of the inverse of a ma-
trix, the following expression can be obtained:

(Wzk1 + Pt Paxa Foed) ™! (Wi + Fret Paxg Fou) =1 (E-10)
Postmultiplying Equation (E-10) by Wi Fme1 and then factoring out Fp,, Yyiclds
(W;alﬂ + Frov Pax, FL:)" Fos 0 + Paxg FEH Wim+1 Fme1) = Wmet Fme (E-11)

If Equation (E-11) is then postmultiplied by ( + Pax, FL.: Wme1 Fme1)™, the following
is obtained:

(W;ulﬂ + Fme1 Paxy Fgu)'l Pm+1 = Wit Froet (@ + Pax, Fhe1 Wmei Fma)™? (E-12)
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Substituting Equation (E-12) into Equation (E-9) gives

AP = -Pax, Foei (Wak1 + Fme Paxg Fg-rl)-_l Fret Paxy, (E-13)

and substituting Bquation (E-13) into Equation (E-1) gives
PAxmﬂ - PAxm - Paxy, F;fm (W;’n + Fme1 Paxy FEH)-I Frnu PAxm (E'14)
or

Paxgy = (I = KFn1) Pax, (E-15)

where

K = PAxm an (w:-111+1 + Foe PAxm Fgﬂ)-r (E"lﬁ)

E.2 DERIVATION OF AN ALTERNATIVE FORM OF THE OPTIMAL
LINEAR GAIN

From Equation (8-79), the covariance matrix of error is given as

Paxge = Pak, + Fart Wme Fre) ™ (E-17)

Postmultiplying this equation by FrL,; Wms and factoring out Pl gives
Paxga Fgﬂ Wmi1 = (I + Paxg, F%n Wmi1 I:"n:wl)-1 Pax, F;n Wmil (E-18)

Premultiplying Equation (E-18) by FX,: Wme1 Fme1 and substituting Equation (E-12) into
the result yields

Fr+1 Wms1 Pmt1 PAxma F1 Wil (B-19)

= Eﬂ (wﬁzlﬂ + P::n+1 PAx.. FEH)'] Fmﬂ l:"".\xm FEH Wmel
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Moving the factor Fpy; Pax, Flag W inside the brackets and factoring out Wme1 gives

Fhe1 Wmet Pmet Paxy Foe1 Wt = FnTnu Wrsl [W,',,1+1 (F+1 Pax,, PL,)™! + I]? (E-20)

Factoring out Fp, Pax, FL,; from this expression and premultiplying by
(FL41 W1 Fme1)™? gives

Pax,,; FLo1 Wame1 = Paxy Fiet Wans + Fruet Paxg Fiped) ™ (E-21)

Finally, substituting Bquation (E-21) into Equation (E-16) yields the following expression
for K:

K = Paxan Foet Wme1 (E-22)



GLOSSARY OF ACRONYMS

Definitions of the acronyms used throughout this document are given in this glossary. The
acronyms are listed in alphabetical order.

ALCOR Advanced Research Project Agency, Lincoln C-band Observ-
able Radar

ARC Ambiguity resolving code

ATS Applications Technology Satellite

ATSR Applications Technology Satellite Ranging

AZ-EL Azimuth-elevation

Al Atomic time

BRT Bilateration Ranging Transponder

BRTS Bilateration Ranging Transponder System

CCIR International Radio Consultative Committee

CsC Computer Sciences Corporation

DC Differential correction

DDNA Divided Difference Noise Analysis

DIGS Delta Inertial Guidance System

DMC Dynamic model compensation

DODS Definitive Orbit Determination System

DS Delaunay-Similar

EKF Extended Kalman Filter

ET Ephemeris time

EW East-west
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FDF

FOC

GHA

GMT

" GRARR

GSFC

GTDS

5§ B

KSA

LTAS

MECO-1

NASA
NS
o-C

OCS

Flight Dynamics Facility

Fractions of a cycle

Geocentric equatorial inertial
Greenwich hour angle

Greenwich Mean Time

Goddard Range and Range-Rate
Goddard Space Flight Center
Goddard Trajectory Determination System
Identifier

Jet Propulsion Laboratory
Kustaanheimo-Stiefel

K-band single access

Launch Telemetry Acquisition System
Multiple-access

Main engine cutoff (first)

Modified Extended Kalman Filter
Multifunctional receiver

Modified Julian date

National Aeronautics and Space Administration
North-south
Observed-minus-computed

Orbit Computation System
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PECE Predict, evaluate, correct, pseudoevaluate

PN Pseudorandom noise

PODS Preliminary Orbit Determination System
QL Quick look

RA Radar Altimeter

R&D Research and Development

RF Radio frequency

RMS Root mean square

RMSP Predicted root mean square

RSS Root sum square

RU Range unit

SA Single-access

SAO Smithsonian Astrophysical Observatory
SGLS Space Ground Link Subsystem

SLP Solar/Lunar/Planetary

SOR Statistical Output Report

SRE STDN Ranging Equipment

SSA S-band single-access

ST Station time

STDN Spaceflight Tracking and Data Network
TCOPS Trajectory Computation and Orbital Products System
TDRS Tracking and Data Relay Satellite
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TDRSS
TDRS-E
TDRS-S

TDRS-W

TT&C

USB

USNO

UT, UT1, UT2
UTC

UTO

UT1

VDNA

VOP

WSGT

Tracking and Data Relay Satellite System
TDRS-East

TDRS-Spare

TDRS-West

Time Increment Resolver

Time interval unit

Tracking, telemetry, and command
Unified S-band

United States Naval Observatory
Universal time

Coordinated universal time

Uncorrected universal time

Universal time, corrected for polar motion
Variate Difference Noise Analysis

Very high frequency

Very Long Baseline Interferometer
Variation of Parameters

White Sands Ground Terminal
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GLOSSARY OF MATHEMATICAL SYMBOLS

The following pages contain a glossary of the mathematical symbols used throughout this
document. Symbois are given in alphabetical order, with Greek symbols following the
Roman symbols. Definitions of the major subscript, superscript, and operational symbol
conventions are given following the Greek symbols. For each symbol, the corresponding
definition is given. If a symbol has multiple definitions, the primary definition is generally
given first and/or definitions are listed in section-number order, with the pertinent section
number(s) for a specific definition given in parentheses.

A

A B, C

Am, Bm, Cay Dnm
An Bn, Go

Ap

Al

A'h A'Zs A.‘n ey AZG

Azimuth angle

Rotation matrix for precessing between the mean equator and
equinox of two epochs (Section 3.3.1)

Reference satellite area for aecrodynamic drag (Section 4.5)
Satellite area exposed to direct solar radiation (Section 4.6)
Cross-sectional area of the launch vehicle (Section 9.1)

Precession transformation matrix from mean of B195Q.0 or
72000.0 to mean of date coordinates (Section 3.3.1)

Effective transmit frequency from the user (Section 7.3.4)

Matrices of time-varying coefficients in variational differential
equations (Sections 4.1, 6.1.4, and 6.3)

Coefficients of the polynomial fitted to Minitrack fine baseline
rectified data (Appendix A)

Coefficients of the polynomial fitted to Minitrack coarse and
medium baseline rectified ambiguity data (Appendix A)

Solar paddle area (Section 4.5.2)

Atomic time

Auxiliary parameters defined in Equations (5-184)
Azimuth angle (Section 7.3.7)

Semimajor axis of the satellite orbit
Semimajor axis of the reference ellipsoid (Section 7.4)
Magnitude of the spacecraft thrust acceleration (Section 4.8)
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-

;T

Za(M)

ar, ar, &r

a

ay, by, &

8y, by, ¢

Minitrack fine baseline fractional phase rate (Section A.4)

Inertial acceleration vector in body-fixed coordinates (Sec-
tion 4.3)

Inertial acceleration of the point-mass Earth due to the
Moon's oblateness (Section 4.4)

Minitrack fine baseline fractional phase difference (Sec-

tion A.4)
Drag scale parameter coefficients (Sections 4.5.2 and 4.5.3)
Polynomial coefficients of polar motion (Section 3.3.2.2)

Time difference polynomial coefficients (Section 3.5.2)

Terms used in the evaluation of the Chebyshev polynomial
coefficients (b;) (Section 3.6)

Shank’s coefficients used in the Runge-Kutta integration
method (Section 6.2.1)

Represents the j'® row of the matrix of measurement partial
derivatives, F (Chapter 8)

Coefficients for the Hull Runge-Kutta 3(4+) method (Sec-
tion 6.2.2)

Acceleration vector in the nominal dynamical model (Sec-
tion 8.4.2)

Planet radius (Section 4.6.1)

Vector of unknown or unmodeled accelerations (Sec-
tion 8.4.2)

Coefficients of the polynomial characterizing the attitude con-
trol system acceleration (Section 4.7.1)

Coefficients of the polynomial characterizing the spacecraft
thrust acceleration (Section 4.8)

Parameters in the topside electron density profile (Sec-
tion 7.6)
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a1y, 412, 813 -

B

B,C A
BCI BF! BM

I

b

by,
b

ba

bxl b}"i bl

. 833

Elements of the transformation matrix A (Section 3.3.1.1)

Transformation matrix from the true equator and equinox of
date coordinate system to body-fixed coordinates (Sections 3,
4, and 9)

Pilot-tone frequency translation from the return-link TDRS
(Section 7.3.4)

See A, B, C above
Minitrack coarse, fine, and medium phase rates (Section A.4)

Transformation matrix from true of date to pseudo body-fixed
coordinates (Section 3.3.2)

Simplified transformation matrix from pseudo body-fixed to
body-fixed coordinates (Section 3.3.2)

Auxiliary parameters defined in Equations (5-185) (Sec-
tion 5.10)

Measurement bias, which depends on the measurement type
and the tracking station (Sections 7.1 and 8.2)

Absolute phase difference for the Minitrack fine baseline
(Section A.4)

Chebyshev coefficients of the interpolating polynomial (Sec-
tion 3.6)

Numerical coefficients (Section 5.6)

Polynomial fitted to Minitrack fine baseline rectified data
(Section A.4)

Polynomial fitted to Minitrack coarse and medium baseline
rectified ambiguity data (Appendix A)

Coefficients of the linear term of the polynomial characteriz-
ing the attitude control system acceleration (Section 4.7.1)

Transformation matrix from the mean equator and equinox of
B1950.0 or J2000.0 coordinate system to the true of date coor-
dinate system (Section 3.3.1 and Chapters 4 and 9)

Calibration factor (Section 4.8.3)
Noise estimation convergence criterion (Section 8.7.4)
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C,AB

CD: CDO

Cr

Crnax
Cnie

Cnp

Cr

See A, B, C above

Force coefficient for the force along the cylinder axis (Sec-
tion 4.5.2) (see Table 4-1)

Aerodynamic drag coefficient with and without systematic er-
ror corrections (Section 4.5)

Nondimensional force coefficient (Section 4.5.2)
Maximum allowed correction (Section 9.2.3)

Force coefficient for the force normal to the cylinder axis
(Section 4.5.2) (see Table 4-1)

Force coefficient for the force normal to the plate (Sec-
tion 4.5.2) (see Table 4-1)

Nondimensional force coefficient for solar radiation pressure
(Section 4.6)

Force coefficient for the force tangent to the plate (Sec-
tion 4.5.2) (see Table 4-1)

Comparison parameters (Section 9.3)

Harmonic coefficients of the Earth’s nonspherical potential
(Section 4.4)

Gravitational harmonic coefficients

Correlation between errors in § and 0% (Chapter 8)
Correlation between errors in X and Z (Chapter 8)
Correlation between errors in Xp and & (Chapter 8)
Correlation between errors in Xp and Z, (Chapter 8)
Correlation between errors in Z and T (Chapter 8)
Dot product (Chapter 9)

Count of the number of cycles of the GRARR and ATSR
Doppler reference frequency and the range reference fre-
quency (Chapter 7, Appendices A and O
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0 Cp

Cxs Cyy C2

D, Dy

Dy

DCI

oL

Vacuum speed of light

Group speed and phase speed of propagation of an electro-
magnetic signal (Section 7.6)

Harmonic coefficients of the Moon’s nonspherical potential
(Section 4.4)

Coefficients in the expression for Yn(t) (Section 3.6)

Coefficients of the quadratic term of the polynomial charac-
terizing the attitude control system acceleration (Sec-
tion 4.7.1)

Transformation matrix from true of date to local plane coordi-
nates (Section 3.3.4)

Parameter obtained from Barker’s equation for parabolic mo-
tion (Section 3.3.8.1)

Parameter used to determine if the spacecraft is within the
cylindrical shadow of a celestial body (Section 4.6)

Linear differentiation operator (Sections 6.1.1 and 6.1.4)
Matrix and its elements (Section 5.5)
Transponder delay at node j (Section 7.3.2)

Quantity used to solve Kepler’s equation for elliptical motion
(Section 3.3.8)

Doppler count interval (seconds) (avera.ge Doppler count in-
terval if it is not constant throughout the batch) (Sec-
tion 8.7.4)

Spacecraft diameter (Sections 4.5.2 and Appendix C)

Unit vector pointing down along the vacuum downlink path
from the spacecraft to the tracking station (Section 7.6.3 and
Appendix C)

Number of ephemeris days past ob January 1, 1950 ET (Sec-
tion 3.3.3)
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Era
ES
El ’ E2

ET

€x, Cys €z

em

Eccentric anomaly of an orbit

Transformation matrix from body-centered true of date iner-
tial Cartesian coordinates to orbit plane coordinates (Sec-
tion 3.3.5)

Elevation angle measured from the reference plane to the sta-
tion-to-spacecraft position vector (Section 3.2.4, Chapter 7,
Section 9.2, and Appendix A)

Matrix of partial derivatives of the nonlinear measurement
equations f(x,z) with respect to consider variables z (Sec-
tion 8.2)

Measured elevation angle (Section 7.6)

Predetermined maximum of the relative truncation error, Er;
(Section 6.2.2)

Relative truncation error (Section 6.2.2)
Linear shifting operator (Section 6.1.1)

Reference epochs (Section 3.3.1.1)
Integer exponents in preliminary orbit search (Section 9.2.3)

Elevation angle (Section 7.3.7)
Ephemeris time

Orbital eccentricity
Eccentricity of the central body (Section 3.3.1.3)
Eccentricity of the planet’s figure (Section 3.3.6)

Eccentricity vector (Sections 3.2.6 and 3.3.10)
Herrick eccentricity vector components (Section 3.3.11.2)
Exponential multiplier (Section 7.6.3)

Hyperbolic anomaly (Section 3.3.8)

Eccentric longitude (Section 3.3.9); equals the sum of the ec-
centric anomaly, argument of perigee, and right ascension of
the ascending node
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F (Cont'd)

F?

F'(t)

FTWF
ETWF

Fl' Fr

Fo

Fy, Fz, Fs, Py
Fio.7

Fiotr

Total force acting on the spacecraft (Chapter 4)
Perturbed Hamiltonian (Section 5.5)

Matrix of partial derivatives of measurements with respect to
solve-for variables (Chapter 8 and Appendix E)

Augmented matrix of partial derivatives (Section 8.2)

Table entry for the thrust magnitude value (kilonewtons) (Sec-
tion 4.8.3)

Aerodynamic acceleration per unit density (Section 4.5.2)
Receive frequency (hertz) (Section 8.7.4)

Frequency received at the return-link TDRS from a target
(hertz) (Section 7.3.2.3)

Normal matrix (Chapter 8)

Expanded state normal matrix (Chapter 8)

Parameters used in the general relativistic expression (defined
in Appendix C)

Unperturbed Hamiltonian (Section 5.9

Functions used in the evaluation of the density (Section 4.5.4)
Daily average of the 10.7-centimeter solar flux (Section 4.5)
81-day running average of Fyo 7 (Section 4.5)

Augmented measurement matrix (Section 8.4)

Orbital true anomaly (Sections 3.3.8.1, 4.9, 5.9, 6.1.1.2,
9.2.3, and Appendix B)

Planet's flattening coefficient (Sections 3.3.6.1, 4.5.6, 7.2,
and 9.2)

Inverse flattening coefficient of the central body (Sec-
tion 3.3.13)
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f (Cont'd)

fo Fz

GHA

GM

g &

gla@)

gi

&y

General time-varying function (Chapter 6)

Function arising from the equations of motion or the varia-
tional equations in the Runge-Kutta integrators (Section 6.2)

Punction (Section 3.3.8)

Series used to predict spacecraft positions (Chapter 9)

Equinoctial unit vectors along the equinoctial coordinate di-
rections Xep, Yep, and Zep, respectively (Sections 3.2.5 and

3.3.9.1)
Measurement model (Section 4.9)

Functions used in the Runge-Kutta integration method (Sec-
tion 6.2)

Geometric relationship defined by the measurement type at
time t + &t (Sections 7.1 and 8.2)

Critical frequency of the F2 layer (Section 7.6)

Universal gravitational constant

Total angular momentum (Section 5.5 and Appendix B)
Greenwich hour angle

Gravitational constant of the central body (Sections 3.3.14
and 6.2.3) _

Argument of the pericenter (Section 5.5)

Mean anomaly of the Moon and Sun, respectively (Sec-
tion 3.3.3)

Function relating t and a in the time element formulation
(Appendix B)

Nonlinear functional form of ﬁsi (Section 8.2.3)

Elements of the metric matrix defining the nature of the
space-time frame (Appendix C)
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Bs

HMl Hm

H, h

Hr

h, h,

h’ H’ hxl hy! hz

Sea-level acceleration due to gravity (Section 4.5.4)

Local hour angle of the Sun (Section 4.5.4)
z component of the angular momentum (Section 5.5)

Matrix used for expressing the Cowell corrector formula in
matrix form (Chapter 6)

Tonospheric scale height in the expression for refractivity
(Section 7.6)

Maximum and minimum scale heights (Section 4.5.6)

Transformations of the covariance matrix, Pa, and the esti-
mated state, §, respectively (Chapter 8)

Height above the mean spheroid, normal to the ellipsoidal sur-
face (Section 3.3.1.3)

Tropospheric scale height in the expression for refractivity
(Section 7.6)

Altitude measured as the perpendicular distance from the sur-
face of the ellipsoidal planet model to the point being meas-
ured (Sections 3.2.2, 3.3.6, and Chapter 4)

Enetgy of the orbit (Section 5.4 and Appendix B)
Longitude of the ascending node (Section 5.5)
Integration stepsize (Chapter 6)

Projection of the vector € on the 9” axis (equinoctial ele-
ments) (Chapter 3)

Orbital angular momentum vectors and Cartesian components
(Section 3.3.8)

Apofocal and perifocal altitude (Sections 3.3.8.3, 9.2.3)
Negative Keplerian energy (Appendix B)

Lower altitude limit for the ionosphere (Section 7.6)
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h,

hg, hy, hs

L Im

IPns Ip n Isns IlSn

Jn
J2! J31 J4$ JS
D

JE

Altitude corresponding to the maximum electron density (Sec-
tion 7.6)

Runge-Kutta stepsize hour (Section 6.2.3)

Height of the tracking station above the reference ellipsoid
(Sections 3.3.7, 7.6, and 9.2) '

Parameters in the topside electron density profile (Sec-
tion 7.6)

Orbital inclination (Section 5.5)
Linear identity operator (Section 6.1.1)

Abbreviation used in the ray angular deflection formula (Sec-
tion 7.6.3) (Equation (7-175))

Identity matrix (Chapter 8 and Appendix E)

Inclination of the mean lunar equator to the ecliptic of date
(Section 3.3.3)

Summation symbols (Chapter 6)

Orbital inclination

Local incidence angle between an electromagnetic ray and a
radius vector (Section 7.6)

Incidence angle between the spacecraft axis and the paddle
surface (Section 4.5.2)

Inclination of the Moon’s equatorial plane to the Earth’s equa-
torial plane (Buler angle used in the transformation from
selenocentric to selenographic coordinates.) (Section 3.3.3)
Zonal harmonic coefficients (J, = -C3) (Chapter 4)

Zonal harmonic coefficients (Chapter 5)

Julian day number

Julian epoch (Section 3.3.1)

GL-14



kln k2

k.‘n kZi k3

k2! kSo k4: k-S
L

Ls l‘b! Lﬂs LT

Julian ephemeris date (Section 3.3.1)
Kalman filter gain matrix (Chapter 8)
Augmented gain matrix (Section 8.4)
Geomagnetic planetary index (Section 4.5 4)

Solar pressure model parameter (Section 4.6.2)
Factor used in defining the average Doppler frequency (Sec-
tion 7.3) '

Unit vector normal to the orbital plane (Section 9.2)

Projection of the vector £ on the i,p axis (equinoctial ele-
ments) (Chapter 3)

Functions used in the Runge-Kutta integration method (Sec-
tion 6.2)

Gain constants used to compute measurement variances (Sec-
tion 8.1)

Decay constants for the lower, middle, and upper third, re-
spectively, of the topside electron density profile (Section 7.6)

Auxiliary parameters (defined in Section 5.9)

Cylinder length (Section 4.5.2)
Luminosity of the Sun (Section 4.6)
Magnitude of the angular momentum vector (Section 4.8.2)

Total energy of the orbit (DS element) (Chapter 5 and Appen-
dix B)

KS matrix (Section 5.4)
Length of pseudorandom code (chips) (Section 7.3.2.3)
Search level (Section 9.2.3)

Unit vector directed toward the spacecraft from a tracking sta-
tion in mean of B1950.0 or J2000.0, body-fixed, local tangent,
or true of date coordinates, respectively (Section 9.2)
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L,

@LTP)y, LTP)2, (L7P)s

Is !xs !ys !z

M

M(t)
M(Z)
M, M’

M, Mij, my

Components of the angular momentum vector (Section 4.8.2)

Libration point, lying on the vector between the Sun and the
Earth-Moon barycenter (Section 3.3.14)

Transformed components of perturbing accelerations (Sec-
tion 5.4)

Parameter in Robert's temperature profile (Section 4.5.4)

Mean anomaly in Delaunay. elements (Chapter 5 and Appen-
dix B)

Direction cosine of the angle between the station-spacecraft
vector and the local tangent cast-pointing axis; this angle is
measured by the Minitrack System (described in Sec-
tion 7.2.3)

Number that scales the hyperellipse of constant (normal)
probability in terms of the standard deviations (Section 8.5.2)

Direction cosine of the corrected phase difference from the
east-pointing axis at the station (Appendix A)

Herrick angular momentum vector and its components (Sec-
tions 3.2.6, 3.3.10, and 3.3.11)

Orbital mean anomaly

Transformation matrix from the geocentric body-fixed coordi-
nate system to the true of date system (Section 9.1)

Maneuver parameters (Section 4.8.4)
Table entry for the mass (kilograms) (Section 4.8.3)
Mean molecular mass of atmosphere (Sectioﬁ 4.5.4)

Transformation matrices from selenocentric to selenographic
coordinates (Sections 3.3.3 and 4.4)

Notation used in describing the matrix inversion procedure
(Section 8.6)

Final unedited batch calibration residual mean from the i®
batch (Section 8.7.3)
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MID, MID;

MUF(3000)F2

M-factor

Final unedited batch calibration mean value (Section 8.7.4)
Mass of the Earth (Section 3.3.14)

Final edited batch validation residual mean {Section 8.7.3)
Molecular mass of atmospheric constituents (Section 4.5.4)

Transformation matrix from body-fixed coordinates, centered
at a tracking station, to local tangent coordinates at the station
(Section 3.3.7 and Chapter 9

Mean of the unedited residuals (Section 8.7.2)

Mean of the unedited residuals from the previous edit loop
(Section 8.7.2)

Mass of the Moon (Section 3.3.14)

Mean of the unedited batch calibration residual mean values
(Section 8.7.3)

Mean of the unedited batch calibration residual standard de-
viations (Section 8.7.3)

Sea-level mean molecular mass (Section 4.5.4)
Fina! unedited batch validation residual mean (Section 8.7.3)
Mean of unedited residuals (Section 8.7.2)

Maximum (approximately) positive number representable in
the computer (Section 9.3)

Modified Julian date and tabular modified Julian date (Sec-
tion 3.5)

Highest frequency usable for a 3000-kilometer single-hop
propagation via the F2 layer (S:ction 7.6)

Ratio of MUF(3000)F2 to the critical frequency foF, (Sec-
tion 7.6)
Mass of a body (Chapter 4)

Direction cosine of the angle between the station-spacecraft
vector and the local tangent north-pointing axis; this angle is
measured by the Minitrack System (Section 7.2.3)
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m (Cont'd)

Mpe

My

N| Nh NO

NeNTR

Nr

Nes Nm

Nr

Sigma multiplier for the noise analysis “m-sigma” edit (Sec-
tion 8.7.4)

Mass of the satellite/launch vehicle combination at ignition (or
at the last burnout) (Section 9.1)

Mean value of each residual group (Section 8.6)

Direction cosine of the corrected phase difference from the
north-pointing axis at the station (Appendix A)

Vehicle mass at burnout time (Section 4.8.4)
Vehicle mass at ignition time (Section 4.8.4)

Distance along the normal vector from the intersection of the
normal and the ellipsoid to the zp axis (Figure 3-15 and Sec-
tion 3.3.6)

Nutation transformation matrix from mean of date to true of
date coordinates (Sections 3.3.1 and 9.2.1)

Number of unedited residuals available for noise estimation
(Section 8.7.4)

Total number of counts (Section A.8)

Ascending nodal vector in the equinoctial system (Figure 3-5
and Section 3.2)

Number of cycles of the Doppler-plus-bias signal counted over
the Doppler counting cycle (Appendix A and Appendix C

Doppler count VDNA noise estimate (Section 8.7.4)
Averaged Doppler VDNA noise estimate (Section 8.7.4)
Doppler DDNA noise estimate (Section 8.7.4)

Electron density and maximum electron density (Section 7.6)

Minitrack fine baseline lengths in terms of vacuum wave-
lengths of the nominal 136.0 megahertz frequency signal (Ap-
pendix A)
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NI' NT
Nh Ni-l

NO: Nh N2

>

=>4
=

Tonospheric and tropospheric refractivity (Section 7.6)

Doppler counter readings (in counts) associated with time
tags T; and Ty, respectively (Section A.8.2)

Brouwer drag parameters (Section 4.9)

Averaged range-rate VDNA noise estimate (Section 8.7.4)

Intermediate range-rate DDNA noise estimate (Section 8.7.4)

Magnitude of the normal vector t0 the surface of the reference
ellipsoid at the tracking station (Sections 3.3.7 and 9.2)

Surface refractivity (Section 7.6)

Parameters in the topside electron density profile (Sec-
tion 7.6) :

Keplerian mean motion

Adjustable parameter exponent of the cosine variation be-
tween the Harris-Priester maximum and minimum density
profiles (Sections 4.3.5 and 5 3)

Uniformization constant (Section 5.1)

Number of accelerations in the backpoints table (Sec-
tion 6.1.5)

Variable local index of refraction (Section 7.6)
Measurement noise (Section 7.8)

Sigma multiplier (Section 8.7.2)

Mean motion (Section 9.2.3)

Total number of counts (Section A.8.2)

Unit vector along the idealized straight signal pro_pagation
path (Appendix C)

Random noise vector (Chapter 8)

Unit vectors normal to the reference ellipsoid and the geoid,
respectively (Section 7.4)
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Ny

O,

Integer number of ambiguity intervals for a measured range at
time tag T (Section 7.3.2)

Number of batches of either two-way or hybrid range data for
each ground transponder user (Section 8.7.3)

Total number of residuals for a tracking station and data type
(Section 8.6)

Unit vectors along the local signal propagation path at the
transmitter and receiver, respectively (Appendix C)

Number of remaining unedited residuals in the category vali-
dation statistics (Section 8.7.2)

Computed measurement (Sections 7.1, 7.3, and 8.2)

Transformation matrix from orbital rectangular coordinates to
true of date coordinates (Sections 3.3.8.1 and 3.3.8.2)

Orbital period (Section 3.3.8.3)
Pitch angle (Section 4.8.4)
PN code period (seconds) (Section 7.3.2.3)

Ionospheric term used in the equation for atmospheric time
delay (Section 7.6.3)

Order of the variate differences (Section 8.7.4)
Symmetric positive definite matrix (Appendix E)

Perturbative accelerations additional to the primary body’s in-
verse square gravity (Chapter 5 and Appendix B)

Augmented error covariance matrix (Section 8.4)

Adopted and true pole, respectively, of the Earth (Sec-
tion 3.3.2.2)

Computed spatial beam vector (Section 7.3.7)

Computed unit vector from the return-link TDRS to the user
spacecraft or transponder (Section 7.3.7)
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Pi(cos 6)

D I

P,
PT| YT

Paa

PAA: P'Al

PAu

Legendre functions (Section 4.2)

Pitch angle at ignition (Section 4.8.4)

Pitch angle rate (assumed constant) (Section 4.8.4)
Legendre functions (Section 4.3.1)

Measured spatial beam vector (Section 7.3.7)

Force on a perfectly absorbing surface due to solar radiation
pressure at one astronomical unit (Section 4.6)

Pitch and yaw angles, respectively, defining the thrust direc-
tion (Section 4.8)

Covariance matrices (Chapter 8)

Covariance matrix of the estimated state variable errors
(Chapter 8)

Covariance matrix of the state and model parameter €rrors
(Section 8.2.3)

Covariance matrix of estimated solve-for variable errors
(Chapter 8) :

Covariance matrix of a priori solve-for variable errors (Chap-
ter 8)

Covariance matrix of consider variable errors (Chapter 8)

Covariance matrix of a priori consider variable errors (Chap-
ter 8)

Summation matrices (Section 6.1.4)
Components of the perturbing accelerations (Section 5.4)

Semilatus rectum of the orbit

Dimension of the solve-for vector (Chapter 8)
Dynamic parameters in the equations of motion that can be
estimated; these include variables related to the position and

velocity, gravitational harmonic coefficients, drag parameters,
etc. (Section 7)
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p-i

A A
P, 4
Ps Pr
pm(é)
Px

Q

Qf
Qv Qi
q

q

q. G-

Components of p remaining after excluding satellite position
and velocity variables; these components include constant
model parameters pertaining to drag, gravitational harmonic
coefficients, etc. (Section 4.1)

Unit vectors in the orbit plane (Section 4.9)

Projection of vector N on the 9e axis (equinoctial elements)
(Sections 3.2.6, 3.3.9.1, and 3.3.11.1)

Interpolating polynomial representing a component of accel-
eration as a function of normalized time (Section 5.6)

Normal probability density function (Section 8.5)

Transformation matrix from spacecraft vehicle-fixed axes to
true of date coordinates (Section 3.3.12 and Chapter 4)

Difference between ephemeris data and the function Ym(t)
(Section 3.6)

Tonospheric term used in the equation for atmospheric time
delay (Section 7.6.3)

Least-squares loss function (Sections 8.1 and 8.2)

Covariance of the state noise (Section 8.4)
Linearized least-squares loss function (Sections 8.1 and 8.2)
Orbital accuracy (Section 9.2.3)

Pericentric distance (Section 3.3.8.1)

Scaling factor defining time transformation (Section 5.5 and
Appendix B)

Dimension of the consider vector (Chapter 8)

Total parameter vector of all candidate solve-for variables
(Chapter 7)

Projection of the vector N on the &, axis (equinoctial ele-
ments) (Sections 3.2.5, 3.3.9.1, and 3.3.11.1)
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=B

R(v)

KB! vB

Universal gas constant (Section 4.5.4)
Magnitude of the position vector (Section 6.2.3)

Rate of pseudorandom code (chips per second) (Sec-
tion 7.3.2.3)

Covariance matrix of the measurement noise (Section 8.4)

Maximum residual multiplier in preliminary residual editing
(Section 8.6.2)

Position vector in mean equator and equinox of B1950.0 or
J2000.0 coordinates (Chapter 3)

Column vector of vehicle position coordinates (Chapter 4)

Epoch state elements (Section 7.2.3)

Vector from the center of an inertial coordinate system to the
satellite (Section 4.2.1)

Velocity of the spacecraft (Sections 4.5.2 and 7.1)

Satellite position vector relative to the shadowing body (Sec-
tion 4.6.1)

Total acceleration vector expressed in an inertial Cartesian
coordinate system (Section 4.1)

Thrust acceleration vector at a tabular point t; (Section 4.8.3)
Polar radius of the Earth (Section 4.5.4)

Inertial position and velocity vectors, respectively, of the
barycenter with respect to the Sun (Section 3.3.14)

Acceleration due to aerodynamic forces expressed in an iner-
tial Cartesian coordinate system (Chapter 4)

Inertial position vector of the Earth with respect to the Sun
(Section 3.3.14)

Inertial acceleration of the Earth in an inertial Cartesian coor-
dinate system (Section 4.4)
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Re(M)

R Ry

Inertial acceleration of the point-mass Earth due to an oblate
Moon (Section 4.4)

Bquatorial and polar radii, respectively, of the Earth or refer-
ence body

Acceleration due to the mutual nonspherical gravitational at-
traction of the Earth and Moon in an inertial Cartesian coordi-
nate system (Chapter 4)

Geocentric inertial spacecraft position vectors (Chapter 9)
Vector from the k™ body to the satellite (Chapter 4)

Inertial position vector of the Moon with respect to the Sun
(Section 3.3.14)

Inertial acceleration of the Moon in an inertial Cartesian coor-
dinate system (Chapter 4)

Inertial acceleration of the point-mass Moon due to an oblate
Earth (Section 4.4)

Equatorial radius of the Moon (Section 4.4)
Maximum position tolerance (Section 4.8.4)
Maximum velocity tolerance (Section 4.8.4)

Gravitational acceleration due to the nonsphericity of the
gravitational potential in an inertial Cartesian coordinate sys-
tem (Chapter 4)

Gravitationa! acceleration due to n-point masses in an inertial
Cartesian coordinate system (Chapter 4)

See R., Rp above

Acceleration due to solar radiation pressure expressed in an
inertial Cartesian coordinate system (Chapter 4)

Position vector of the Sun in the inertial mean of B1950.0 or
J2000.0 coordinate system (Section 4.6.1)
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R,

Ry, Rz

leln

RF,

RMSP

RMSB

Magnitude of the tracking station position vectors (Chapter 9)
One astronomical unit (Section 4.6.1)

Acceleration due to thrusting of the spacecraft engines in an
inertial Cartesian coordinate system (Chapter 4)

Acceleration due to attitude control system corrections in an
inertial Cartesian coordinate system (Chapter 4)

Right ascension of the fictitious mean Sun on the mean equa-
tor of date and measured from the mean equinox of date
(Section 3.4.3)

Distance from the spacecraft to the Sun (Section 4.6.1)

Rotational transformations about the &, §, and 2 axes, re-
spectively (Section 3.3)

Rotations to transform between two mean of date coordinate
systems (Section 3.3.1)

Initial and final coordinates, respectively (Section 3.3.1.1)

Values of the spacecraft radii at times t and t;, respectively,
in preliminary orbit search (Section 9.2.3)

Upper bound on R; (Section 9.2.3)
Lower bound on Ry (Section 9.2.3)

Measurement correction due to refraction, light-time, trans-
ponder delay, antenna mount errors, ctc. (Chapter 7)

Actual root mean square error (Section 8.6)
Predicted root-mean-square error (Section 8.6)
Smallest RMS over all prior iterations (Section 8.6)

Radial distance from the origin to the satellite or point being
measured
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r (Cont'd)

F, F, ¥

I Y

fbs F'b

fe

{CY
il:11-1 (td+ 1)

Tip

Fu

Magnitude of the satellite position vector in inertial geocentric
coordinates (Sections 3.3.13, 4.5.6, and Appendix B)

Geocentric radius (Section 7.4)

Position vector

Satellite position vector in inertial geocentric coordinates (Sec-
tion 4.5.6)

Radius vector of the spacecraft center of mass (Section 7.7.4)

Position vector in true of date coordinates (Sections 3.2, 3.3,
and 8.4.2)

Position, velocity, and acceleration vectors in the inertial Car-
tesian coordinate system (Chapter 5)

Magnitude of the apofocal radius vector (Section 3.3.8)

Position vector expressed in body-fixed and psecudo body-
fixed coordinates, respectively

Position vector in Cartesian coordinates referred to the mean
equator and equinox of date (Sections 3.2.1 and 3.3.1.2)

Position vector of the Earth in selenographic coordinates (Sec-
tion 4.4)

Acceleration of the point-mass Earth due to the oblate Moon
in selenographic true of date coordinates (Section 4.4)

Position vector of the Moon in geocentric coordinates (Sec-
tion 4.4)

Position of node j at time t; (Section 7.3.2)
Position of node j + 1 at time ;1 (Section 7.3.2)

Position vector referred to the local plane coordinate system
(Section 3.3.4.1)

Position vector referred to the local tangent coordinate system
(Sections 3.2.4 and 3.3.6)
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M

fm(E)

fme

T'max

i, i

Iy

fs

Position vector of the Moon in true of date coordinates (Sec-
tion 4.4)

Acceleration of the point-mass Moon due to the oblate Barth
in goecentric true of date coordinates (Section 4.4)

Position vector of the Earth in selenocentric coordinates (Sec-
tion 4.4)

Maximum position tolerance (Section 4.8.4)

Maximum velocity tolerance (Section 4.8.4)

Position vector referred to the orbit plane coordinate system
(Sections 3.2.5 and 3.3.4)

Magnitude of the perifocal radius vector (Section 3.3.8.3)

Position vector referred to the orbital rectangular coordinate
system with the &, axis directed toward perifocus (Sec-
tion 3.3.8)

Position vector of the tracking station at signal reception in
inertial Cartesian coordinates (Chapter 7)

Position vectors of the generalized receiver and transmitter in
inertial Cartesian coordinates (Appendix A)

Geocentric radius of a point (tracking station) on the surface
of the ellipsoidal planet (Sections 3.3.6 and 7.6)

Ellipsoidal radius of the central body (Section 3.3.13)
Radius of the Earth (Section 4.5.6) -

Inertial position vector of the user spacecraft or transponder
(Section 7.3.3)

Location in Earth-fixed coordinates of the transmitting and
receiving stations, as well as the Bilateration Ranging
Transponder (BRT) locations in the case of TDRSS Bilatera-
tion Ranging Transponder System (BRTS) tracking

Position vector of the return-link TDRS at the measurement
time (Section 7.3.7)
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fr (Cont'd)

fr

Frac

(f [+ vO)

fz. El

gbm §.l:u'.l

Se

Position vector of the tracking station at signal transmission in
inertial Cartesian coordinates (Chapter 7, Appendix A, and
Appendix C)

Acceleration due to thrust of the spacecraft engines (Sec-
tion 4.8)

Acceleration due to attitude control effects (Section 4.7)

Vector in vehicle-fixed coordinates (Section 4.7.1)

Position vector of the spacecraft in inertial Cartesian coordi-
nates (Chapter 7 and Appendix C)

Earth-centered position vector (Section 3.3.5)

Position and velocity vectors at the initial time, to (insertion
vector) (Section 9.1)

Final and initial coordinates, respectively (Section 3.3.1.1)

Mean solar flux at one astronomical unit (Section 4.6)
Orbital period in a regularized time system (Section 6.4)

Series involved in atmospheric signal propagation time delay
(Section 7.6.3)

Epoch sensitivity matrix (Section 8.2.3)

Eigenvector transformation from basic coordinate frame to
principal axes (Section 8.5)

Sum of the squares of the residuals about the mean in each
residual group (Section 8.6)

Computed slope (Section 9.2.3)
Arc length along the signal propagation path (Appendix A)

State vector at burnout (Section 4.8.4)

" Final unedited batch calibration standard deviation from the

i® batch (Section 8.7.3)

Projection of the spacecraft position vector onto the plane nor-
mal to the Sun vector in the shadow model (Section 4.6)
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Se (Cont'd)l
sc! Se! sps Ss

Se

Sg-1

Sm

Final unedited batch calibration standard deviation (Sec-
tion 8.7.4)

Coefficients in the aerodynamic force equations (Sec-
tion 4.5.2)

See S., Se, Sp Sa above

Final edited batch validation residual standard deviation (Sec-
tion 8.7.3)

Postburnout state vector (Section 4.8.4)
Preignition state vector (Section 4.8.4)

Harmonic coefficients of the Earth’'s nonspherical potential
(Section 4.4)

State vector at ignition (Section 4.8.4)

Variance of the unedited residuals in the category validation
statistics (Section 8.7.2)

Standard deviation of the unedited residuals from the previous
edit loop (Section 8.7.2)

Standard deviation of the unedited batch calibration residual
mean values (Section 8.7.3)

Gravitational harmonic coefficients (Section 4.3)
See S;, S Sp. S, above

Standard deviation of the unedited batch calibration residual
standard deviations (Section 8.7.3)

See Sc, S, Sp S, above

Greenwich hour angle of the fictitious mean Sun (Sec-
tion 3.4.3)

Final unedited batch validation residual standard deviation
(Section 8.7.3)
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lsm IISII

So

S1, 82, 53

ST
SV

Ta

Ta.cl' Ta.cz

Ty

First and second ordinate sums, respectively, in the Adams-
Cowell formulas (Chapter 6)

Scaling factor (Section 9.2.3)

Components of the unit vector to the Sun in true of date coor-
dinates (Section 4.5)

Station time (defined in Section 3.4.8)

Universal time correction due to seasonal variations in the
rotation of the Earth (Section 3.4.6)

New independent variable in the time-regularized equations of
motion (Chapters 5 and 6 and Appendix B)

Dynamic solve-for parameter (Section 7.3.3)

Orbit direction indicator (direct or rctrbgrade) (Section 9.2.3)
State vector (Chapters 7 and §)

Harmonic coefficients of the Moon's nonspherical potential
(Section 4.4)

Time in Julian centuries (of 36525 days) between the refer-
ence epoch and epoch J2000.0 (Section 3.3.1)

Time in tropical centuries (of 36524.2198 mean solar days)
elapsed from the B1950.0 epoch to the date specified (Sec-
tion 3.3.1.3)

Thrust magnitude (Section 4.8.4)

- Time tag (Sections 7.3 and A.8)

Orbital period (minutes) (Section 9.2.3)

Average orbital period defined in terms of the average value
of the semimajor axis (Section 5.8)

Epoch times at which the attitude control acceleration polyno-
mials are turned on and turned off (Section 4.7.1)

Rocket motor's effective burn time (Section 4.8.1)
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Te

Ty

Tu

Tx

T(Z)

Nighttime minimum global exospheric temperature for zero
geomagnetic activity (Section 4.5.4)

Total computed time between consecutive measurements
(Section 9.2.3)

Time in Julian centuries (36525 Julian days) measured from
1900 January 0% 12b ET (JD 2415020.0) to the specified date
(Section 3.3.1.2)

Number of Julian centuries of 36525 Julian ephemeris days
past 0¢ January 1, 1950 ET (Section 3.3.3)

Effective termination and initiation times, respectively, of the
spacecraft motor burn (Section 4.8.1)

Specified time to which the covariance and correlation matri-
ces are propagated (Chapter 8)

Thrust magnitude at ignition (Section 4.8.4)
Thrust rate (assumed constant) (Section 4.8.4)
Chebyshev polynomials (Sections 3.6 and 5.6)

Time of liftoff (UTC) (Section 9.1)

Period of a spacecraft orbiting at the mean radius of the Earth
(Section 9.2.3)

Time in Julian centuries (of 36525 Julian days) from B1950.0
(Section 3.3.1.2)

Number of Julian centuries elapsed from 12 hours UT1 Janu-
ary 0, 1900 (JD = 2415020.0) to the UT1 time of date
[B1950.0 system] (Sections 3.3.2 and 3.4.3)

Number of UT Julian centuries elapsed from epoch J2000.0 to
0 hours UT1 of the date [J2000.0 system] (Section 3.3.2.1)

Inflection point temperature {Section 4.5.4)

Atmospheric temperature profile (Section 4.5.4)
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TOl Tf

Th T2s T3

Te

]

t.

See Ty, To above

Uncorrected exospheric temperature (Section 4.5.4)
Numerical integration error bounds (Section 6.1.7)
Corrected exospheric temperature (Sectior; 4.5.4)

Coordinate time measured in seconds from epoch; the inde-
pendent variable of the equations of motion

Time in Julian centuries between the reference epoch and the
data epoch (Section 3.3.1)

Universal time (UT) measured in seconds from 0 hours UT1
of the date of the computations (Section 3.3.2.1)

Request time (Section 6.1.5)

Independent variable in the Runge-Kutta integrators (Sec-
tion 6.2)

Time tag of the measurement (Section 7.1)

Variable used for testing residuals to determine the confi-
dence interval for the group mean (Section 8.6)

Coordinate time (Appendix C)

Reference date (Section 3.3.1.4)

Clock bias (Section 7.3.3)

Maneuver end (burnout) time (Section 4.8.4)

Time commencing the frame time interval for the GRARR
and Minitrack systems (Appendix A)

Midframe time for the Minitrack System (Appendix A)

Time of the postburnout state vector (Section 4.8.4)

Time of the final measurement (Section 8.4)

Time of the preignition state vector (Section 4.8.4)
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= &

=S N

tjm-l

L1

t t

tr

Maneuver start (ignition) time (Section 4.8.4)

Signal retransmission time from node j (Section 7.3.2)
Signal reception time at node j (Section 7.3.2)

n'd approximation for t; (Section 7.3.2.1)

(n+1)® approximation for t; (Section 7.3.2.1)

Corrected midframe time of the Minitrack System (Appen-
dix A)

Time associated with the most recent entry in the backpoints
table (Section 6.1.5)

Reference time associated with the Brouwer drag parameters
(Section 4.9)

Devised output time in the fourth-order Runge-Kutta integra-
tor (Section 6.6.3)

Time at which the ground station receives the return signal
{(Chapter 7 and Appendix A)

Time tag of the C-band range data (Section 7.2.3)
Proper time at the receiving station (Appendix C)

Requested time in multistep interpolation with fixed-step inte-
gration (Section 6.1.5)

Sample time of the tracker range and range-rate data (Appen-
dices A and C)

Signal transmission time at the ground station (Chapter 7 and
Appendix A)

Signal turnaround time at the spacecraft (Chapter 7 and Ap-
pendix A)

Epoch time (Chapter 4 and Section 8.2.3)
Epoch of the estimated solution (Section 7.3.2)
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t B2

Times of the first two measurement in preliminary orbit
search (Section 9.2.3)

Geoidal undulation (Section 7.4)

Unit vector directed at the satellite and referred to the geocen-
tric inertial Cartesian coordinate system (Sections 3.3.5 and
4.8.2)

Tropospheric delay terms (Section 7.6.3)

Unit vector directed toward the apex of the diurnal bulge ex-
pressed in inertial geocentric coordinates (Section 4.5.6)

Components of the unit vector fJB (Section 4.5.6)

Unit vector normal to the orbital plane in the direction of the
angular momentum vector (Section 3.3.4.2)

Unit vector directed at the Sun from a shadowing body (Sec-
tion 4.6.1)

Unit vector directed along the thrust axis and referred to the
geocentric inertial Cartesian coordinate system (Section 4.8.1)

Universal time
Coordinated universal time
Uncorrected universal time

UTO corrected for polar motion; Greenwich universal time
measured from midnight (epoch) to time t; UT1 is positive for
t after midnight and negative for t before midnight

UT1 corrected for periodic seasonal variations

Unit vector in the local plane 2, -axis direction and referred
to the geocentric inertial Cartesian system (Section 3.3.4.2)

Partial derivatives of ﬁ-r with respect to the right ascension,
a, and declination, 4 (Section 4.8.2)
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Unit vector pointing along the vacuum uplink signal propaga-
tion path from the station to the spacecraft (Section 7.6.3 and
Appendix C) :

Expanded state vector containing as components the merged
vectors X and Z (Section 8.2)

Best estimate of uncertain state and model parameters (Sec-
tion 8.2.3)

Vector of Gaussian noise (Section 8.4)

Uncertain model parameters in {i (Section 8.2.3)
Transformed position and velocity vectors (Section 5.4)

Unit vector along the leg between nodes ] and j + 1 (Sec-
tion 7.3.3)

Unit vectors in the body-centered true of date Cartesian coor-
dinate system (Section 3.3.8.3)
Spacecraft’s velocity vector magnitude

Magnitude of the velocity with respect to a medium producing
an aerodynamic force (Section 4.5)

Perturbing potential function (Section 5.4 and Appendix B)

Unit vector normal to the geocentric position vector and lying
in the orbital plane (Sections 3.3.5 and 4.8.2)

Inertial velocity vector of the barycenter with respect to the
Sun (Section 3.3.14)

Relative wind velocity in the spacecraft body axes coordinate
system (Section 4.5.2)

Inertial velocity vector of the Earth with respect to the Sun
(Section 3.3.14)

Velocity of the spacecraft relative to the atmosphere (Sec-
tion 4.5)

Inertial velocity vector of the Moon with respect to the Sun
(Section 3.3.14)
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Va

Xl’ Yl

Xao, Yo

Local vertical at the ground station (Section 7.6.3)
Magnitude of spacecraft velocity (Appendix B)

Velocity vector
Unit velocity vector (Section 4.8.3)

Quantity denoting the Cowell velocity integrator for linear sys-
tems (Section 6.1.3)

Weighting matrix in the least-squares loss function (Chap-
ter 8)

Vector parallel to the angular momentum unit vector (Sec-
tion 9.2.3)

Unit vector directed normal to the orbit plane in the direction
of the angular momentum vector (Sections 3.3.5 and 4.8.2)

Augmented weighting matrix (Chapter 8)

Weighting factor for the Ptt-order divided differences (Sec-
tion 8.7.4)

Component of the measurement weight matrix, W, corre-
sponding to the j* measurement (Section 8.6.2)

Weight of the (m+1)" measurement (Chapter 8 and Appen-
dix 8)

Inertial Cartesian components of spacecraft position in the
mean of B1950.0 or J2000.0 coordinate system (Section 3.2.1)

Unit vector along the cylinder axis (Section 4.5.2)

Components of the TDRS spacecraft vehicle-fixed position
(Section 7.3.7) .

Position coordinates in the equinoctial coordinate system (Sec-
tions 3.3.9.1 and 5.7)

Gimbal angles for the GRARR, ATSR, and SRE USB systems
(Section 7.2.3)
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Xgs, Yas
X
X
X
x& x.'l
p
A

X X, 5%
n\y. 2

A, A, A
xl’ yl’ zf
A A, A
xf, QF’ zf
Xb, Y'b! Zy

r r !
Xy Yo %o
Xg: ¥E, Zg
Xeps Yeps Zep
xl

Gimbal angles for the SRE USB system (Section 7.2.3)
Augmented state matrix (Section 8.4)
Transformed time variable (Section 3.6)

State vector
Vector of slow osculating orbital elements (Section 5.8)

Vector of the dependent variables and its value at time 1,
respectively, in the Runge-Kutta integrators (Section 6.2)

Accelerations in the backpoints table (Section 6.1.5)

Epoch values of the solve-for or expanded state vector of
p-dimension: the vector ﬁi is the best estimate of X obtained
on the i iteration; the vector Xj.; is the reference solution on
the it iteration; the vector X is the a priori estimate of the
reference state (Chapter 8)

Inertial Cartesian components of spacecraft position in the
true of date coordinate system

Axes of the rotating libration point coordihate system (Sec-
tion 3.3.14)

Rate of change of the libration coordinate axes (Sec-
tion 3.3.14)

Rectangular Cartesian components of spacecraft position in
body-fixed (rotating) coordinates of the principal gravitating
body

Components of spacecraft position in the pseudo body-fixed
coordinate system (Section 3.3.2)

Inertial components of spacecraft position in the mean of date
coordinate system (Section 3.2.1) '

Components of spacecraft position in the equinoctial coordi-
nate system (Section 3.2.5)

Components of the space coordinates (Appendix C)
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x;(t)

%(to)

Xips Yip» Zp
Xit, Yio Zn
Xn

Xops Yops Zop
Xp ¥p

Xps» Yp» Zp

Xay ¥or Zs

A A
ﬁT' yTi ZT

Xvs Yvo Zv

Instantaneous state vectors of node j at time tag ¢ (Sec-
tion 7.3.5)

State vector (position and velocity) of node j at epoch to (Sec-
tion 7.3.5)

Components of spacecraft position in geocentric local plane
coordinates (up, east, north) (Section 3.2.3)

Components of spacecraft position in topocentric local tangent
coordinates (east, north, up) (Section 3.2.4)

Quantity denoting the Cowell position integrator for linear sys-
tems

Components of spacecraft position in geocentric orbit plane
coordinates (Sections 3.2.5 and 7.7.4)

Instantaneous angular coordinates of the polar motion (Sec-
tion 3.3.2.2) (see Figure 3-11)

Keplerian Cartesian components of spacecraft position in or-
bital coordinates, i.e., Xp is directed toward perigee and Zp in
the direction of the angular momentum (Sections 3.2.5 and
5.7)

Keplerian unit vectors (Sections 3.2.5 and 5.7

Spacecraft orbit frame unit vectors (Section 4.8.4)

Components used in the two-dimensional analysis of an ellip-
soid to indicate that the y component is omitted (Sec-
tion 3.3.6)

Coordinates of a point s on the surface of an ellipsoidal
planet expressed in body-centered rotating coordinates (Sec-
tion 3.3.6)

TDRS track-oriented coordinate axes (Section 7.3.7)

Components of spacecraft position in the vehicle-fixed coordi-
nate system (Sections 3.2.7 and 4.7.1)
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Yt | )

Yol

Ye
Yep
¥

Yip

n

See X, Y, Z above
Yaw angle (Section 4.8.4)

Dependent variable vector in the second-order linear differen-
tial system of variational equations (Sections 4,1 and 6.1.4)

Yaw angle at ignition (Section 4.8.4)

Yaw angle rate (assumed constant) (Section 4.8.4)

Yaw and pitch angles, respectively, defining the thrust direc-
tion (Section 4.8)

Matrices obtained by integrating the variational equations
(Section 4.1)

Matrices of position partial derivatives and velocity partial de-

rivatives, respectively (Section 6.1.4)
Predicted measurement residual uncertainty (Sectibn 8.4)

Linear combination of functions used in the interpolation of
ephemeris data (Section 3.6)

See x, v, z above

Fast osculating orbital elements (Section 5.8)
m-dimensional vector of measurement data (Chapter 8)
See X, y{,, 7, above

See Xy, Vb, zp above

See xg, Ve, Zg above

See Xopy Yeps Zep aDOVE

JPL ephemeris function value at time t; (Section 3.6)
See Xip, Yips Zip above

See Xy, Vi, Zn above
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¥m

Y
¥«

Yv

Zp

Zp
Zep

Z;

Zy

Zop

Half-thickness of the bottomside layer of the electron density
profile (Section 7.6)

See Xp, Yp. 2p above
See X,, Vs, Zs above
See X, Yvw Zy above
See Xop, Yops Zop abOVE

See X, Y, Z above
Altitude (Section 4.5.4)

Zenith calibration constants (Appendix A)

See x, y, z above

Nondimensional altitude used in the Chapman profile for elec-
tron density (Sections 7.6.2 and 7.6.3)

q-dimensional consider vector containing as components all
model parameters whose values are known with limited cer-
tainty but are not to be estimated (Chapter 8)

See Xp, Vo, Zp abov:
See xp, Yo, Zp above
See xg, yg, Zg above
Seé Xeps Yepr Zep BbOVE

2y -axis intercept of the vector normal to the surface of the
ellipsoidal planet model (Section 3.3.6)

See Xip, Yip, Z1p above
See Xy, Yu. Zn above
Sec Xop Yops Zop 8DOVE

See X;, ¥p. Zp above
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Greek Symbols

a

acgm

a;

a;, ﬁi; a;’ ﬁi-

Gs

ar

See X,, Vs, Zs above
See Xy, Vv, Zy above

A priori value of Z (Chapter 8)

Right ascension of the spacecraft relative to the true of date
system

Rotation matrix (Section 3.3.1.1)
Right ascension in spherical coordinates (Section 3.3.13)

Geocentric angle between the ground station and the sub-
jonospheric point (Section 7.6.3)

Uniformation constant (Appendix B)

Unit vector normal to the orbit plane (Section 4.9)
Slow and fast elements, respectively (Section 5.7)
Four-vectors (Section 5.4 and Appendix B)

True of date right ascension of Greenwich (also called the
true Greenwich sidereal time or true Greenwich hour angle)
(Sections 3 and 9)

Mean Greenwich sidereal time, i.c., right ascension of the fic-
titious mean Sun minus 12 hours plus the time of day in UT1
(Section 3.3.2.1)

Thermal diffusion coefficient (Section 4.5.4) (see Table 4-2)
DS elements vector (Section 5.5)

Coefficients of the Adams-Cowell predictor formulas (ordi-
nate form) (Chapter 6)

Right ascension of the Sun (Section 4.5.6)

Right ascension of the spacecraft’s thrust axis (Section 4.8.1)
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Oy

Qo ..y G4

X1y +ey OB

=

= >

~

Ve

s Y;' ‘3’;’

V2, ¥ Y4 Vs
V2, V3 Vas VS
A

Adg, Ad,

Topocentric right ascension of the spacecraft (Section 9.2)

Right ascension of the spacecraft’s longitudinal axis (Section
3.3.12)

Estimated thrust variation coefficient (Section 4.8.3)

Coefficients of polynomial characterizing the thrust axis right
ascension (Section 4.8.1)

DS elements vector (Section 5.5)

Flight path angle measured from the geocentric position vec-
tor to the velocity vector (Section 3.2.3)

Unit vector lying in the orbit plane (Section 4.9)
Flight path angle (Section 3.3.13)

Vector containing powers of the thrust burning time (Sec-
tion 4.8.2) '

Normal gravity at a point (Section 7.4)

Unit vector forming right-hand system with & and 3 (Sec-
tion 4.9)

Normal equatorial gravity (Section 7.4)
Coefficients in the Adams-Cowell formulas (Section 6.1.1)

Ground elapsed time from Tpo for the selected Delta Inertial
Guidance System (DIGS) station (Section 9.1)

Auxiliary parameters (Section 5.9)
Auxiliary parameters (Section 5.9)

Auxiliary angle used in determining the transformation from
true of date selenocentric to selenographic coordinates (Sec-
tion 3.3.3)

Correction vectors used in the determination of refraction cor-
rection (Section 7.6.3)
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Afceadum

AH

Alprac, AMprac

(A logyo 0)c
(A 10310 Q)Ha
(A logio @)Lt

(A logio @)sa

A
As, As
AT, AT,
AT w

ATi9s8

Atmospheric elevation correction (Section 7.6.3)

Cotrection to the frequency feesium = 9,192,631,770 cycles of
cesium per ephemeris second (Section 3.5.1)

Correction to the mean right ascension to account for nuta-
tion (Section 3.3.2.1)

First-order correction to the mean anomaly (Sections 5.9 and
4.9), respectively

Geomagnetic activity correction to the standard density calcu-
lation (Section 4.5.4)

Density correction for the seasonal latitudinal variation of he-
lium (Section 4.5.4)

Density correction for the seasonal latitude variation of the
lower thermosphere (Section 4.5.4)

Semiannual atmospheric density variation (Section 4.5.4)
Correction to the maneuver parameters (Section 4.8.4)
Radius of the error hypersphere (Section 8.5.2)

Range and rangerate antenna mount corrections (Sec-
tion 7.6.3)

Velocity difference (Section 4.8.4)
Antenna offset vector (Section 7.7.4)

Miss vector (Section 4.8.4)

First six components of Ax and Bx (Chapter 8)
Time differences (Section 9.2.3)

Correction to the exothermic temperature (Section 4.5.4)

1
Difference ET—UT?2 on January 1, 1958, 08%0™=(° UT2, minus
the periodic terms in the ET-to-A.l transformation (Sec-

tion 3.5.1)
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At

At

Aty
Atmax
Atp
Atg

Atgp

Atgr

Step size

Measured round-trip time delay (in seconds) at time tag T
between corresponding chips of the reference and received PN
code (Section A.8.2)

Counter delay in the phase readout digitizing equipment (Ap-
pendix A)

Correction to the sequencer delay (Appendix A)
Maximum value for the integration step (Section 9.1)
Sequencer delay (Appendix A)

Two-way light time corresponding to the range measurement
(Section A.1)

Reciprocal of the data recording rate (Section A.1)

Doppler count time interval (Chapter 7 and Appendices A
and C)

Perturbations about @ (Section 8.2.3)

Best estimate of Au in a weighted least-squares sense (Chap-
ter 8)

Correction vectors used in the determination of refraction cor-
rection (Section 7.6.3)

it variate difference of order P (Section 8.7.4)

Perturbation in the solve-for vector about the i* jterated esti-
mate, X; (Section 8.2)

Best estimate of Ax in a weighted least-squares sense (Sec-
tion 8.2)

Deviation of the a priori from the i iterated estimate of X
(Section 8.2)

State correction computed in the n™ residual editing iteration
(Section 8.6.2)
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Ay(y)
Ay" ()

AoT)
Aps(T)

At

A

Vector of deviation between the actual measurements and the
b jterated estimate of the measurements. (Note: Ay = Ayp)
(Sections 8.1 and 8.2)

Measurement residual for the j measurement (Section 8.6.2)
Predicted weighted measurement residual (Section 8.6.2)

Perturbations of the consider vector Z about its a priori value
(Section 8.2)

Components of transformed state vector which constitute the
coordinates of a hypersphere (Section 8.5.2)

Difference between the adopted and true longitude (Sec-
tion 3.3.2.2)

Measured differenced one-way Doppler measurement at time
tag T (Section A.8.2)

Atmospheric range correction (Section 7.6.3)
Atmospheric range-rate correction (Section 7.6.3)

Density correction factor (Section 4.5.5)

Computed range difference (Appendix C)

Difference between the full long-path range at times T and
T ~ AT (Sections 7.3.4)

Difference between the full short-path range at times T and
T - AT (Sections 7.3.4)

Spacecraft transponder time delay (Chapter 7 and Appen-
dix A) '

Difference between the adopted and true latitude (Sec-
tion 3.3.2.2)

Declination angle measured north from the equator

Declination in spherical coordinates (Section 3.1.13)
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é (Cont'd)

o, &

Oy

Goy +eer Oa

di, 69, bw

o6}, &,

6[’1, 6[’2

oFV;
da, 0B, oy

Quantity used in determining the atmospheric refraction cor-
rection to the elevation angle (Section 7.6.4)

Dirac delta function (Section 8.4)

Coefficients of the ordinate form of the Adams-Cowell formu-
las (Section 6.1.6)

Polynomial coefficients in the density calculation (Sec-
tion 4.5.4)

Kronecker delta function (Sections 4.8.2 and 8.4)

Error coefficients (Section 6.2.2)

Declination of the Sun

Declination of the spacecraft’s thrust axis (Section 4.8.1)
Topocentric declination of the spacecraft (Section 9.2)

Declination of the spacecraft’s longitudinal axis (Sec-
tion 3.3.12)

Coefficients of polynomial characterizing the thrust axis decli-
nation (Section 4.8.1)

Perturbations in the orbit inclination, right ascension of the
ascending node, and argument of perigee, respectively (Sec-
tion 4.9)

Thrust components in terms of position and velocity changes,

respectively, in a geocentric body-fixed coordinate system ref-

erenced to the launch pad at time t, extracted from the
launch telemetry data (Section 9.1)

Corrections to the assumed radius magnitudes (Section 9.2.3)
Timing bias in the measurement data (Sections 7.1 and 8.2)

itb divided difference of order P (Section 8.7.4)

Rotational perturbations around &, B, and 9, respectively
(Section 4.9)
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de

oy

&)

€m, &

€

()
o

8, 6

Difference between the true and mean obliquity (Sec-
tion 3.3.1.3)

Nutation in longitude (Section 3.3.1.3)

Small parameter proportional to the perturbing acceleration
{Section 5.8)

" Tolerance (Sections 7.3.2 and 8.6.2)

Improvement ratio criterion specified for least-squares itera-
tion convergence (Section 8.6.3)

Pirst-order Gauss-Markov process representing the unmodeled
acceleration, &, (Section 8.4.2)

Mean and true obliquity (Sections 3.3.1 and 3.3.2)
Local error of the numerical integration (Section 6.1.7)
See €y, € above

Denotes the expected value

Precession angle (Section 3.3.1)

Surface reflectivity coefficient (Section 4.6)
Auxiliary parameter (Section 5.9)

Flight path angle (Section 4.9)

Auxiliary parameter (Section 5.9)

Transition matrix between perturbations in solve-for variables
and perturbations in consider variables (Section 8.2.3)

Orbital angle and mean orbital angle, respectively, measured
along the lunar equator from the descending node of the
Earth’s orbit to the lunar prime meridian (Section 3.3.3)

Precession angle (Section 3.3.1)

Euler angle used in the transformation from selenocentric to
selenographic coordinates (Section 3.3.3)
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A4

;'Al AT

Ag

LI S

Va

va(T)

Longitude measured east from the prime meridian

Equinoctial and Herrick mean longitudes (Sections 3.2.6 and
3.3.9.1)

Number of full revolutions between consecutive measure-
ments (Section 9.2.3)

Adopted and instantaneous (true) longitudes, respectively
(Section 3.3.2.2)

Geographic east longitude measured positive west (Sec-
tion 3.3.13)

Selenographic longitude of the Earth (Section 4.4)

Lag angle between the Sun line and the apex of the diurnal
bulge (Section 4.5.6)

Geocentric mean longitude of the Moon (Section 3.3.3)

True right ascension of the Moon (Section 4.4)
Longitude of the magnetic north pole (Section 7.6)

Mean longitude for retrograde orbit (Section 3.3.11.1)
Longitude of the tracking station (Sections 3.3.7 and 9.2)

Gravitational parameter of the reference body, i.e., the prod-
uct of the universal gravitational parameter and the mass of
the body

Bank angle in spherical coordinates (Section 3.1.13)
Eclipse factor (Section 4.6.1)
Eledtromagnetic signal frequency (Section 7.6)

Bias frequency on the Doppler signal (Appendices A and C)
Doppler signal frequency (Appendices A and C

Computed full Doppler measurement at time tag T (Sec-
tion 7.3.5)
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va(T)

[""du(T)]campm
[Vdo (1) Jreterence
vdu(rl)

¥n

VL

Ve

VRI ' VR;

Vs

vl’ 1”!
14"
(vo)e

(vO) 5

3

Computed average Doppler shift tagged at time T (Sec-
tion 7.3.4)

Comparison one-way Doppler measurement (Section A.8.2)
Reference one-way Doppler measurement (Section A.8.2)

Measured Doppler shift (in hertz) at time tag Tj, averaged
over the time interval between T; and Ty, (Section A.8.2)

High frequency modulation (ranging) tone (Appendix A)
Low frequency modulation (ranging) tone (Appendix A)

Doppler-shifted carrier frequency via the long-trip path (Sec-
tion 7.3.4)

Signal frequency received at the ground station (Appendi-
ces A and C)

Reference frequency for the GRARR and ATSR range and |
range-ratc measurements (Appendices A and C)

Doppler-shifted pilot-tone frequency for the short-trip path
(Section 7.3.4)

Frequency of the signal transmitted at the tracking station
(Appendices A and C)

Frequencies of the transmitted and received signals (Appen-
dix C)

Frequency of the signal received at the spacecraft (Appendi-
ces A and C)

Unshifted carrier frequency via the long-trip path (Sec-
tion 7.3.4)

Unshifted pilot-tone frequency (Section 7.3.4)
Normalized time (Section 5.6)

Precession angle (Section 3.3.1)

GL-49



o, n 6
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Qa
Cea
Qas v
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ey
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o

| 911[
oM

€M Om

One-way range measurement from the tracking station to the
spacecraft (Chapters 3, 7, and Appendix A)

Planet's mass density (Section 4.3)
Atmospheric density (Section 4.5)

Average of the uplink and downlink propagation distances
(Section 7.2)

Oblate spherical coordinates (Section 5.12)

Con'iputed range at time tag T (kilometers) (Section 7.3.2)
Range ambiguity interval (kilometers) (Section 7.3.2)
Atmospheric density (Section 4.5.2)

Range ambiguity numbers (Appendix A)

Average range rate over the uplink and downlink paths (Chap-
ter 7 and Appendices A and C)

Dynamic weighting factor (Appendix D)

Atmospheric constituent densities (Section 4,.5.4)

Slant range from the tracking station to the spacecraft (Sec-
tion 9.2.2)

Correlation coefficient (Section 8.5)

Distance traversed by a tracking signal between nodes j and
j + 1 (Section 7.3)

Time rate of change of the long-trip full range (Section 7.3.4)

Measurement vector in station-centered topocentric local tan-
gent coordinates (Section 9.3)

Hayn'’s physical libration in the inclination of the mean lunar
equator (Section 3.3.3)

Maximum and minimum densities (Section 4.5.6)
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Summed atmospheric density (Section 4.5.4)
Time rate of change of the short-trip full range (Section 7.3.4)

One-way range distance corresponding to the uplink and
downlink signal path (Section 7.2.3 and Appendix )]

Measured range at time tag T (kilometers) (Section 7.3.2)

Measured half-range at time tag T (kilometers) (Sec-
tion A.8.2)

Drag scale factor (Section 4.5.2)

Ranges from the first and second stations to the satellite in
VLBI tracking (Section 7.4)

Systematic error coefficients in the atmospheric density model
(Section 4.5)

Distances between nodes (Section 7.3.2)
Slant range (Section 9.2.3)
Sample standard deviation (Section 8.6.4)

Variance estimate for unedited differences on the (E-1)"
edit loop of the same order (Section 8.7.4)

ih.order final noise estimate (Section 8.7.4)

Variance of the measurement noise component mn (Chap-
ter 8)

Standard deviation of the k' measurement (Chapter 8)

A priori standard deviation of the noise on the k™ measure-
ment (Section 8.1)

Standard deviation of the data reduction curve fit obtained
during preprocessing of the k't measurement (Section 8.1)

Hayn's physical libration in the mean right ascension of the
ascending node of the lunar orbit (Section 3.3.3)
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DDNA noise estimate (Section 8.7.4)

Final variance for the PR-order noise estimate (Section 8.7.4)
Eigenvalues of Pa, (Section 8.5)

Estimate of the variance of As; (Section 8.2.3)

Estimate of the variance of Az (Section 8.2.3)

Auxiliary angle used in the calculation of the uncorrected ex-
ospheric temperature (Section 4.5.4)

Time measured from effective igniﬁon of the thruster (Sec-
tion 4.8.1)

Independent variable (time element) for the transformed time-
regularized system (Sections 5.4, 6.4, and Appendix B)

Runge-Kutta stepsize (Section 6.2.2)
Phase difference time interval in VLBI tracking (Section 7.4)

Optimum stepsize in the Hull Runge-Kutta 3(4+) integrator
(Section 6.2.2)

Hayn's physical libration in mean longitude (Section 3.3.5)
Perturbing energy (Section 5.5 and Appendix B)

State transition matrix (Sections 6.3, 7.3.3, and 7.3.5)

Augmented state transition matrix (Section 8.4)

Geodetic and geocentric latitudes, respectively (Chapters 3, 4,
and 7)

Geocentric and geodetic latitudes, respectively (Chapter 4)

State transition matrix relating state perturbations at time to
to state perturbations at time T; (Chapter 8)

Transition matrix relating perturbations about f@I(t) at times t
and ty (Chapter 8)

Latitude corresponding to the adopted and true poles, respec-
tively (Section 3.3.2.2)
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Selenographic latitude of the Earth (Section 4.4)
Geocentric latitude (declination) of the Moon (Section 4.4)
Geodetic latitude of the magnetic north pole (Section 7.6)

Geodetic and geocentric latitude of the tracking station (Sec-
tions 3.3.7 and 9.2)

See @a. ¢T above
Roll angle of the spacecraft (Section 3.3.12)

Gravitational potential (Sections 4.3.1 and 4.4)

Angle between the satellite position vector and the apex of the
diurnal bulge (Section 4.5.6)

Generalized true anomaly (Section 5.5)

Geopotential function (sum of the normal geopotential Yn
and the disturbing potential ¥p) (Section 7.4)

Abbreviation for the covariance matrix of the estimated state
in the absence of consider variables (Section 8.3)

Disturbing potential (Section 7.4)
Normal geopotential (Section 7.4)

Right ascension of the orbital ascending node

Skew matrix whose elements are components of the Earth's
rotation vector (Section 4.5.3)

Euler angle used in transformation from selenocentric to
selenographic coordinates (Section 3.3.3)

Mean right ascension of the ascending node of the lunar orbit
(Section 3.3.3)

Argument of perigee of the satellite orbit

Frequency related to the negative of the total energy (Sec-
tion 5.4 and Appendix B)

Rotation rate of the Earth (Sections 3.3.2.1 and 7.4)
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Subscripts

(Ja
(D
( Jac
( Javg
(e
(o
(e
(e
(o
(Ja
(e
( Je-w
(e
( Jep
(r
( Jem
(
( Jom

Angular rotation vector of the Earth expressed in mean of

B1950.0 or J2000.0 coordinates (Section 4.5.2) .

State noise (Chapter 8)

Moon’s argument of perigee (Section 3.3.3)

Adopted quantity; averaged quantity; or model replacement

Apofocus; atmospheric; or apparent
Attitude control

Average

Spacecraft axis

Body-centered; body-fixed; burn; or bias
Correction; or coarse baseline (Minitrack)
Computed; cylinder; or minimum exospheric
Drag; aerodynamic; deviation; or disturbing
Doppler; or downlink

Earth; or mean of date

East-west

Equatorial; ephemeris; end plate; or electron density
Equinoctial system |

Frame; force; or fine baseline (Minitrack)
Midframe

Final

Greenwich mean value
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()
(h
( Jo

()
( i
( );
( )x
( x
(h
( e
(
( M
( IMa
( Im

(N
( Ins
( In-s
( ot
( Jop
( Jem
(s

Geomagnetic; Greenwich true value; or group

Tonospheric

Mutual nonspherical gravitational attraction of Earth and
Moon ‘

Initial node of the measurement (Section 7.3.3)
Counter input

Reference (central) body

Keplerian

Body k

Four-way ranging; or low frequency

Local plane

Local tangent

Moon; maximum; or medium baseline (Minitrack)
Midpoint

Minimum; maximum (Chapter 7); mean (Section 3.3.3); or
middle point

Normal
Nonspherical
North-south
Orbital frame
Orbit plane
Point-mass

Polar; perifocus; precession; solar paddie; geomagnetic;
planetary; orbital rectangular coordinates; or phase
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()r
( Jza
(rr
()
( e
(s
( Jsa
( sr
(s

(r

( )rac

(X

(u
O
( )x
O Oy O
(o

( )ao
( Jas
(Ve

Ground receiver; or reference
Doppler count
Round-trip

Generalized receiver (Appendix C)

‘Relative to the atmosphere

Two-way ranging
Semiannual
Solar radiation

Tracking statiori; solar; sample; selenographic; surface;
spherical; or sea level

Ground transmitter; thrust; tropospheric; or true (instantane-
ous) pole

Attitude control system

Time; topside; topocentric; true (Section 3.3.3); or general-
ized transmitter (Appendix C)

Uplink

Spaceccraft; or vehicle fixed
Inflection point
Corresponding axis

Mean elements at epoch; Earth-centered; initial conditions; ac-
tual; or a priori (Chapter 8)

GRARR and SRE USB 30-foot antennas
SRE USB 85-foot antennas

Corrected exospheric
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Superscripts

() Average value

() Corrected values

() Day

(" Hour

(- Minute

)y Predicted values

() Second

()T Transpose

() Perturbed initial conditions (Section 5.7.3)

Operational Symbols

v Linear gradient; or backward difference operator
() x () Vector cross product

() - QO) Vector dot product

E* Shifting operator (Section 6.1)

D Differential operator (Section 6.1)

I Identity operator

) | First derivative with respect to time

() Second derivative with respect to time
&) Unit vector

() Vector

(=) Absolute phase difference (Section A.4)
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&)
cov( )
det
var( )
)
()
()
fO)

Expected value (expectation operator)

Covariance

Determinant

Variance

PFirst derivative with respect to the variable s (Chapter 5)
Second derivative with respect to the variable s (Chapter 5)
Perturbed initial conditions (Section 5.7.3)

Function (Section 3.3.8)
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 INDEX

The index given on the following pages consists of an alphabetical list of significant topics
contained in this document. Cross-referencing is used where appropriate. The notation
appearing in parentheses after certain topics refers to the section or chapter primarily
concerned with that topic. The hyphenated numbers refer to the pages where the specified
topic is mentioned. A page number immediately following a section or chapter number
indicates the beginning page of that section or chapter. For example, the following entry

Mean of estimate, (8.2.1) 8-6, 8-52

indicates that the “mean of estimate” is discussed in Section 8.2.1, which begins on
page 8-6, and that it is also mentioned on page 8-52.



A

Acceleration
of Earth due to oblateness of Earth and
Moon, 4-22, 4-23
of Moon due to oblateness of Earth and
Moon, 4-22, 4-23
unknown, 8-43
unmodeled, 8-36—8-41

Adams integration formulas, 5-8, 5-9, 6-1, 6-2
Adams-Bashforth formula, 6-1

Adams-Cowell integration formulas, (6.1.1) 6-2,
(6.1.3) 69

Adams-Moulton predictor-corrector coefficients,
6-7

Aerodynamic force coefficients, 4-28, 4-29
(Table 4-1)
cylindrical spacecraft, 4-27—4-31
cylindrical spacecraft with solar paddles, 4-31,
4-32
spherical spacecraft, 4-28—4-30

Aerodynamic forces, (4.5) 4-25
aerodynamic force modeling, (4.5.2) 4-27
associated partal derivatives, (4.5.3) 4-32

Algorithm, batch estimator, (8.2) 8-3

Analytic partial derivatives, (4.9) 4-86
conversion of differential corrections,
(4.9.3) 4-94
definition of perturbation variables,
(4.9.1) 4-86
state transition matrix elements, (4.9.2) 4-90

Angles only early orbit methods, {9.2) 9-4

Antenna mount corrections, ground,
(7.7.2) 7-96

Antenna offset corrections, spacecraft, '(7.7.4)
7-97 '
Applications Technology Satellite Range and

Range-Rate (ATSR) System. See Goddard
Range and Range-Rate (GRARR) System

Atmospheric density models, (4.5) 4-25
Jacchia-Roberts model, (4.5.4) 4-35
low-altitude model, (4.5.8) 4-64
modified Harris-Priester model, (4.5.6) 4-57

Atmospheric effects, (7.6) 7-60
Chapman profile refraction corrections,
(7.6.3) 7-70
Doppler corrections, 7-77—7-83
elevation angle-dependent corrections,
7-74—7-717
range correction, 7-70—7-74

I-2

ionosphere models, (7.6.2) 7-62
electron density profile parameters,
7-67=7-70
empirical worldwide profile, 7-63—7-66
modified Chapman profile, 7-63, 7-64
segmented profile refraction corrections,
(7.6.4) 7-83
ionospheric correction, 7-88—7-95
tropospheric correction, 7-83—7-87
troposphere model, {7.6.1) 7-61
ATSR/GRARR tracking systems, (A.1) A-1,
(7.2) 7-4, 7-2
Attitude control effects, (4.7) 4-67, 2-17
partial derivatives, (4.7.2) 4-69
perturbation model, (4.7.1) 4-68

Averaging formulation, (5.8) 5-38
equinoctial VOP formulation, (5.8.3) 5-41
Keplerien formulation, (5.8.4) 5-41

Batch estimator algorithm, (8.2) 8-3
Besselian solar year, 3-1

Bilateration Ranging Transponder System
(BRTS), 7-2, A-31, A-32, A-34

Bouguer's formula, 7-74
Brouwer drag parameters, 4-90

Brouwer theory, (5.9) 5-43, 2-5, 5-1, 5-5, 5-41,
5-54, 5-63—5-65

Brouwer-Lyddane theory (formulation),
(5.10) 5-54, 4-86, 4-89, 5-4

BRTS. See Bilateration Ranging Transponder
System

C

C-band radar tracking systems, (7.2) 7-4, 7-3,
(A.2) A-8
early orbit data, 9-44, 9-45
functional description, (A.2.1) A-9
preprocessing description, (A.2.2) A-9
range and azimuth/elevation data, 2-9

Canonical variables, 5-1, 5-16
force, 5-18

Cassini’s laws, 3-32, 3-37

Celestial equator, 3-2

Celestial sphere, 3-2

Chapman profile, 7-63, 7-64, 7-70



Chapman profile refraction corrections,
(7.6.3) 7-70
Doppler corrections, 7-17-=7-83
elevation-angle-dependent corrections,
7-74=17-T1
ionospheric model for, 7-63, 7-64
range correction, 7-70—7-74

Chebyshev series, (5.6) 5-26, 3-84

Consider variables, 2-12
a prior, 8-4, 8-9, 8-10, 8-21
uncertainty, 8-53

Consider vector, 8-4, 8-10, 8-12, 8-24
Convergence criteria, 8-66
Coordinate systems (Chapter 3)

body-centered equatorial inertial, (3.2.1) 3-3

rectangular Cartesian, 3-5
spherical polar, 3-4
body-centered rotating, (3.2.2) 3-3
geodetic, 3-6
rectangular Cartesian, 3-5
spherical polar, 3-5
geocentric equatorial inertial (GCI), 3-4
local plane, (3.2.3) 3-6
rectangular Cartesian, 3-6
spherical velocity, 3-7
orbit plane, (3.2.5) 3-8
equinoctial, 3-9
Kepilerian, 3-9
rectangular Cartesian, 3-8
orbital elements,(3.2.6) 3-9
equinoctal, 3-10
Herrick, 3-11
Keplerian, 3-10
gelenocentric, (3.3.3) 3-31
selenographic, (3.3.3) 3-31
topocentric local tangent, (3.2.4) 3-7
rectangular Cartesian, 3-7
spherical position, 3-8
vehicle-fixed, (3.2.7) 3-11
rectangular Cartesian, 3-12

Coordinate time, C-6, C-10, C-13
Coordinate time derivatives, C-10

Coordinate transformatons, (3.3) 3-12, 2-17
body-centered true of date to orbit plane,
(3.3.5) 3-46
body-fixed to geographic, (3.3.6) 3-47
Earth-fixed to geodetic, 3-50
geodetic to Earth-fixed, 3-49

Earth-fixed to topocentric local tangent,
(3.3.7) 3-53
equinoctial to Cartesian, 3.3.9) 3-65
Cartesian coordinates to equinoctial ele-
ments, 3-66
equinoctial elements to Cartesian cootdi-
nates, 3-65
geographic to spherical, (3.3.13) 3-73
Herrick to Cartesian, (3.3.10) 3-68
Carteséan coordinates to Herrick elements,
3-69
Hergickselements to Cartesian coordinates,
-6
inertial to rotating libration, (3.3.14) 3-75
inertial to true of date, (3.3.1) 3-13
B1950.0 inertial to mean of date, 3-17-3-19
J2000.0 inertial to mean of date, 3-14-3-17
mean of date to true of date, 3-19-3-23
Keplerian to Cartesian, (3.3.8) 3-54
body-centered true of date to Keplerian ele-
ments, 3-61
Keplerian elements to body-centered true of
date, 3-55
partial derivatives, 3-58, 3-59
Kepleri:(t}n to equinoctial and Herrick, (3.3.11)
3-7
. Keplerian to equinoctial elements, 3-71
Keplerian to Herrick elements, 3-71
selenocentric true of date to selenographic,
(3.3.3) 3-31
spherical to Cartesian, (3.3.4) 3-40
Cart;siazn position and velocity to spherical,
-4
spheric?)l position and velocity to Carteslan,
3-4
true of date to body-fixed, {3.3.2) 3-23
pseudo body-fixed to body-fixed, 3-26
true of date to pseudo body-fixed, 3-24
vehicle-fixed to body-centered true of date,
(3.3.12) 3-72

Correlation, 8-9

between state and uncertain model parame-
ters, 8-16

of errors in a priori solve-for and consider -
variables, 8-9

of errors in solve-for and consider variables,
§-9, 8-10

of estimate and consider variables, 8-17

of solve-for and consider variables, timewise
propagation, 8-21, 8-22

Covarlance
of estimate, (8.2.1) 8-6, 8-20
of state noise, 8-30, 8-31, 8-42

Covariance matrix
interpretation, (8.5) 8-52
augmented vector and covariance, (8.5.1)
§-52



correlation coefficient, (8.5.4) 8-57
hyperellipse probabilities, (8.5.2) 8-53
hyperrectangle probabilities, (8.5.3) 8-55

of error, 8-3, 8-10, 8-27, 8-29, 8-42
augmented, 8-45, 8-52
derivation of, (E.1) E-1

of state, 8-16, 8-49

propagation of, 8-15, 8-22

transformations, (8.2.3) 8-13

Cowell method, (5.2) 5-5, 4-1, 5-1, 5-3, 5-8,

5-9, 5-26, 6-1, 6-2, 6-11, 6-20, 6-34

time-regularized, (5.3) 5-8, 5-3, 5-5, 5-6, 6-1

Critical frequency, 7-67

D

Data Management Program, (2.1.8) 2-3
Data Simulation Program, (2.1.6) 2-2
Delaunay elements, (5.5) 5-16, 5-43, 5-44, 5-63

Delaunay-Similar (DS) formulation, (5.5) 5-16,
2-8, 5-3
Density corrections, 4-36, 4-38, 4-39
geomagnetic activity (effect), 4-36-4-38, 4-51
seasonal latitudinal, 4-39, 4-49, 4-51, 4-57
seasonal latitudinal, helium, 4-39
semiannual variation, 4-39, 4-51, 4-57

Differential correction process, 4-83-4-86, 4-94,
7-1, 7-3, 9-37, 9-38-9-44
Differential Correction Program, (2.1.1) 2-1
a priori input, 8-17, 8-18
computational procedure, {8.2.4) 8-16
data management, 8-17, 8-18
estimation computation, 8-19
inner processing loop, 8-17, 8-19
outer iteration loop, 8-17-8-19
residual editing algorithms, (8.6.2) 8-61
termination of outer iteration loop, 8-19, 8-66

Differential equations
class I, 5-2, 5-8, 5-9, 5-26, 6-1, 6-2
class 11, 5-2, 5-8, 5-9, 6-1, 6-2

Direction cosines, Minitrack, 7-3, 7-11

Dispersion, 8-10
See also measurement uncertainty

Diurnal bulge, 4-57, 4-60, 4-61
Divergence, filter, 8-35
DODS variables, 4-2, 4-86—4-94, 6-12

Doppler corrections due to atmospheric refrac-
tion, 7-77-7-83

Doppler cycle count, 7-15, 7-16, A-6,
A-11-A-13
destruct, C-7
nondestruct, A-12, A-35, C-7

Doppler measurements, (7.3) 7-18, 2-14,
7-18-7-22, 7-71, A-2, A-33-A-37

Doppler frequency shift, relativistic, C-3, C-5,
C‘7| c'12

Double R-lteration method, early orbit,
(9.2.3) 9-19, 2-2, 2-13, 9-1, 9-4
computing orbit parameters, 9-26-9-34
determining computed orbit accuracy,
9-34-9-36
initiating differential correction, 9-37-9-44
preliminary orbit search, 9-19-9-26

Dynamic model compensation (8.4.2) 8-36
advantages of, 8-36
procedure, 8-42

Dynamic weighting factor, D-1, D-2
Dynamics, spacecraft, (2.3) 2-16

Early Orbit Determination Program, (2.1.5) 2-2

‘Early orbit methods (Chapter 9)

angles-only methods, (9.2) 9-4

double R-Iteration method, (9.2.3) 9-19, 2-2,
2-13, 9-1, 9-4

Gauss method, (9.2.2) 9-9, 2-2, 9-1, 9-4,
9-19, 9-31

range and Angles method, (9.3) 9-44, 2-2,
9-1

transformation of topocentric gimbal angles to
inertial coordinates, (9.2.1) 9-§

Earth-Moon system, (4.4) 4-21

Editing of measurement residuals, (8.6.2) 8-61

Electron density profile, 7-62-7-67, 7-70, 7-88,
7-89 -

Electron density profile parameters, 7-67-7-70

Element sets
Brouwer mean, 5-47
Delaunay-Similar, (5.5) 5-16, 5-3
equinoctial, (5.7.2) 5-33, 5-3, 5-31
Keplerian, (5.7.1) 5-31, 5-3, 5-32
Kustaanheimo-Stiefel, 5-3
rectangular, (5.7.3) 5-34, 5-3, 5-31

Encke method, 5-63



Ephemeris Comparison Program, (2.1.3) 2-2.

Ephemeris data, 3-85—-3-88
polynomial ?epresentation of, (3.6) 3-84

Ephemeris Generation Program, (2.1.2) 2-2

Equations of motion, 6-1, 6-2, 6-7, 6-9, 6-14,

6-15, 6-20, 6-22, 6-23, 6-25, 6-26, 6-27,
6-34, 8-36 | '

Error analysis
application, (8.3) 8-20
problems, 8-21

Error Analysis Program, (2.1.7) 2-3
Error control, (6.1.7) 6-20

Estimate
a priori, 8-2
bias' 3‘6
classical equation for best, §-3
covariance of error, 8-8, 8-27
mean, 8-8
minimum variance, 8-29
state correction, 8-27

Estimation (Chapter 8)
batch estimator algorithm, (8.2} 8-3
covariance matrix interpretation, (8.5) 8-52
error analysis application, (8.3) 8-20
estimation-related techniques (8.6) 8-58
problem description, (8.1) 8-1
sequential, (8.4) 8-25, (Appendix E) E-1
Statistical Output Report (SOR) modeling,

(8.7) 8-69

Estimation model, (7.8) 7-98

Estimator
advantage of recursive, 8-32
algorithm, 9-1
gain matrix, 8-9
Kalman minimum variance, 8-25
sequential weighted least squares, 8-25
weighted least squares, 8-1, 8-20
weighted least-squares variation
with respect to consider parameters, 8-23
with respect to dynamic parameters, 8-23

Expected value of deviation, 8-6
of linearized measurement residuals, 8-7

F

Fast ¢lements, 5-16, 5-31, 5-39, 5-41
Figure of the Earth, 3-47-3-49

Filter
Extended Kalman, (8.4) 8-25, 2-12
derivation of, (8.4.1) 8-25
nonupdated reference trajectory, 8-32
prediction formulas of, 8-30
update equations of, 8-29
updated reference trajectory, 8-32
Jazwinski (statistical adaptive filtering),
(8.4.3) 8-42, 8-36
derivation of, 8-45
prediction equations, 8-49
update equations, 8-49
Filter Program, (2.1.4) 2-2
a priori input, 8-50, 8-51
computational procedure, (8.4.4) 8-49
data management, 8-50, 8-51
data set loop, 8-52
processing loop, 8-50

Filtering
dynamic model compensation, (8.4.2) 8-36

statistical adaptive, (8.4.3) 8-42
Flight sectioning, 2-17

G

Gain matrix, 8-9, 8-29, 8-34, 8-42, 8-46

Gauss method, early orbit, (9.2.2) 9-9, 2-2,
2-13, 9-1, 9-19, 9-31

Gaussian planetary equations, 5-32

Gaussian VOP formulation, (5.7) 5-30, 5-39

General Perturbation Methods, 2-§, 5-1, 5-4

Geoid, 7-51—7-57

Geoidal undulation, 7-52, 7-54, 7-58

Gibbs method, 9-9, 9-15, 9-16

Gimbal angles, 2-9, 7-3, 7-7-7-10, 9-5, 9-6,
A-2, A-5 '

Global iteration, 8-33

Goddard Range and Range-Rate (GRARR) and
ATSR systems, (A.1) A-1, C-12, C-15
data smoothing, A-8
early orbit data, 9-44
functional description, {A.1.1) A-1
gimbal angles, A-5
preprocessing description, (A.1.2) A-3
range computation, A-5, A-6
range-rate computation, A-6-A-8

GRARR and ATSR tracking systems, (A.1) A-1,
(7.2) 7-4, 2-8, 7-2

Greenwich hour angle, 3-24, 3-26, 3-74,
3-78-3-80, 9-2, 9-3



Greenwich Mean Time (GMT), 3-80

Ground antenna mount corrections,
(70702) 7-96

GTDS overview (Chapter 2)

GTDS programs, (2.1} 2-1
Data Management, (2.1.8) 2-3
Data Simuiation, (2.1.6) 2-2, 2-9, 2-15
Differential Correction, (2.1.1) 2-1, 2-3, 2-9,
2-15, 2-16
Early Orbit Determination, (2.1.5) 2-2
Ephemeris Comparison, (2.1.3) 2-2
Ephemeris Generation, (2.1.2) 2-2, 2-5, 2-15
Error Analysis, (2.1.7) 2-3, 2-16
Filter, (2.1.4) 2-2
GTDS system capabilities, (2.2) 2-3

data simulation, 2-10
differential correction, 2-3, 2-4
early orbit determination, (2.2.4) 2-13
error analysis, 2-13, 2-14
estimation techniques, (2.2.3) 2-12
measurement modeling, (2.2.2) 2-8

data preprocessing, 2-9

measurement models, 2-11

measurement types, 2-9
optional modes of operation, (2.2.6) 2-15
Statistical Output Report modeling,

(2.2.5) 2-13

trajectory (ephemeris) generation, (2.2.1) 2-5

H

Hamilton-Jacobi differential equations, 5-1, 5-64
Hamiltonian, 5-17, 5-18

Harris-Priester atmospheric density model
(modified}, {4.5.6) 4-57, 4-27
partial derivatives, (4.5.7) 4-62

Hayn's physical librations, 3-38, 3-39
Herrick elements, 3-70-3-72

Index of refraction, 7-61, 7-62, 7-70
Indirect oblation perturbation model, (4.4) 4-21
Insertion vector, 9-1, 9-2 |

Intermediate Orbit formulation, (5.11) 5-63,
2-8, 5-3, 5-4 :

Introduction, (Chapter 1) 1-1

Ionospheric models, (7.6.2) 7-62
Ionospheric refraction corrections, 7-88-7-95

J

Jacchia-Roberts atmospheric density model,
(4.5.4) 4-35, 4-27
partial derivatives, (4.5.5) 4-54
JPL ephemeris, 3-19, 3-22, 3-84

K

Kalman filter. See Filter, Extended Kalman
Kalman gain, 8-29
See also gain matrix
Kepler's equation, 5-33, 5-37, 5-47, 5-54, 5-62
KS matrix, 5-13
Kustaanheimo-Stiefel (KS) formulation,
(5.4) 5-9, 2-8, 5-3

L

Laplacian, 4-11
Laser tracking systems (STDN), (A.7) A-29,
(7.2) 7-4, 7-3

Launch and early orbit methods, (Chapter 9)
angles-only methods, (5.2) 9-4
launch and powered flight propagation tech-

nigues, (9.1) 9-1

range and angles method, (9.3) 9-44

Launch Telemetry Acquisition System (LTAS)
vectors, 9-2, 9-4

Least squares, weighted, 8-1, 8-3, 8-5
Legendre functions, 4-11, 4-13
Libration coordinates, (3.3.14) 3-75
Libration of the Moon, 4-21
Libration point (L1), 3-75

Light-time correction, (7.7.1) 7-95
Linear gain, optimal, E-1, E-3
Linearity, 8-3, 8-5, 8-23, 8-33

Loss function, §-1-8-6, 8-25

Low-altitude atmospheric density model, (4.5.8)
4-64
Lunisolar precession and nutation, 3-13, 4-21

Magnetic dip, 7-68, 7-69

Matrix identities (sequential estimation),
(Appendix E) E-1

Matrix inversion, (8.6.1) 8-59

Matrix of functional sensitivities, 8-23



Matrix of partial derivatives, 8-2

Mean of estimate, (8.2.1) 8-6, 8-52
Measurement equation, nonlinear, 8-11
Measurement model, 8-43
Measurement model parameters, 7-2

Measurement models (Chapter 7)
additional corrections, (7.7) 7-95
atmospheric effects, (7.6} 7-60
estimation model, (7.8) 7-98
general description of, (7.1) 7-1
ground-based tracker models, (7.2) 7-4
radar altimeter model, (7.4) 7-51
Tracking and Data Relay Satellite System

(TDRSS) models, (7.3) 7-18
Very Long Baseline Interferometer model,
(7.5) 7-59

Measurement noise, 8-1, 8-7, 8-9, 8-10, 8-32,
8-41, 8-42, 8-43
covariance, 8-7
expected value, 8-7

Measurement partial derivatives, (8.2.2) 8-10
with respect to consider variables, 8-12
with respect to solve-for variables, 8-12

Measurement residuals, 8-5, 8-7, §-67-8-69
Measurement types, 2-9

Measurement uncertainty, 8-10, 8-21, B-29
Measurement vector, linearized, 8-2
Measurements modeled in GTDS, 7-2
Meridian

local, 3-3
pl'ime. 3'3

Minimization, nonlinear, 8-2

Minitrack System, (A.4) A-13, (7.2) 7-4. 7-3
ambiguity data, A-19
ambiguity resolution, A-23
antenna field correction, A-25
conversion to direction cosines, A-25
data linearization and smoothing, A-19
direction cosine data, 2-9, 7-76, A-25
fine baseline data, A-20, A-21
functional description, (A.4.1) A-13
preprocessing description, (A.4.2) A-16
processor considerations, A-26
time adjustment and zenith calibration, A-21

Model parameters, uncertain, 8-15, 8-16

Mu.ltsistep numerical integration methods, (6.1)
-1
Adams-Cowell ordinate second sum formulas,
(6.1.1) 6-1
corrector-only algorithm for variational equa-
tions, (6.1.4) 6-11
corrector-only Cowell integration for linear
systems, (6.1.3) 6-9
local error control, (6.1.7) 6-20
multistep interpolation, (6.1.5) 6-15
predict-pseudocorrect algorithm for equations
of motion, (6.1.2) 6-2
starting procedure, (6.1.6) 6-19

N

Near-realtime operation, (2.4) 2-17

Newton-Raphson iteration, 5-37, 5-42, 7-24,
9'19. 9'39| 9'41. 9'43

Newtonian interpolation, 6-5

Nonspherlcal.gravitational effects, (4.3) 4-10,
2-16
associated partial derivatives, (4.3.2) 4-16
perturbation model, (4.3.1) 4-10

Normal matrix, 8-3, 8-10, 8-12, 8-13, 8-24,
8-59, 8-61

Numerical averaging, (5.8) 5-38

Numerical integration methods (Chapter 6)
Adams-Cowell, 6-2
corrector-only, (6.1.3) 6-9
multistep methods, (6.1) 6-1
predict-pseudocorrect, {6.1.2) 6-7
predictor-corrector, 6-2—56-7
Runge-Kutta, (6.2) 6-22, 6-20
starting procedures, (6.1.6) 6-19

Numerical stability, 5-2, 5-3, 6-2, 6-7, 6-9
Nutation, 3-13, 3-19, 3-20

o

Obliquity of the ecliptic, 3-13, 3-19, 3-20
Optimal linear gain, derivation of, (E.2) E-3
Orbit estimation problem, 8-1, 8-25



Orbit generation methods (Chapter 5)
averaged equinoctial, (5.8.3) 5-41
averaged Keplerian, (5.8.4) 5-41

Brouwer, (5.9) 5-43
Brouwer-Lyddane, (5.10) 5-54
Ahebyshev-Picard, (5.6) 5-26
Cowell, (5.2) 5-5
Cowell, time regularized, (5.3) 5-8
Delaunay-Similar (DS), (5.5) 5-16
Gaussian VOP formulations, (5.7) 5-30

See also VOP
Intermediate orbit, (5.11) 5-63
Kustaanheimo-Stiefel (KS), (5.4) 5-9
Vind, (5.12) 5-64
VOP-equinoctial, (5.7.2) 5-33

of nonspherical potential with respect tor, ¢,
and i, 4-12
of radar altimeter measurements, (7.4.3) 7-38
of range (expected)
in inertial (USB) coordinates, 7-15
in local tangent plane coordinates, 7-15
of range measurements with respect to solve-
for parameters (TDRSS), (7.3.3) 7-30
of range rate
average, 7-18
instantaneous method, 7-17
iterative method, 7-17
of thrust effects, (4.8.2) 4-73
of USB expected range, 7-15
of VLBI measurements, 7-60

VOP—Keplerian, (5.7.1) §-31
VOP-rectangular, (5.7.3) 5-34 P"g:“’mb'm:"?_f“‘h°d’
Orbit generators, characteristics of, 5-5—5-7 special, 5-1

(Tables 5-1 and 5-2)
Orbital equations of motion (Chapter 5)

Perturbation models (Chapter 4)
aerodynamic and atmospheric models,

(4.5) 4-25
Origin of coordinates, 3-1, 3-2 indirect oblation perturbation model,
Overview of GTDS (Chapter 2) (4.4) 4-21

P

Partial derivatives

analytic, (4.9) 4-86

for aerodynamic force modeling, (4.5.3) 4-32

Keplerian to Cartesian, 3-58-3-60

mapping of, (6.3) 6-29

of acceleration due to attitude control effect,
(4.7.2) 4-69

of acceleration due to nonspherical gravita-
tional effects, (4.3.2) 4-16

of acceleration due to point-mass effects,
(4.2.2) 4%

of acceleration due to solar radiation pressure,
(4.6.2) 4-67

of atmospheric density

Harris-Priester mode!, (4.5.7) 4-62
Jacchia-Roberts model, (4.5.5) 4-54

of Cartesian state with respect to DODS vari-
ables| 4'91—4'94

of expected range, 7-15

of geodetic coordinates with respect to body-
fixed coordinates, 3-53

of gimbal angles, 7-7-7-11

of indirect oblateness effects, 4-23, 4-24

of Keplerian with respect to Cartesian, 3-64

of Minitrack direction cosines, 7-11

of measurements, 7-3, 7-4

of me:su;ements in local tangent coordinates,
7-6, 7-7

model parameters, 4-2, 4-3

n-point masses perturbation model, (4.2.1)
4-5

nonspherical gravitational effects, (4.3} 4-10

point-mass effects, (4.2) 4-5

total perturbation model, (4.1) 4-2

Perturbing accelerations (Chapter 4)
aerodynamic force effects, (4.5) 4-25
analytic partial derivatives, (4.9) 4-86
atmospheric effects, (4.5) 4-25
attitude control effects, (4.7) 4-67
Eart.l'l-g{oon indirect oblation effects, (4.4)

4-
nonspherical gravitational effects, (4.3) 4-10
point-mass effects, (4.2) 4-5
solar radiation pressure, (4.6) 4-64
thrust effects, (4.8) 4-70

Picard iteration method, (5.6) 5-26
Poincaré variables, 5-4, 5-54, 5-63

Point-mass effects, (4.2) 4-5
associated partial derivatives, (4.2.2) 4-9

n-point masses perturbation model,
(4.2.1) 4-5

Poisson’s equation, 4-10

Polar motion, 3-24, 3-26-3-31, 9-7

Postflight processing, 2-17

Precession, 3-13, 3-17, 3-18

Predictor-corrector integration methods, 6-2-6-7



Predictor-pseudocorrector methods, (6.1.2) 6-7
Preprocessing, (Appendix A) A-1, 7-1

Preprocessor/processor interfaces, A~1, A-3,
A-4, A-16, A-18

Prime Meridian, 3-3
Greenwich, 3-3
lunar, 3-3

Principal directions, 3-3

Probabilities
hyperellipse, (8.5.2) 8-53, 8-55 (Table 8-1)
hyperrectangle, (8.5.3) 8-55, 8-57 (Table 8-2)

Probability density function, 8-53
Propagation of covariance matrix, 8-15, 8-16
Proper time, C-6, C-8, C-11

R

Radar altimeter model, (7.4) 7-51, (A.6) A-28
measurement equation, (7.4.2) 7-56
partial derivatives, (7.4.3) 7-58
surface model, (7.4.1) 7-51

Radar altimeter system, (A.6) A-28
Radar tracking systems (C-band), {A.2) A-8

Range (GRARR, ATSR, USB, and C-band),
7-12-7-15
instantanecus method, 7-14
iterative method, 7-13
partial derivatives, 7-15

Range ambiguity, A-2, A-3, A-5, A-9

Range and Angles method, early orbit,
(9.3) 9-44, 2-13, 9-1

Range difference, C-11, C-12

" Range measurements

GRARR and ATSR, A-5, A-6

hybrid relay and Doppler, 7-19

modeling of, (7.3.2) 7-21

partial derivatives with respect to solve-for pa-
rameters, (7.3.3) 7-30

two-way and Doppler, 7-19

Range rate (GRARR, ATSR, USB), 7-15=7-18,
A-6-A-8
average range rate, 7-17, 7-18
instantaneous range difference method, 7-17
iterative range difference method, 7-16, 7-17

I-9

Range-rate formulas, (Appendix C) C-1
Realtime operation, near, 2-17
Reference ellipsoid, 7-51, 7-52, 7-55
Reference planes, 3-1, 3-2

Reference trajectory, 8-31, 8-32, 8-33
a priori, 8-21

Refraction. See atmospheric effects
Refraction difference vectors, C-4

Refraction effects (correction), C-2, C-7, C-9,
C-12, C-14, C-15

Regression equation, nonlinear, 8-1, 8-5, 8-25
Regularization, (6.4) 6-31, (5.3) 5-9, 5-4
Residual editing (estimation), (8.6.2) 8-61

Relativistic Doppler frequency shift, C-3-C-7,
C-12 :

Relativistic signal propagation, (Appendix C).
C-1 '

Residual error, predicted measurement, 8-31 |

Residual uncertainty, predicted measurement,
8-32, 8-34 ' '

Runge-Kutta integration method, (6.2) 6-22,
6-1, 6-19, 6-20, 9-3
fourth order with Gill coefficients (RKG)},
(6.2.3) 6-26 '
Hull formulas, (6.2.2) 6-24 :
Shanks eighth-order formulas, (6.2.1) 6-23

S

Schur identity, 8-59

Sensor systems. See trajectory sensor systems'
SGLS, (7.2) 7-4, 2-9, 7-2 '

Stow element vector, 5-41
Solar/Lunar/Planetary Ephemeris File, 3-22

Solar radiation pressure, (4.6) 4-64, 2-16
partial derivatives, (4.6.2) 4-67
perturbation model, (4.6.1) 4-64

Solve-for variables, 2-12, 2-13, 8-10, 8-24
a priori values, 8-3, 8-4, 8-6, 8-21
best estimate of, 8-6

Solve-for vector, 8-4, 8-10, 8-24, 8-31
SOR. See Statistical Output Report
Space-time matrix, C-1, C-2

Spacecraft dynamics, (2.3) 2-16

Special Perturbation Methods, 2-7, 5+1-5-4



SRE USB and VHF sensor systems, (A.3)
A-10, (7.2) 7-4, 2-9, 7-3

Stability
dynamic, 5-4, 5-10
numerical, 5-2, 5-3

Standard deviations, a priori, (Appendix D) D-1
Starting procedures, (6.1.6) 6-19

State correction vector, E-1

State noise, 8-30, 8-31, 8-40, 8-42, 8-46

State transition matrix, 2-12, 2-17, 4-1, 6-30,
8'11, 8'12; 8'15; 8'19| 8'30| 8'34
augmented, 8-45
elements, (4.9.2) 4-90

State vector
augmented, (8.5.1) 8-52, 8-38, 8-45
expanded, 8-13

Statistical adaptive filtering, (8.4.3) 8-42

Statistical Output Report (SOR}, (8.7) 8-69,
2-13 :

Statistics, weighted least-squares and filter,
(8.6.4) 8-67
confidence interval for group mean, 8-68
group mean, 8-68
measurement residual groups, 8-69
root mean square error, 8-67
sample standard deviation, 8-68
sum of squares about the mean, 8-68

STDN laser tracking systems, (A.7) A-29, 2-9

Stepsize control, (6.1.7) 6-20, 2-7, 6-1, 6-2

Stepsize regularization, (6.4) 6-31, 2-8, 5-2,
5-5, 5-8-5-10, 6-1, 6-21

See also time regularization

Stormer-Cowell integration formulas, 5-6, 5-8,
5-9, 6-1, 6-7

System capabilities. See GTDS system capabili-
ties

T

Thrust effects, (4.8) 4-70, 2-17

acceleration model, (4.8.1) 4-71

high-thrust maneuver modeling, (4.8.4) 4-78

partia} derivatives, (4.8.2) 4-73

tabular thrust force model, (4.8.3) 4-76
Time

coordinate, C-6, C-10, C-11, C-13

proper, C-6, C-8, C-10, C-11

I-10

Time correlation coefficients, 8-37

Time dependence of solve-for and consider vari-
ables, 8-10
Time element, 5-10, 5-11, 5-14
Time regularization, (6.4) 6-31, 2-8, 2-17, 6-1,
6-15, 6-18, 6-33
See also stepsize regularization

Time regularized Cowell method, (5.3) 5-8, 2-8,
5-3, 5-5, 6-20
Time systems, (3.4) 3-77
atomic time, A.1, (3.4.2) 3-78
coordinated universal time, UTC, (3.4.7) 3-81
ephemeris time, ET, (3.4.1) 3-77
station time, ST, (3.4.8) 3-81
transformations between, (3.5) 3-81
uncorrected universal time, UT0, (3.4.4) 3-80
universal time, UT, (3.4.3) 3-78
universal time, UT1, (3.4.5) 3-80
universal time, UT2, (3.4.6) 3-80
Time tag, 7-2, A-3, A-9, A-11, A-13, A-17,
A-21, A-29, A-35, A-36, A-37

Tracker models, ground-based, (7.2) 7-4

Tracking and Data Relay Satellite System
(TDRSS), 2-9, 7-2, 7-3
models, (7.3} 7-18
functional and processing description, (A.8)
A-30
Tracking modes, TDRSS, (7.3.1) 7-18
coherent mode, 7-46

Tracking process, (7.2.1) 7-4

Tracking (ground) stations (sites), (Appen-
dix A) A-1, 7-1
ATSR, A-3, A-6
BRTS, A-31, A-32, A-34
C-band, (7.2) 7-4, (A.2) A-8
GRARR, A-3, A-6, A-7
Minitrack, A-13, A-14, A-17
WSGT, A-31-A-33
See also trajectory sensor systems

Tracking system data types, 7-1-7-3

Trajectory sensor systems, (Appendix A) A-1

ATSR, (A.1) A-1

C-band radar, (A.2) A-8

GRARR, (A.1) A-1

Minitrack, (A.4) A-13

radar altimeter, (A.6) A-28

SRE (USB and VHF), (A.3) A-10

STDN laser, (A.7) A-29

TDRSS, (A.8) A-30

VLBI, (A.5)A-26

See also name of the specific sensor (track-
ing) system (listed alphabetically elsewhere
in the index)



Transformations

See also coordinate transformations

equinoctial-Cartesian, (3.3.9) 3-65

from body-centered true of date to orbit
plane, (3.3.5) 3-46

from body-fixed to geographic, (3.3.6) 3-47

from Brouwer mean elements to osculating
Is(espslerian elements, (5.9.2) 5-49, (5.10.2)

from B1950.0 inertial to mean of date,
3-17-3-19

from C-band, GRARR, and USB data vectors
to local tangent coordinates, 9-45

from Cartesian position and velocity to DS
elements, {5.5.2) 5-20

from Cartesian position and velocity to KS pa-
rameters, (5.4.2) 5-13

from DS elements to Cartesian position and
velocity, (5.5.3) 5-25

from Earth-fixed to topocentric local tangent,
(3.3.7) 3-53

from geographic to spherical, (3.3.13) 3-73

fron; i;:ertial to rotating libration, (3.3.14)

-5

from J2000.0 inertial to mean of date,
3-14-3-17

from Keplerian to equinoctial and Herrick,
(3.3.11) 3-70

from KS parametric variables to Cartesian po-
sition and velocity, (5.4.3) 5-15

from mean of date to true of date, 3-19-3-23

from osculating orbital elements to averaged
elements, {5.8.5) 5-42

" from osculating orbital elements to Brouwer

?gasn elements, (5.9.1) 5-47, (5.10.1)

from selenocentric true of date to
selenographic, (3.3.3) 3-31

from topocentric gimbal angles to inertial co-
ordinates, (9.2.1) 9-5

from true of date to body-fixed, (3.3.2) 3-23

from vehicle-fixed to body-centered true of
date, (3.3.12) 3-72 '

Herrick-Cartesian, (3.3.10) 3-68

Keplerian-Cartesian, (3.3.8) 3-54

spherical-Cartesian, (3.3.4) 3-40

Transformations between time systems,
(3.5) 3-81
by standard formula, (3.5.1) 3-82
by time polynomials, (3.5.2) 3-83

Transponder delay correction, (7.7.3) 7-96
for TDRSS, 7-23, 7-26-7-28
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Troposphere model, (7.6.1) 7-61

U

Unified S-Band (USB) System (SRE), (A.3)
A-10, (7.2) 7-4, C-12 '
early orbit data (Range and Angles method),
(9.3) 9-44
functional description, A-10-A-12
preprocessing description, A-12, A-13

Uniformization, 5-2, 5-3, 5-5, §-8, 5-10, 5-16

Vv

Variance, D-1
Variance estimation, 8-23-8-29

Variation of estimator with respect to consider
parameters, 8-23

Variation of parameters (VOP) formulations,

2-7, 4-1, 4-8, 5-2, 5-3, 5-39, 5-63, 6-1, 6-9

DS VOP formulation, (5.5) 5-16
VOP equations of motion, (5.5.1) 5-17

Gaussian VOP formulations, (5.7) 5-30, 5-39
equinoctial elements, (5.7.2) 5-33
Keplerian elements, (5.7.1) 5-31
Rectangular formulation, (5.7.3) 5-34

KS VOP formulation, (5.4) 5-9
VOP equations of motion, (5.4.1) 5-11

Variation of state with respect to consider dy-
namic parameters, 8-23

Variation of transformed state with respect to
consider variables, 8-23

Variational equations, (Chapter 4) 4-1, 4-69,
4-78, 4-91, 6-1, 6-2, 6-11, 6-12, 6-14,
6-15, 6-20, 6-22, 6-23, 6-25, 6-26, 6-27,
6-31, 6-33, 8-12, B-19, 8-21

. regularized, 6-33

Vehicle-fixed to body-centered true of date
transformations, {3.3.12) 3-72

Vernal equinox, 3-3, 3-4

Very High Frequency (VHF) system (SRE).
(A.3) A-10, (7.2) 7-4

Very Long Baseline Interferometer (VLBI) sys-
tem, (7.5} 7-59, 7-3

functional description and preprocessing,
(A.5) A-26

Vinti theory, (5.12) 5-64

VLBI. Se¢ Very Long Baseline Interferometer

Von Zeipel method, 5-1, 5-43, 5-54

VOP. See variation of parameters



w

Weighting factors, dynamic, D-1
Weighting matrix, 8-1, 8-12, 8-63, 8-68
Weighting for a measurement, D-1
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